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Abstract

Fixed point theorems of several set-valued F -contractions without using the Hausdorff metric are pro-
vided. Our results extend substantially the results due to Nadler [S. B. Nadler, Jr., Pacific J. Math., 30
(1969), 475–488] and Mizoguchi and Takahashi [N. Mizoguchi, W. Takahashi, J. Math. Anal. Appl., 141
(1989), 177–188]. Five nontrivial examples are given. c©2016 All rights reserved.
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1. Introduction

In 1969, Nadler [13] initiated the study of fixed points for set-valued contraction mappings and proved
the following result, which extends the Banach contraction principle.

Theorem 1.1 ([13]). Let (X, d) be a complete metric space and T : X → CB(X) satisfies

H(Tx, Ty) ≤ αd(x, y), ∀x, y ∈ X, (1.1)

where

α ∈ [0, 1) is a constant. (1.2)

Then T has a fixed point.

Since then many researchers [2, 3, 5–7, 9, 10, 12, 15] have continued the study of Nadler and extended
Theorem 1.1 in various directions. Using a function k to replace the constant α in (1.1), Mizoguchi and
Takahashi [12] generalized Theorem 1.1 and gave the following result.
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Theorem 1.2 ([14]). Let (X, d) be a complete metric space and T : X → CB(X) satisfies that

H(Tx, Ty) ≤ k(d(x, y))d(x, y), ∀x, y ∈ X with x 6= y, (1.3)

where

k : (0,+∞)→ [0, 1) with lim sup
s→t+

k(s) < 1, ∀t ∈ R+. (1.4)

Then T has a fixed point.

In 1995, Daffer [5] provided an alternative and somewhat more straightforward proof of Theorem 1.2.
In 2006, Feng and Liu [7] obtained an interesting generalization of Theorem 1.1.

In 2012, Wardowski [16] introduced the concept of F -contraction for single-valued mappings and proved
a fixed point theorem for the F -contraction, which extends the Banach contraction principle. Afterwards,
a few researchers [1, 4, 8, 11, 14] introduced new F -contractions for single-valued and set-valued mappings
and proved the existence of fixed points for these F -contractions. In 2014, Acar et al. [1] gave a fixed point
result for the generalized multi-valued F -contraction mappings and Cosentino and Vetro [4] got fixed point
theorems for the Hardy-Rogers-type F -contractions in complete metric spaces and complete ordered metric
spaces. In 2014, Minak et al. [11] showed the existence and uniqueness of fixed points for the Ciric type
generalized F -contraction and almost F -contraction in complete metric spaces.

In this paper we establish the existence of fixed points for a few set-valued F -contractions without using
the Hausdorff metric in complete metric spaces. The results obtained in the paper extend substantially
Theorems 1.1 and 1.2. Five examples are included.

2. Preliminaries

Now we present some notions, notations and results used in this paper. Throughout this paper, we assume
that R = (−∞,+∞), R+ = [0,+∞), N0 = {0} ∪ N, where N denotes the set of all positive integers. Let
(X, d) be a metric space, and CL(X) and CB(X) denote the classes of all nonempty closed and all nonempty
bounded closed subsets of X, respectively. For every A,B ∈ CL(X), x ∈ X and T : X → CL(X), put

d(x,B) = inf{d(x, y), y ∈ B}, f(x) = d(x, Tx),

H(A,B) =

{
max

{
supx∈A d(x,B), supy∈B d(y,A)

}
, if the maximum exists,

+∞, otherwise.

Such a mapping H is called a generalized Hausdorff metric induced by d in CL(X). A point p ∈ X
is said to be a fixed point of T if p ∈ Tp. A sequence {xn}n∈N0 ⊆ X is said to be an orbit of T if
xn+1 ∈ Txn for each n ∈ N0. A function h : X → R+ is said to be T -orbitally lower semicontinuous at
z ∈ X if h(z) ≤ lim infn→∞ h(xn) for each orbit {xn}n∈N0 ⊆ X of T with limn→∞ xn = z. A function
g : R+ − {0} → R is said to be upper semicontinuous from right in R+ − {0} if lim sups→t+ g(s) ≤ g(t) for
all t ∈ R+ − {0}.
Definition 2.1 ([16]). Let F : (0,+∞)→ R be a mapping satisfying

(F1) F is strictly increasing;
(F2) for each sequence {αn}n∈N of positive numbers limn→∞ αn = 0 if and only if limn→∞ F (αn) = −∞;
(F3) there exists k ∈ (0, 1) such that limα→0+ α

kF (α) = 0.

Denote by F the family of all functions F that satisfy (F1)-(F3).

Lemma 2.2. Let (X, d) be a metric space, B ∈ CL(X) and F : R+ − {0} → R satisfies that

F (d(x,A)) ≥ inf{F (d(x, a)) : a ∈ A}, ∀(A, x) ∈ CL(X)× (X −A). (a1)

Then, for each (ε, x) ∈ (R+ − {0})× (X −B) there exists b ∈ B such that

F (d(x, b)) < F (d(x,B)) + ε.
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Proof. Suppose that there exists (ε, x) ∈ (R+ − {0})× (X −B) such that

F (d(x0, b)) ≥ F (d(x0, B)) + ε0, ∀b ∈ B. (2.1)

It follows from (a1) and (2.1) that

F (d(x0, B)) ≥ inf{F (d(x0, b)) : b ∈ B}
≥ F (d(x0, B)) + ε0

> F (d(x0, B)),

which is a contradiction. This completes the proof.

Lemma 2.3. Let (X, d) be a metric space and F : R+ − {0} → R be upper semi-continuous from the right.
Then (a1) holds.

Proof. Let (A, x) ∈ CL(X) × (X − A) and put r = d(x,A). Now we prove that there exists a sequence
{an}n∈N ⊆ A satisfying

d(x, an) ↓ r as n→∞. (2.2)

Suppose that there exits a ∈ A satisfying r = d(x, a). Let an := a for all n ∈ N. Then (2.2) holds. Suppose
that r 6= d(x, a) for all a ∈ A. It is clear that for ε1 = 1, there exists a1 ∈ A satisfying

r < d(x, a1) < r + 1

for εn = min
{

1
n , d(x, an−1)− r

}
> 0, there exists an ∈ A satisfying

r < d(x, an) < r + εn = min

{
r +

1

n
, d(x, an−1)

}
, ∀n ≥ 2,

which implies that (2.2) holds. Note that

F (d(x, an)) ≥ inf{F (d(x, a)) : a ∈ A}, ∀n ∈ N. (2.3)

Combining (2.2) and (2.3) and using the right upper semi-continuity of F, we conclude that

F (r) ≥ lim sup
s→r+

F (s) ≥ lim sup
n→∞

F (d(x, an)) ≥ inf{F (d(x, a)) : a ∈ A}.

This completes the proof.

Lemma 2.4. Let (X, d) be a complete metric space and T : X → CB(X) satisfies (1.3) and (1.4). Then
f(x) = d(x, Tx) is continuous in X.

Proof. Let x be an arbitrary point in X. For any sequence {xn}n∈N ⊂ X with limn→∞ xn = x, by (1.3) and
(1.4) we get that

|f(xn)− f(x)| = |d(xn, Txn)− d(x, Tx)| ≤ d(xn, x) +H(Txn, Tx)

≤ d(xn, x) + k(d(xn, x))d(xn, x) ≤ 2d(xn, x)

→ 0 as n→∞,

which yields that
lim
n→∞

f(xn) = f(x),

that is, f is continuous in X. This completes the proof.
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Theorem 2.5. Let (X, d) be a complete metric space and T : X → CB(X) satisfies that

H(Tx, Ty) ≤ k1(d(x, y))d(x, y), ∀x, y ∈ X with x 6= y, (2.4)

where

k1 : (0,+∞)→
(1

2
, 1
)

with lim sup
s→t+

k1(s) < 1, ∀t ∈ R+. (2.5)

Then T has a fixed point.

Remark 2.6. Theorems 1.2 and 2.5 are equivalent. In fact, if (2.4) and (2.5) hold, by putting k(t) :=
k1(t),∀t ∈ (0,+∞) we obtain that (1.3) and (1.4) are satisfied; conversely, if (1.3) and (1.4) hold, by

selecting k1(t) := 1+k(t)
2 ∀t ∈ (0,+∞) we get that

1

2
≤ k1(t) =

1 + k(t)

2
< 1, ∀t ∈ R+ − {0},

H(Tx, Ty) ≤ k(d(x, y))d(x, y) ≤ k1(d(x, y))d(x, y), ∀x, y ∈ X with x 6= y

and

lim sup
s→t+

k1(s) = lim sup
s→t+

1 + k(s)

2
≤ 1

2

(
1 + lim sup

s→t+
k(s)

)
< 1, ∀t ∈ R+,

that is, (2.4) and (2.5) hold.

From Lemma 2.4, Theorem 2.5 and Remark 2.6, we get the following:

Lemma 2.7. Let (X, d) be a complete metric space and T : X → CB(X) satisfies (1.1) and (1.2). Then
f(x) = d(x, Tx) is continuous in X.

Theorem 2.8. Let (X, d) be a complete metric space and T : X → CB(X) satisfies that

H(Tx, Ty) ≤ α1d(x, y), ∀x, y ∈ X, (2.6)

where

α1 ∈
(1

2
, 1
)

is a constant. (2.7)

Then T has a fixed point.

Remark 2.9. Theorems 1.1 and 2.8 are equivalent.

3. Main results

Now we prove a few fixed point theorems for the set-valued F -contractions (a1), (a4), (a9), and (a10)
below without using the Hausdorff metric in complete metric spaces.

Theorem 3.1. Let (X, d) be a complete metric space and T : X → CL(X) satisfies that

ϕ(d(x, y)) + F (d(y, Ty)) ≤ F (d(x, y)), ∀(x, y) ∈ (X − Tx)× (Tx− (Ty ∪ {x})), (a2)

where F ∈ F and ϕ : R+ − {0} → R+ − {0} satisfy (a1) and

lim inf
s→t+

ϕ(s) > 0, ∀t ∈ R+. (a3)

Then, for each x0 ∈ X there exists an orbit {xn}n∈N0 of T and z ∈ X such that limn→∞ xn = z.
Furthermore, z is a fixed point of T in X if and only if the function f(x) = d(x, Tx) is T -orbitally lower
semicontinuous at z.
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Proof. Let x0 be an arbitrary point of X. If x0 ∈ Tx0, then x0 is a fixed point of T and limn→∞ xn = x0,
where xn := x0 for all n ≥ 1, the proof is finished. Suppose that x0 ∈ X − Tx0. Choose x1 ∈ Tx0 − {x0}.
If x1 ∈ Tx1, then x1 is a fixed point of T and limn→∞ xn = x1, where xn := x1 for all n ≥ 2, the proof is
finished. Suppose that x1 ∈ Tx0 − (Tx1 ∪ {x0}). It follows from (a2) that

F (d(x1, Tx1)) ≤ F (d(x0, x1))− ϕ(d(x0, x1)). (3.1)

Put ε1 = 1
2ϕ(d(x0, x1)). Lemma 2.2 guarantees that there exists x2 ∈ Tx1 − {x1} such that

F (d(x1, x2)) < F (d(x1, Tx1)) +
1

2
ϕ(d(x0, x1)). (3.2)

Making use of (3.1) and (3.2), we deduce that

F (d(x1, x2)) < F (d(x0, x1))− ϕ(d(x0, x1)) +
1

2
ϕ(d(x0, x1))

= F (d(x0, x1))−
1

2
ϕ(d(x0, x1)).

If x2 ∈ Tx2, then x2 is a fixed point of T and limn→∞ xn = x2, where xn := x2 for all n ≥ 3, the proof is
finished. Suppose that x2 ∈ Tx1 − (Tx2 ∪ {x1}). Clearly, (a2) ensures that

F (d(x2, Tx2)) ≤ F (d(x1, x2))− ϕ(d(x1, x2)). (3.3)

Put ε2 = 1
2ϕ(d(x1, x2)). It follows from Lemma 2.2 that there exists x3 ∈ Tx2 − {x2} such that

F (d(x2, x3)) < F (d(x2, Tx2)) +
1

2
ϕ(d(x1, x2)). (3.4)

By means of (3.3) and (3.4), we conclude that

F (d(x2, x3)) < F (d(x1, x2))− ϕ(d(x1, x2)) +
1

2
ϕ(d(x1, x2))

= F (d(x1, x2))−
1

2
ϕ(d(x1, x2)).

Repeating this process, we obtain an orbit {xn}n∈N of T such that either there exists k ∈ N0 with xk ∈ Txk,
xi ∈ Txi−1 − (Txi ∪ {xi−1}), i ∈ {1, 2, · · ·, k− 1} and limn→∞ xn = xk, where xn = xk for all n ≥ k+ 1, the
proof is finished, or

xn ∈ Txn−1 − (Txn ∪ {xn−1}), ∀n ∈ N, (3.5)

F (d(xn, Txn)) ≤ F (d(xn−1, xn))− ϕ(d(xn−1, xn)), ∀n ∈ N, (3.6)

F (d(xn, xn+1)) < F (d(xn, Txn)) +
1

2
ϕ(d(xn−1, xn)), ∀n ∈ N. (3.7)

By virtue of (3.6) and (3.7), we have

F (d(xn, xn+1)) < F (d(xn−1, xn))− ϕ(d(xn−1, xn)) +
1

2
ϕ(d(xn−1, xn))

= F (d(xn−1, xn))− 1

2
ϕ(d(xn−1, xn)), ∀n ∈ N.

(3.8)

Using (3.5), (3.8), (F1), and ϕ(R+ − {0}) ⊆ R+ − {0}, we obtain that

d(xn, xn+1) < d(xn−1, xn), ∀n ∈ N. (3.9)
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It follows from (3.9) that the sequence {d(xn, xn+1)}n∈N0 is positive and decreasing. Consequently, there
exists some a ∈ R+ satisfying

lim
n→∞

d(xn, xn+1) = a. (3.10)

By virtue of (a3) there exists a constant b > 0 satisfying

lim inf
s→a+

ϕ(s) = 2b,

which means that for ε = b, there exists δ > 0 satisfying

ϕ(s)− 2b > −ε, ∀s ∈ (a, a+ δ),

that is,

ϕ(s) > b, ∀s ∈ (a, a+ δ). (3.11)

It is easy to see that (3.9) and (3.10) yield that there exists n0 ∈ N satisfying

a < d(xn, xn+1) < a+ δ, ∀n ≥ n0,

which together with (3.11) means that

ϕ(d(xn, xn+1)) > b, ∀n ≥ n0. (3.12)

In view of (3.8) and (3.12), we get that

F (d(xn, xn+1)) < F (d(xn−1, xn))− 1

2
ϕ(d(xn−1, xn))

< F (d(xn−2, xn−1))−
1

2
ϕ(d(xn−2, xn−1))−

1

2
ϕ(d(xn−1, xn))

...

< F (d(xn0 , xn0+1))−
1

2
ϕ(d(xn0 , xn0+1))

− 1

2
ϕ(d(xn0+1, xn0+2))− · · · −

1

2
ϕ(d(xn−1, xn))

< F (d(xn0 , xn0+1))−
1

2
(n− n0)b, ∀n ≥ n0.

(3.13)

Taking limit in (3.13), we acquire that

lim
n→∞

F (d(xn, xn+1)) = −∞,

which together with (F2) and (3.10) gives that

a = lim
n→∞

d(xn, xn+1) = 0. (3.14)

Clearly, (F3) and (3.14) ensure that there exists k ∈ (0, 1) such that

lim
n→∞

[dk(xn, xn+1)F (d(xn, xn+1))] = 0. (3.15)

In terms of (3.13)-(3.15), we arrive at

0 ≤ 1

2
(n− n0)bdk(xn, xn+1)

< [F (d(xn0 , xn0+1))− F (d(xn, xn+1))]d
k(xn, xn+1)

→ 0 as n→∞,



Z. Liu, X. Na, Y. C. Kwun, S. M. Kang, J. Nonlinear Sci. Appl. 9 (2016), 5790–5805 5796

which connotes that
lim
n→∞

[
(n− n0)bdk(xn, xn+1)

]
= 0,

that is,

lim
n→∞

[
ndk(xn, xn+1)

]
= 0. (3.16)

From (3.16) we deduce that there exists n1 > n0 such that

ndk(xn, xn+1) ≤ 1, ∀n ≥ n1,

that is,

d(xn, xn+1) ≤
1

n
1
k

, ∀n ≥ n1,

which gives that
d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xm−1, xm)

≤
m−1∑
i=n

d(xi, xi+1)

≤
∞∑
i=n

d(xi, xi+1)

≤
∞∑
i=n

1

i
1
k

, ∀m > n ≥ n1,

which together with the convergence of the series
∑∞

i=1
1

i
1
k

implies that {xn}n∈N0 is a Cauchy sequence.

Since (X, d) is complete, it follows that the sequence {xn}n∈N0 converges to some point z ∈ X, that is,

lim
n→∞

xn = z. (3.17)

Suppose that f is T -orbitally lower semicontinuous at z. It follows from (3.14) and (3.17) that

0 ≤ d(z, Tz) = f(z) ≤ lim inf
n→∞

f(xn) = lim
n→∞

f(xn) = lim
n→∞

d(xn, Txn) ≤ lim
n→∞

d(xn, xn+1) = 0,

that is, z ∈ X is a fixed point of T .
Conversely, suppose that z ∈ X is a fixed point of T . For each orbit {yn}n∈N0 of T with limn→∞ yn = z,

we derive that
f(z) = d(z, Tz) = 0 ≤ lim inf

n→∞
f(yn),

which implies that f is T -orbitally lower semicontinuous at z. This completes the proof.

Theorem 3.2. Let (X, d) be a complete metric space and T : X → CL(X) satisfies that

ϕ(d(x, Tx)) + F (d(y, Ty)) ≤ F (d(x, y)), ∀(x, y) ∈ (X − Tx)× (Tx− (Ty ∪ {x})), (a4)

where F ∈ F and ϕ : R+ − {0} → R+ − {0} satisfy (a1), (a3), and

ϕ is locally bounded at 0. (a5)

Then, for each x0 ∈ X there exists an orbit {xn}n∈N0 of T and z ∈ X such that limn→∞ xn = z.
Furthermore, z is a fixed point of T in X if and only if the function f(x) = d(x, Tx) is T -orbitally lower
semicontinuous at z.
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Proof. Let x0 be an arbitrary point of X. If x0 ∈ Tx0, then x0 is a fixed point of T and limn→∞ xn = x0,
where xn := x0 for all n ≥ 1, the proof is finished. Suppose that x0 ∈ X−Tx0. For ε1 = 1

2ϕ(d(x0, Tx0)) > 0,
it follows from Lemma 2.2 that there exists x1 ∈ Tx0 − {x0} satisfying

F (d(x0, x1)) < F (d(x0, Tx0)) +
1

2
ϕ(d(x0, Tx0)). (3.18)

If x1 ∈ Tx1, then x1 is a fixed point of T and limn→∞ xn = x1, where xn := x1 for all n ≥ 2, the proof is
finished. Suppose that x1 ∈ Tx0 − (Tx1 ∪ {x0}). It follows from (a4) that

F (d(x1, Tx1)) ≤ F (d(x0, x1))− ϕ(d(x0, Tx0)). (3.19)

In light of (3.18) and (3.19), we get that

F (d(x1, Tx1)) < F (d(x0, Tx0)) +
1

2
ϕ(d(x0, Tx0))− ϕ(d(x0, Tx0))

= F (d(x0, Tx0))−
1

2
ϕ(d(x0, Tx0)).

For ε2 = 1
2ϕ(d(x1, Tx1)) > 0, it follows from Lemma 2.2 that there exists x2 ∈ Tx1 − {x1} satisfying

F (d(x1, x2)) < F (d(x1, Tx1)) +
1

2
ϕ(d(x1, Tx1)). (3.20)

If x2 ∈ Tx2, then x2 is a fixed point of T and limn→∞ xn = x2, where xn := x2 for all n ≥ 3, the proof is
finished. Suppose that x2 ∈ Tx1 − (Tx2 ∪ {x1}). Equation (a4) ensures that

F (d(x2, Tx2)) ≤ F (d(x1, x2))− ϕ(d(x1, Tx1)). (3.21)

By means of (3.20) and (3.21), we obtain that

F (d(x2, Tx2)) < F (d(x1, Tx1)) +
1

2
ϕ(d(x1, Tx1))− ϕ(d(x1, Tx1))

= F (d(x1, Tx1))−
1

2
ϕ(d(x1, Tx1)).

Continuing this process, we obtain an orbit {xn}n∈N of T such that either there exists k ∈ N0 with xk ∈ Txk,
xi ∈ Txi−1 − (Txi ∪ {xi−1}), i ∈ {1, 2, · · ·, k− 1} and limn→∞ xn = xk, where xn = xk for all n ≥ k+ 1, the
proof is finished, or (3.5) and the following conditions (3.22) and (3.23) hold:

F (d(xn−1, xn)) < F (d(xn−1, Txn−1)) +
1

2
ϕ(d(xn−1, Txn−1)), ∀n ∈ N (3.22)

and

F (d(xn, Txn)) ≤ F (d(xn−1, xn))− ϕ(d(xn−1, Txn−1)), ∀n ∈ N. (3.23)

On account of (3.22) and (3.23), we derive that

F (d(xn, Txn)) < F (d(xn−1, Txn−1)) +
1

2
ϕ(d(xn−1, Txn−1))− ϕ(d(xn−1, Txn−1))

= F (d(xn−1, Txn−1))−
1

2
ϕ(d(xn−1, Txn−1)), ∀n ∈ N.

(3.24)

In terms of (3.24), (F1), and ϕ(R+ − {0}) ⊆ R+ − {0}, we have

0 < d(xn, Txn) < d(xn−1, Txn−1), ∀n ∈ N. (3.25)
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It follows from (3.25) that the sequence {d(xn, Txn)}n∈N converges to a constant a ∈ R+, that is,

lim
n→∞

d(xn, Txn) = a. (3.26)

As in the proof of Theorem 3.1, we conclude that (3.11) holds. It follows from (3.11) and (3.26) that there
exists n0 ∈ N satisfying

a < d(xn, Txn) < a+ δ, ∀n ≥ n0,

which together with (3.11) means that

ϕ(d(xn, Txn)) > b, ∀n ≥ n0. (3.27)

In light of (3.24) and (3.27), we obtain that

F (d(xn, Txn)) < F (d(xn−1, Txn−1))−
1

2
ϕ(d(xn−1, Txn−1))

< F (d(xn−2, Txn−2))−
1

2
ϕ(d(xn−2, Txn−2))−

1

2
ϕ(d(xn−1, Txn−1))

...

< F (d(xn0 , Txn0))− 1

2
ϕ(d(xn0 , Txn0))− 1

2
ϕ(d(xn0+1, Txn0+1))

− · · · − 1

2
ϕ(d(xn−1, Txn−1))

< F (d(xn0 , Txn0))− 1

2
(n− n0)b, ∀n ≥ n0.

(3.28)

Taking limits in (3.28), we get that
lim
n→∞

F (d(xn, Txn)) = −∞,

which together with (F2) and (3.26) gives that

a = lim
n→∞

d(xn, Txn) = 0. (3.29)

By virtue of (a5) and ϕ(R+−{0}) ⊆ R+−{0}, we know that there exist positive constants c and σ satisfying

0 < ϕ(t) ≤ c, ∀t ∈ (0, σ). (3.30)

It follows from (3.25) and (3.29) that there exists n1 > n0 satisfying

0 < d(xn, Txn) < σ, ∀n ≥ n1,

which together with (3.30) means that

0 < ϕ(d(xn, Txn)) ≤ c, ∀n ≥ n1. (3.31)

By means of (3.22), (3.23), (3.27), and (3.31), we deduce that

F (d(xn, xn+1)) < F (d(xn, Txn)) +
1

2
ϕ(d(xn, Txn))

≤ F (d(xn−1, xn))− ϕ(d(xn−1, Txn−1)) +
1

2
ϕ(d(xn, Txn))

< F (d(xn−1, Txn−1))−
1

2
ϕ(d(xn−1, Txn−1)) +

1

2
ϕ(d(xn, Txn))

≤ F (d(xn−2, xn−1))− ϕ(d(xn−2, Txn−2))−
1

2
ϕ(d(xn−1, Txn−1)) +

1

2
ϕ(d(xn, Txn))
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...

< F (d(xn1 , xn1+1))−
1

2
ϕ(d(xn1 , Txn1))− · · · − 1

2
ϕ(d(xn−2, Txn−2))

− 1

2
ϕ(d(xn−1, Txn−1)) +

1

2
ϕ(d(xn, Txn)) (3.32)

< F (d(xn1 , xn1+1))−
1

2
(n− n1)b+

1

2
c

→ −∞ as n→∞.

That is,
lim
n→∞

F (d(xn, xn+1)) = −∞,

which together with (F2) gives that

lim
n→∞

d(xn, xn+1) = 0. (3.33)

It is easy to see that (F3) and (3.33) yield (3.15). Using (3.15), (3.32), and (3.33), we get that

0 ≤ 1

2
(n− n1)bdk(xn, xn+1)

<
[
F (d(xn1 , xn1+1)) +

1

2
c− F (d(xn, xn+1))

]
dk(xn, xn+1)

→ 0 as n→∞,

which means (3.16). The rest of the proof is similar to that of Theorem 3.1 and is omitted. This completes
the proof.

Theorem 3.3. Let (X, d) be a complete metric space, F ∈ F , T : X → CL(X) and ϕ : R+−{0} → R+−{0}
satisfy (a1), (a3), (a4), and

lim sup
t→0+

ϕ(t) < +∞. (a6)

Then, for each x0 ∈ X there exists an orbit {xn}n∈N0 of T and z ∈ X such that limn→∞ xn = z. Furthermore,
z is a fixed point of T in X if and only if the function f(x) = d(x, Tx) is T -orbitally lower semicontinuous
at z.

Proof. It follows from (a6) that there is c ∈ R+ with

lim sup
t→0+

ϕ(t) = c,

which means that for ε = 1, there exists δ > 0 satisfying

ϕ(t)− c < 1, ∀t ∈ (0, δ),

which together with ϕ(R+ − {0}) ⊆ R+ − {0} gives that

0 < ϕ(t) < 1 + c, ∀t ∈ (0, δ),

which yields (a5). Thus Theorem (3.3) follows from Theorem 3.2. This completes the proof.

Theorem 3.4. Let (X, d) be a complete metric space, F ∈ F , T : X → CL(X) and ϕ : R+−{0} → R+−{0}
satisfy (a1), (a4), and

ϕ is nondecreasing and lim
t→0+

ϕ(t) > 0. (a7)

Then, for each x0 ∈ X there exists an orbit {xn}n∈N0 of T and z ∈ X such that limn→∞ xn = z. Furthermore,
z is a fixed point of T in X if and only if the function f(x) = d(x, Tx) is T -orbitally lower semicontinuous
at z.
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Proof. Since ϕ is nondecreasing and ϕ(R+ − {0}) ⊆ R+ − {0}, it follows that

lim inf
s→t+

ϕ(s) = lim
s→t+

ϕ(s) ≥ ϕ(t) > 0, ∀t ∈ R+ − {0},

which together with (a7) yields (a3) and (a5). Thus Theorem 3.4 follows from Theorem 3.2. This completes
the proof.

Theorem 3.5. Let (X, d) be a complete metric space, F ∈ F , and T : X → CL(X) and ϕ : R+ − {0} →
R+ − {0} satisfy (a1), (a4), and

ϕ is nonincreasing and lim
t→0+

ϕ(t) < +∞. (a8)

Then, for each x0 ∈ X there exists an orbit {xn}n∈N0 of T and z ∈ X such that limn→∞ xn = z. Furthermore,
z is a fixed point of T in X if and only if the function f(x) = d(x, Tx) is T -orbitally lower semicontinuous
at z.

Proof. Using (a8) and ϕ(R+ − {0}) ⊆ R+ − {0}, we have

+∞ > lim
s→0+

ϕ(s) = lim sup
s→0+

ϕ(s) = lim inf
s→0+

ϕ(s) ≥ ϕ(1) > 0,

lim inf
s→t+

ϕ(s) = lim
s→t+

ϕ(s) ≥ ϕ(2t) > 0, ∀t ∈ R+ − {0},

that is, (a3) and (a6) hold. Consequently, Theorem 3.5 follows from Theorem 3.3. This completes the
proof.

Letting F (t) = ln t for all t ∈ R+ − {0} and making use of Lemmas 2.2 and 2.3, and Theorems 3.1–3.5
and their proofs, we get the following results.

Corollary 3.6. Let (X, d) be a complete metric space, and T : X → CL(X) and ϕ : R+ − {0} → R+ − {0}
satisfy (a3) and

d(y, Ty) ≤ e−ϕ(d(x,y))d(x, y), ∀(x, y) ∈ X × (Tx− {x}). (a9)

Then, for each x0 ∈ X there exists an orbit {xn}n∈N0 of T and z ∈ X such that limn→∞ xn = z. Furthermore,
z is a fixed point of T in X if and only if the function f(x) = d(x, Tx) is T -orbitally lower semicontinuous
at z.

Corollary 3.7. Let (X, d) be a complete metric space, and T : X → CL(X) and ϕ : R+ − {0} → R+ − {0}
satisfy (a3), (a5), and

d(y, Ty) ≤ e−ϕ(d(x,Tx))d(x, y), ∀(x, y) ∈ (X − Tx)× Tx. (a10)

Then, for each x0 ∈ X there exists an orbit {xn}n∈N0 of T and z ∈ X such that limn→∞ xn = z. Furthermore,
z is a fixed point of T in X if and only if the function f(x) = d(x, Tx) is T -orbitally lower semicontinuous
at z.

Corollary 3.8. Let (X, d) be a complete metric space, and T : X → CL(X) and ϕ : R+ − {0} → R+ − {0}
satisfy (a3), (a6), and (a10). Then, for each x0 ∈ X there exists an orbit {xn}n∈N0 of T and z ∈ X such
that limn→∞ xn = z. Furthermore, z is a fixed point of T in X if and only if the function f(x) = d(x, Tx)
is T -orbitally lower semicontinuous at z.

Corollary 3.9. Let (X, d) be a complete metric space, and T : X → CL(X) and ϕ : R+ − {0} → R+ − {0}
satisfy (a10) and (a7). Then, for each x0 ∈ X there exists an orbit {xn}n∈N0 of T and z ∈ X such that
limn→∞ xn = z. Furthermore, z is a fixed point of T in X if and only if the function f(x) = d(x, Tx) is
T -orbitally lower semicontinuous at z.

Corollary 3.10. Let (X, d) be a complete metric space, and T : X → CL(X) and ϕ : R+−{0} → R+−{0}
satisfy (a10) and (a8). Then, for each x0 ∈ X there exists an orbit {xn}n∈N0 of T and z ∈ X such that
limn→∞ xn = z. Furthermore, z is a fixed point of T in X if and only if the function f(x) = d(x, Tx) is
T -orbitally lower semicontinuous at z.
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4. Remarks and examples

Now we give some remarks and examples to illustrate the results in Section 3.

Remark 4.1. Corollary 3.6 extends Theorem 2.5. Assume that the conditions of Theorem 2.5 are satisfied.
Put

ϕ(t) = − ln k1(t), ∀t ∈ R+ − {0}. (4.1)

It follows from (2.4) and (4.1) that

d(y, Ty) ≤ H(Tx, Ty) ≤ k1(d(x, y))d(x, y)

= e
− ln 1

k1(d(x,y))d(x, y)

= e−ϕ(d(x,y))d(x, y), ∀(x, y) ∈ X × (Tx− {x}),

which gives (a9). Combining (2.5) and (4.1), we deduce that

lim inf
s→t+

ϕ(s) = − lim sup
s→t+

(
ln k1(s)

)
= − ln

(
lim sup
s→t+

k1(s)

)
> 0, ∀t ∈ R+,

which yields (a3). That is, the conditions of Corollary 3.6 are fulfilled. It follows from Corollary 3.6 and
Lemma 2.4 that the set-valued mapping T has a fixed point in X.

Remark 4.2. It follows from Remark 2.6 that Theorems 2.5 and 1.2 are equivalent. On account of Remark
4.1, we know that Corollary 3.6 extends Theorem 1.2, which, in turn, generalizes Theorem 1.1. The following
example shows that Corollary 3.6 extends substantially Theorems 1.1 and 1.2.

Example 4.3. Let X = R be endowed with the Euclidean metric d = | · |. Let T : X → CL(X) be defined
by

Tx =

{
[2x− 2, x], ∀x ∈ (−∞, 0],

[0, x3 ], ∀x ∈ R+ − {0}.

Now we assert that Theorems 1.1 and 1.2 cannot be used to prove the existence of fixed points for the
set-valued mapping T . In fact,

H(T (−1), T (−10)) = H([−4,−1], [−22,−10]) = 18

� 9α = αd(−1,−10), ∀α ∈ [0, 1)

and
H(T (−1), T (−10)) = H([−4,−1], [−22,−10]) = 18

� 9k(9) = k(d(−1,−10))d(−1,−10)

for any k : (0,+∞)→ [0, 1) with lim sups→t+ k(s) < 1 for all t ∈ R+.
Next we verify that the conditions of Corollary 3.6 hold. Define ϕ : R+ − {0} → R+ − {0} by

ϕ(t) = ln

(
3− 1

1 + t

)
, ∀t ∈ R+ − {0}.

It is easy to see that

f(x) = d(x, Tx) =

{
0, ∀x ∈ (−∞, 0],
2x
3 , ∀x ∈ R

+ − {0}

is continuous in X and

ϕ(R+ − {0}) ⊆ (ln 2, ln 3), lim inf
s→t+

ϕ(s) = ln

(
3− 1

1 + t

)
> 0, ∀t ∈ R+.

In order to verify (a9), we consider the following two possible cases:
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Case 1. Let x ∈ (−∞, 0] and y ∈ Tx− {x} = [2x− 2, x). It follows that

d(y, Ty) = 0 ≤ e−ϕ(d(x,y))d(x, y);

Case 2. Let x ∈ (0,+∞) and y ∈ Tx− {x} = [0, x3 ]. It follows that

0 ≤ y ≤ x

3
, x ≥ x− y ≥ 2

3
x,

d(y, Ty) =
2y

3
≤ 2x

9
= e− ln 3 2

3
x ≤ e−ϕ(d(x,y))d(x, y).

That is, (a9) is satisfied. It follows from Corollary 3.6 that the set-valued mapping T has a fixed point in
X.

Remark 4.4. We claim that each of Corollaries 3.7–3.10 generalizes Theorem 2.8. Assume that the conditions
of Theorem 2.8 hold. Put

ϕ(t) = − lnα1, ∀t ∈ R+ − {0}. (4.2)

It is clear that (2.7) and (4.2) ensure that (a3), (a5), (a6), (a7), and (a8) hold.
It follows from (2.6) and (4.2) that

d(y, Ty) ≤ H(Tx, Ty) ≤ α1d(x, y)

= e
− ln 1

α1 d(x, y)

= e−ϕ(d(x,Tx))d(x, y), ∀(x, y) ∈ (X − Tx)× Tx,

which gives (a10). That is, the conditions of Corollaries 3.7–3.10 are fulfilled. It follows from each of
Corollaries 3.7–3.10 and Lemma 2.7 that the set-valued mapping T has a fixed point in X.

Remark 4.5. It follows from Remark 2.9 that Theorem 2.8 is equivalent to Theorem 1.1. By means of
Remark 4.4, we get that each of Corollaries 3.7–3.10 extends Theorem 1.1. The following examples prove
that each of Corollaries 3.7–3.10 extend indeed Theorem 1.1 and differs from Theorem 1.2.

Example 4.6. Let X = (−∞, 1] be endowed with the Euclidean metric d = | · |. Let T : X → CL(X) be
defined by

Tx =

{
(−∞, 0], ∀x ∈ (−∞, 0],

[x3 ,
x
2 ], ∀x ∈ (0, 1].

Since T0 = (−∞, 0] 6∈ CB(X), it is clear that Theorems 1.1 and 1.2 are useless in proving the existence of
fixed points for the set-valued mapping T . Define ϕ : R+ − {0} → R+ − {0} by

ϕ(t) =

{
ln(2− t), ∀t ∈ (0, 12),

6t− sin t, ∀t ∈ [12 ,+∞).

It is easy to see that

f(x) = d(x, Tx) =

{
0, ∀x ∈ (−∞, 0],
x
2 , ∀x ∈ (0, 1]

is continuous in X and

lim inf
s→t+

ϕ(s) =

{
ln(2− t) ≥ ln 3

2 > 0, ∀t ∈ [0, 12),

6t− sin t > 2, ∀t ∈ [12 ,+∞),

that is, ϕ satisfies (a3) and (a5).
Let (x, y) ∈ (X − Tx)× Tx. It follows that (x, y) ∈ (0, 1]× [x3 ,

x
2 ] and

d(y, Ty) =
y

2
≤ x

4
≤ e−ϕ(

x
2
)x

2
≤ e−ϕ(d(x,Tx))d(x, y),

that is, (a10) holds. It follows from Corollary 3.7 that the set-valued mapping T has a fixed point in X.
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Example 4.7. Let X = R+ be endowed with the Euclidean metric d = | · |. Let T : X → CL(X) be defined
by

Tx =

{
[13 , 1], ∀x ∈ [0, 1),

{x} ∪ [x2,+∞), ∀x ∈ [1,+∞).

Obviously, Theorems 1.1 and 1.2 are useless in proving the existence of fixed points for the set-valued
mapping T because T1 = [1,+∞) 6∈ CB(X). Define ϕ : R+ − {0} → R+ − {0} by

ϕ(t) = 1 + t, ∀t ∈ R+ − {0}.

It is easy to see that

f(x) = d(x, Tx) =

{
1
3 − x, ∀x ∈ [0, 13),

0, ∀x ∈ [13 ,+∞)

is continuous in X and

lim inf
s→t+

ϕ(s) =

{
ln(2− t) ≥ ln 3

2 > 0, ∀t ∈ [0, 12),

6t− sin t > 2, ∀t ∈ [12 ,+∞),

that is, (a3) and (a6) hold.
Let (x, y) ∈ (X − Tx)× Tx. It follows that (x, y) ∈ [0, 13)× [13 , 1] and

d(y, Ty) = 0 ≤ e−ϕ(d(x,Tx))d(x, y),

that is, (a10) holds. It follows from Corollary 3.8 that the set-valued mapping T has a fixed point in X.

Example 4.8. Let X = [−1,+∞) be endowed with the Euclidean metric d = | · |. Let T : X → CL(X) be
defined by

Tx =

{
[x

2

8 ,
x2

4 ], ∀x ∈ [−1, 0),

[x,+∞), ∀x ∈ [0,+∞).

It is clear that Theorems 1.1 and 1.2 are useless in proving the existence of fixed points of the set-valued
mapping T because T1 = [1,+∞) 6∈ CB(X). Define ϕ : R+ − {0} → R+ − {0} by

ϕ(t) = 1 + ln(1 + t), ∀t ∈ R+ − {0}.

It is easy to see that

f(x) = d(x, Tx) =

{
x2

8 − x, ∀x ∈ [−1, 0),

0, ∀x ∈ [0,+∞)

is continuous in X,
lim
t→0+

ϕ(t) = lim
t→0+

[1 + ln(1 + t)] = 1

and ϕ is nondecreasing, that is, (a7) holds.

Let (x, y) ∈ (X − Tx)× Tx. It follows that (x, y) ∈ [−1, 0)×
[
x2

8 ,
x2

4

]
and

d(y, Ty) = 0 ≤ e−ϕ(d(x,Tx))d(x, y),

that is, (a10) holds. It follows from Corollary 3.9 that the set-valued mapping T has a fixed point in X.

Example 4.9. Let X = R+ be endowed with the Euclidean metric d = | · |. Let T : X → CL(X) be defined
by

Tx =

{
[0,+∞), x = 0,

[ x20 ,
3x
10 ], ∀x ∈ (0,+∞).
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Obviously, Theorems 1.1 and 1.2 are useless in proving the existence of fixed points of the set-valued mapping
T because T0 = [0,+∞) 6∈ CB(X). Define ϕ : R+ − {0} → R+ − {0} by

ϕ(t) = ln

(
3 +

1

3 + t

)
, ∀t ∈ R+ − {0}.

It is easy to see that

f(x) = d(x, Tx) =

{
0, x = 0,
7x
10 , ∀x ∈ R

+ − {0}

is continuous in X,

lim
t→0+

ϕ(t) = lim
t→0+

ln

(
3 +

1

3 + t

)
= ln

10

3
< +∞,

and

ϕ′(t) = − 1

3(3 + t)3 + 3 + t
< 0, ∀t ∈ R+ − {0},

which gives that ϕ is nonincreasing, that is, (a8) holds.
Let (x, y) ∈ (X − Tx)× Tx. It follows that (x, y) ∈ (0,+∞)× [ x20 ,

3x
10 ] and

d(y, Ty) =
7

10
y ≤ 21

100
x ≤ e−ϕ(

7
10
x) 7

10
x ≤ e−ϕ(d(x,Tx))d(x, y),

that is, (a10) holds. It follows from Corollary 3.10 that the set-valued mapping T has a fixed point in X.
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