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Abstract

In this article, a coupling of the variational iteration method with the Sumudu transform via the local
fractional calculus operator is proposed for the first time. As a testing example, the exact solution for the
local fractional diffusion equation in fractal one-dimensional space is obtained. The method provided an
accurate and efficient technique for solving the local fractional PDEs. c©2016 All rights reserved.
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1. Introduction

Fractional heat transfer (see [1–5, 8, 9, 11, 13–15, 18, 19, 22]) is an abnormal phenomenon of dynamical
systems to capture the relations in space and time with different kernels of non-differentiable and differen-
tiable types. This interest spans the works of many scientists and engineers from the field of mathematical
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physics. In order to find the solutions of the fractional heat transfer problems, several methods, such as
the heat-balance integral method (HBIM) [6], the Green function method (GFM) [7], the similarity variable
method (SVM) [21], the variational iteration method (VIM) [20] and the Laplace transform variational
iteration method (LTVIM) [10], were developed in recent years.

In this paper, we consider the local fractional diffusion equation in fractal one-dimensional space for
description of the fractal heat transfer (see [10, 20–22]):

∂κΘ(x, t)

∂τκ
− ∂2κΘ(x, t)

∂x2κ
= 0, κ ∈ (0, 1) , (1.1)

where the local fractional derivative (LFD) of Θ (τ) of order κ is given as follows (see, for example, [10, 16,
17, 20–23]):

Θ(κ)
τ (τ0) =

dκΘ (τ)

dτκ
|τ=τ0 = lim

τ→τ0

∆κ (Θ (τ)−Θ (τ0))

(τ − τ0)κ
,

with the difference term given by [22]

∆κ (Θ (τ)−Θ (τ0)) ∼= Γ (1 + κ) ∆ (Θ (τ)−Θ (τ0)) .

The local fractional variational iteration method (LFVIM) was used to solve the local fractional PDEs
in fractal-dimension space (see [20, 22]). Meanwhile, the local fractional Sumudu transform (LFST) was
expressed by (see [17]):

Sκ {ϕ (τ)} =
1

Γ (1 + κ)

∫ ∞
0

Eκ
(
−h−κτκ

) ϕ (τ)

hκ
(dτ)κ , 0 < β ≤ 1,

and its inverse transform was defined by (see [17]):

S−1
κ {Sκ (Θ (τ))} = Θ (τ) , 0 < κ ≤ 1,

where the local fractional integral of ϕ (τ) of order κ is defined by (see [17])

τ0I
(κ)
τ ϕ (τ) =

1

Γ (1 + κ)

∫ τ

τ0

ϕ (τ) (dτ)κ =
1

Γ (1 + κ)
lim

∆τ→0

j=N−1∑
j=0

ϕ (τj) (∆τ)κ ,

with the partitions of the interval [τ, τ0] are given by (τj , τj+1) (j = 0, · · · , N − 1, ∆τ = τj+1 − τj).
Motivated essentially by the above results, our aim in the present article is to propose a coupling method

of LFVIM and LFST for solving the local fractional diffusion equation in fractal one-dimensional space at
the first time (see also [12]).

This article is structured as follows: In Section 2, a coupling method of LFVIM and LFST is analyzed.
The non-differentiable solution of local fractional diffusion equation is given in Section 3. Finally, Section 4
outlines our conclusions.

2. Analysis of the method

In this section, a coupling method of VIM with ST via the local fractional calculus operator is introduced.
In the local fractional differential operator, (1.1) can be written as follows:

EκΘ−ΠκΘ = 0, (2.1)

where

Eκ = ∂κ/∂τκ,
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and
Πκ = ∂2κ/∂x2κ.

By owing to the idea of the LFVIM (see [20, 22]), the local fractional functional is determined by

Θn+1 (x, τ) = Θn (x, τ) + 0I
(κ)
τ

{
λ (η − τ)

Γ (1 + κ)
[EκΘn (x, τ)−ΠκΘn (x, τ)]

}
. (2.2)

By taking LFST of (2.2), we obtain

Sκ {Θn+1 (x, τ)} = Sκ {Θn (x, τ)}+ Sκ

{
λ (η − τ)

Γ (1 + κ)

}
Sκ {[EκΘn (x, τ)−ΠκΘn (x, τ)]} , (2.3)

where

Sκ

{
dκΘ (τ)

dτκ

}
=

1

hκ
[Sκ {Θ (τ)} −Θ (0)] . (2.4)

By adopting local fractional variation (see [1, 3, 22]), we can rewrite (2.3) as

δκ {Θn+1 (x, τ)} = δκ {Sκ {Θn (x, τ)}}+ δκ
{
Sκ

{
λ (η − τ)

Γ (1 + k)

}
Sκ [EκΘn (x, τ)−ΠκΘn (x, τ)]

}
. (2.5)

Thus we find from (2.5) that

δκ {Sκ {Θn+1 (x, τ)}} = δκ {Sκ {Θn (x, τ)}}+ δκ
{
Sκ

{
λ (η − τ)

Γ (1 + k)

}
Sκ [EκΘn (x, τ)]

}
= 0. (2.6)

In view of (2.6), we have

δκ {Sκ [EκΘn (x, τ)]} = δκ
{

1

hκ
Sκ {Θn (x, τ)−Θn (x, 0)}

}
=

1

hκ
δκSκ {Θn (x, τ)} , (2.7)

such that

1 + Sκ

{
λ (τ)

Γ (1 + κ)

}
1

hκ
= 0.

By using (2.7), we have

Sκ

{
λ (τ)

Γ (1 + κ)

}
= −hκ,

such that the local fractional iteration algorithm is expressed by

Sκ {Θn+1 (x, τ)} = Sκ {Θn (x, τ)} − hκSκ {[EκΘn (x, τ)−ΠκΘn (x, τ)]} . (2.8)

Therefore, the solution of (2.1) takes the following form

Sκ {Θ (x, τ)} = lim
n→∞

Sκ {Θn (x, τ)} . (2.9)

By taking the inverse LFST, we find from (2.9) that

Θ (x, τ) = S−1
κ

{
lim
n→∞

Sκ {Θn (x, τ)}
}
.

3. Solving local fractional diffusion equation in fractal one-dimensional space

In this section, an illustrative example is presented.
We begin with the following local fractional diffusion equation in fractal one-dimensional space (see

[3, 5, 18])
∂κΘ(x, t)

∂τκ
− ∂2κΘ(x, t)

∂x2κ
= 0, τ ≥ 0, 0 < x < π, (3.1)

subject to the initial-boundary value conditions given by
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Θ (x, 0) = sinκ(xκ) 0 < x < π,

Θ (π, τ) = 0, τ ≥ 0,

Θ (0, τ) = 0, τ ≥ 0,

where

sinκ (xκ) =

∞∑
i=0

(−1)κ
x(2i+1)κ

Γ (1 + (2i+ 1)κ)
,

represents the special function defined on Cantor sets (see [12, 22]) and the corresponding graph is demon-
strated in Figure 1.

In view of (2.8), we have

Sκ {Θn+1 (x, τ)} = Sκ {Θn (x, τ)} − hκSκ {[EκΘn (x, τ)−ΠκΘn (x, τ)]} ,

and, alternatively,
Θn+1 (h, τ) = Θn (h, τ)− hκSκ {[EκΘn (x, τ)−ΠκΘn (x, τ)]} , (3.2)

with the initial-value condition given by

Θ0 (x, h) = Sκ {Θ0 (x, 0)} = sinκ(xκ) . (3.3)

Thus, we have the following result from (3.2) and (3.3)

Θ1 (h, τ) = Θ0 (h, τ)− hκSκ {[EκΘ0 (x, τ)−ΠκΘ0 (x, τ)]}

= Θ0 (h, τ)− hκ
{

1

hκ
[Θ0 (x, h)−Θ0 (x, 0)]−ΠκΘ0 (x, h)

}
= sinκ(xκ)

1∑
i=0

(−1)i hiκ,

Θ2 (h, τ) = Θ1 (h, τ)− hκSκ {[EκΘ1 (x, τ)−ΠκΘ1 (x, τ)]}

= Θ1 (h, τ)− hκ
{

1

hκ
[Θ1 (x, h)−Θ1 (x, 0)]−ΠκΘ1 (x, h)

}
= sinκ(xκ)

2∑
i=0

(−1)i hiκ,

Θ3 (h, τ) = Θ2 (h, τ)− hκSκ {[EκΘ2 (x, τ)−ΠκΘ2 (x, τ)]}

= Θ2 (h, τ)− hκ
{

1

hκ
[Θ2 (x, h)−Θ2 (x, 0)]−ΠκΘ2 (x, h)

}
= sinκ(xκ)

3∑
i=0

(−1)i hiκ,

and so on.
Consequently, we have

Θn (h, τ) = lim
n→∞

sinκ(xκ)

n∑
i=0

(−1)i hiκ. (3.4)

Therefore, by taking the inverse LFST of (3.4), we obtain

Θ (x, τ) = S−1
κ

{
lim
n→∞

Sκ {Θn (x, τ)}
}
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= S−1
κ

{
lim
n→∞

Sκ

{
sinκ(xκ)

n∑
i=0

(−1)i hiκ

}}

= S−1
κ

{
lim
n→∞

Sκ

{
sinκ(xκ)

1

1 + hκ

}}
= sinκ(xκ)Eκ(−τκ),

and the exact solution of (3.1) is shown in Figure 2, where

Sκ {Eκ (−τκ)} =
1

1− hκ
,

with the following Mittag-Leffler function on Cantor sets [22]:

Eκ (τκ) =
∞∑
i=0

τ iκ

Γ (1 + iκ)
,

and the corresponding graph when κ = ln 2/ ln 3 represented in Figure 3.
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Figure 1: The special function defined on Cantor sets
when κ = ln 2/ ln 3.
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Figure 2: The non-differentiable solution for the local
fractional diffusion equation when κ = ln 2/ ln 3.
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Figure 3: The Mittag-Leffler function on Cantor sets when
κ = ln 2/ ln 3.

4. Conclusions

The work has presented a coupling method involving the LFVIM with the LFST. The local fractional
diffusion equation in fractal one-dimensional space was discussed. The non-differentiable exact solution
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for description of the fractal heat transfer was also obtained. The present methodology is proposed as an
accurate and efficient tool for solving the local fractional PDEs in mathematical physics.
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