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Abstract

By means of the algebra, functional analysis, and inequality theories, we establish a Brunn-Minkowski-
type inequality involving γ-mean variance:

Var
[γ]

(f + g) 6 Var
[γ]
f + Var

[γ]
g, ∀γ ∈ [1, 2],

where Var
[γ]
ϕ is the γ-mean variance of the function ϕ : Ω→ (0,∞). We also demonstrate the applications

of this inequality to the performance appraisal of education and business. c©2016 All rights reserved.
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1. Introduction

We begin by recalling some basic concepts and previous results which are related to the investigation of
the present paper.

Let Ω be an m-dimensional, closed and bounded domain in Rm, R , (−∞,∞), and let

X , (X1, X2, . . . , Xm) ∈ Ω
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be an m-dimensional and continuous random variable with the probability density function p : Ω→ (0,∞),
where

∫
Ω p = 1. Then functionals

Eϕ ,
∫

Ω
pϕ, Varϕ , Eϕ2 − (Eϕ)2 and Varϕ ,

√
Varϕ

are the mathematical expectation, variance and the mean variance of the random variable ϕ(X), respectively,
where the function ϕ : Ω→ R is continuous (see [14–16]).

In [15], the authors studied the convergence of the following generalized integral:

Eφ (ψ + δ) ,
∫ ∞

1
pφ (ψ + δ),

which is a generalized mathematical expectation of the random variable φ [ψ (X) + δ (X)] , where X ∈ [1,∞).
In [14, 16], the authors extended the classic variance Varϕ of the random variable ϕ : Ω → (0,∞) and

defined the γ-order variance as follows:

Var[γ]ϕ ,


2

γ(γ−1) [Eϕγ − (Eϕ)γ ] , γ 6= 0, 1,

limγ→0 Var[γ]ϕ = 2 [log(Eϕ)− E(logϕ)] , γ = 0,

limγ→1 Var[γ]ϕ = 2 [E(ϕ logϕ)− (Eϕ) log(Eϕ)] , γ = 1.

Since
Var[γ]ϕ > 0, ∀γ ∈ R,

we say that the functional

Var
[γ]
ϕ ,

(
Var[γ]ϕ

)1/γ

is a γ-mean variance of the random variable ϕ (X) , where γ 6= 0,

Var[2]ϕ = Varϕ and Var
[2]
ϕ = Varϕ.

In [14], the authors defined the Dresher variance mean of the random variable ϕ(X), and obtained the
Dresher variance mean inequality and the Dresher-type inequality. Also, they demonstrated the applications
of these results in space science.

In [16], the authors generalized the traditional covariance and the variance of random variables, and
defined φ-covariance, φ-variance, φ-Jensen variance, φ-Jensen covariance, integral variance, and γ-order
variance, as well as they studied the relationships among these variances. Moreover, they dealt with a
quasi-log concavity conjecture and the monotonicity of the interval function JVarφϕ

(
X[a,b]

)
. They also

demonstrated the applications of these results in higher education and showed that the hierarchical teaching
model is normally better than the traditional teaching model under the hypotheses that

XI ⊂ X ∼ Nk (µ, σ) , k > 1.

The well-known Brunn-Minkowski’s inequality can be described as ([3, 4]): if the real number γ > 1,
then we have

(E|f + g|γ)1/γ 6 (E|f |γ)1/γ + (E|g|γ)1/γ . (1.1)

Inequality (1.1) is reversed if f > 0, g > 0, γ < 1, and γ 6= 0. Furthermore, the equality in (1.1) holds if

and only if f/g is a constant function, where (E|ϕ|γ)1/γ is the γ-mean of the function |ϕ| (see [7, 19]).
By means of moment space techniques, in [6], Dresher proved the following Brunn-Minkowski-type

inequality:
If ρ > 1 > σ > 0, f, g > 0, then we have[

E(f + g)ρ

E(f + g)σ

]1/(ρ−σ)

6

(
Efρ

Efσ

)1/(ρ−σ)

+

(
Egρ

Egσ

)1/(ρ−σ)

.
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The above result is referred as the Dresher’s inequality (for example, see Ref. [1, 5, 9]). Here

Dρ,σ(f, p) ,

(
Efρ

Efσ

)1/(ρ−σ)

is the well-known Dresher mean of the function f (see [2, 12]).
Let

C(Ω) , {f |f : Ω→ R be continuous} .

Then for any f, g ∈ C(Ω), we have the following Brunn-Minkowski-type inequality:

Var(f + g) 6 Varf + Varg. (1.2)

Equality in (1.2) holds if and only if there exist two constants C ∈ [0,∞) and C0 ∈ R such that

f ≡ Cg + C0 or g ≡ Cf + C0. (1.3)

The proof is based on the algebraic theory. We can define

〈f, g〉 , E [(f − Ef)(g − Eg)] = Cov(f, g), ∀f, g ∈ C(Ω),

where C(Ω) is a linear space in the real number field R, Cov(f, g) is the covariance of the random variables
f(X) and g(X) (see [16]). Then 〈f, g〉 is a quasi-inner product of the functions f and g, which satisfies the
following conditions:

(H1.1) 〈f, g〉 = 〈g, f〉, ∀f, g ∈ C(Ω);

(H1.2) 〈λf, g〉 = λ〈f, g〉, ∀f, g ∈ C(Ω), ∀λ ∈ R;

(H1.3) 〈f, g + h〉 = 〈f, g〉+ 〈f, h〉, ∀f, g, h ∈ C(Ω);

(H1.4) ‖f‖ ,
√
〈f, f〉 = Varf > 0, ∀f ∈ C(Ω);

(H1.5) ‖f‖ = 0⇔ f = Constant.

Therefore, C(Ω) is a quasi-Euclidean space (see [8, 14, 17]), and we have

Var(f + g) = ‖f + g‖ 6 ‖f‖+ ‖g‖ = Varf + Varg.

The inequality (1.2) is proved. Equality in (1.2) holds if and only if there exist two constants C1 > 0, C2 >
0, C1 6= 0 or C2 6= 0, such that

C1(f − Ef) = C2(g − Eg),

i.e., there exist two constants C ∈ [0,∞) and C0 ∈ R such that (1.3) holds.
We say that ‖f‖ , Varf is a semi-norm of the function f .
Brunn-Minkowski-type inequality has a wide range of applications, especially in probability and statistics,

algebraic geometry, and space science (see [3, 4, 7, 8, 14, 17, 19]).
In this paper, we will introduce a new Brunn-Minkowski-type inequality, that is, we will extend inequality

(1.2) to the case where λ ∈ [1, 2]. Our main result is as follows:

Theorem 1.1 (Brunn-Minkowski-type inequality). Let X ∈ Ω be a continuous random variable and its
probability density function p : Ω → (0,∞) be continuous, and let the functions f : Ω → (0,∞) and
g : Ω→ (0,∞) be continuous. If γ ∈ [1, 2], then we have the following Brunn-Minkowski-type inequality:

Var
[γ]

(f + g) 6 Var
[γ]
f + Var

[γ]
g. (1.4)

Equality in (1.4) holds if f/g is a constant function.
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We remark here that if
γ = 2, f ≡ Cg + C0,

where C and C0 are constants, then equality in (1.4) also holds. But if γ > 2, then inequality (1.4) does
not hold in general. For instance, if g > 0 is a constant function, then the reverse inequality in (1.4) holds
true, i.e., the following inequality

Var
[γ]

(f + C) > Var
[γ]
f + Var

[γ]
C = Var

[γ]
f (1.5)

holds for γ > 2, C > 0.
Under the hypotheses of Theorem 1.1, we can think of the function g as a perturbation of the function

f , and the function f + g as an expansion of the function f . In order to study the stability of the expansion

function f + g, we need to estimate the upper bounds of Var
[γ]

(f + g). According to Theorem 1.1, a sharp

upper bound of Var
[γ]

(f + g) is

Var
[γ]
f + Var

[γ]
g.

2. Proof of Theorem 1.1

In order to prove Theorem 1.1, we need several notations as follows:

x , (x1, . . . , xn) , φ (x) , (φ (x1) , . . . , , φ (xn)) , p , (p1, . . . , pn) ,

Ωn ,

{
p ∈ (0,∞)n

∣∣∣∣∣
n∑
i=1

pi = 1

}
, S ,

{
(t1, t2) ∈ [0,∞)2 |t1 + t2 6 1

}
,

A (x,p) ,
n∑
i=1

pixi, wi,j (x,p, t1, t2) , t1xi + t2xj + (1− t1 − t2)A (x,p) .

If x ∈ (0,∞)n, p ∈ Ωn, γ ∈ R, then the nonnegative function

Var[γ](x,p) ,


2

γ(γ−1) [A(xγ ,p)−Aγ(x,p)] , γ 6= 0, 1,

2 [logA(x,p)−A(logx,p)] , γ = 0,
2 [A(x logx,p)−A(x,p) logA(x,p)] , γ = 1

is called a discrete γ-order variance of the vector x.
In order to prove Theorem 1.1, we need the following four lemmas.

Lemma 2.1 ([14, Lemma 1]). Let the function φ : J → (−∞,∞), where J is an interval, be twice continu-
ously differentiable. If x ∈ Jn, p ∈ Ωn, then we have the following identity:

A (φ (x) ,p)− φ (A (x,p)) =
∑

16i<j6n

pipj

{∫∫
S
φ′′ [wi,j (x,p, t1, t2)] dt1dt2

}
(xi − xj)2. (2.1)

We remark here that the proof of Lemma 2.1 is difficult (see the proof of Lemma 1 in [14]), which is
based on the results in linear algebra.

Lemma 2.2 (Minkowski’s inequality [3, 4, 17, 18]). Let x,y ∈ (0,∞)n. If γ ∈ (1,∞), then we have[
n∑
i=1

(xi + yi)
γ

]1/γ

6

(
n∑
i=1

xγi

)1/γ

+

(
n∑
i=1

yγi

)1/γ

. (2.2)

Inequality (2.2) is reversed if γ ∈ (0, 1). Equality in (2.2) holds if and only if x and y are linearly dependent.
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We remark here that inequality (2.2) had been extended in [18] and the authors obtained the following
Minkowski-type inequality:

[perHn (x + y, α)]1/|α| > [perHn (x, α)]1/|α| + [perHn (y, α)]1/|α|,

where

α ∈ [0, 1]n, 0 < |α| ,
n∑
j=1

αj 6 1, x,y ∈ (0,∞)n,

Hn (x, α) is the Hardy matrix and perHn (x, α) is the Hardy function. In [8, 17], the authors obtained the
following Minkowski-type inequality: Let A ∈ Rn×n. If AT = A, A > 0, then for any x,y ∈ Rn, we have√

(x + y)TA(x + y) 6
√
xTAx +

√
yTAy, (2.3)

where x,y are column vectors, and (2.3) was used to study the circuit layout system.

Lemma 2.3 (Minkowski-type inequality). Let (a, b) ∈ (0,∞)2 and (c, d) ∈ [0,∞)2. If γ ∈ [1, 2], then we
have [

(a+ b)γ−2(c+ d)2
]1/γ

6
(
aγ−2c2

)1/γ
+
(
bγ−2d2

)1/γ
. (2.4)

Equality in (2.4) holds if (a, b) and (c, d) are linearly dependent.

Proof. By continuity considerations, we may assume that γ ∈ (1, 2). Set

θ ,
2

γ
∈ (1, 2) , (u, v) ,

(
c

a
,
d

b

)
∈ [0,∞)2 ,

and
H(u, v, a, b, θ) , (a+ b)1−θ(ua+ vb)θ − (auθ + bvθ).

Without loss of generality, we may assume that 0 6 u 6 v. By the Lagrange mean value theorem and the
fact that

H(v, v, a, b, θ) = 0,

we know that there exists ζ ∈ [u, v] such that[
(a+ b)γ−2(c+ d)2

]1/γ − [(aγ−2c2)1/γ + (bγ−2d2)1/γ
]

= (a+ b)1−θ(ua+ vb)θ − (auθ + bvθ)

= H(u, v, a, b, θ)−H(v, v, a, b, θ)

= (u− v)
∂H
∂u

∣∣∣∣
u=ζ

= −θa(v − u)
[
(a+ b)1−θ(ζa+ vb)θ−1 − ζθ−1

]
6 −θa(v − u)

[
(a+ b)1−θ(ζa+ ζb)θ−1 − ζθ−1

]
= 0.

This shows that inequality (2.4) holds, and equality in (2.4) holds if (a, b) and (c, d) are linearly dependent.
The proof is completed.

Lemma 2.4 (Minkowski-type inequality). Let x,y ∈ [0,∞)n and p ∈ Ωn. If γ ∈ [1, 2], then we have[
Var[γ](x + y,p)

]1/γ
6
[
Var[γ](x,p)

]1/γ
+
[
Var[γ](y,p)

]1/γ
. (2.5)

Equality in (2.5) holds if x and y are linearly dependent.
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Proof. By the continuity considerations, we may assume that

1 < γ < 2, pi > 0, ∀ i : 1 6 i 6 n, and xi 6= xj , yi 6= yj , ∀ i, j : i 6= j, 1 6 i, j 6 n.

Let G , {∆S1,∆S2, . . . ,∆Sl} be a partition of the triangle:

S ,
{

(t1, t2) ∈ [0,∞)2 : t1 + t2 6 1
}
,

and let the area of each ∆Si be denoted by

|∆Si| , Area∆Si,

as well as let
‖G‖ , max

16k6l
max

X,Y∈∆Sk

{‖ X−Y ‖},

be the diameter of the partition G, where ‖X−Y‖ is the Euclidean norm of the vector X − Y. By the
definition of the Riemann integral, for any (ξk,1, ξk,2) ∈ ∆Sk, we have∫∫

S
[wi,j(x,p, t1, t2)]γ−2dt1dt2 = lim

‖G‖→0

l∑
k=1

[wi,j(x,p, ξk,1, ξk,2)]γ−2|∆Sk|. (2.6)

By (2.1) and (2.6), we have

Var[γ](x,p) = 2
∑

16i<j6n

pipj(xi − xj)2

∫∫
S

[wi,j(x,p, t1, t2)]γ−2dt1dt2

= 2
∑

16i<j6n

pipj(xi − xj)2 lim
‖G‖→0

l∑
k=1

[wi,j(x,p, ξk,1, ξk,2)]γ−2|∆Sk|

= lim
‖G‖→0

2
∑

16i<j6n

pipj(xi − xj)2
l∑

k=1

[wi,j(x,p, ξk,1, ξk,2)]γ−2|∆Sk|


= lim
‖G‖→0

 ∑
16i<j6n,16k6l

2pipj |∆Sk|(xi − xj)2[wi,j(x,p, ξk,1, ξk,2)]γ−2

 ,

i.e.,

Var[γ](x,p) = lim
‖G‖→0

 ∑
16i<j6n,16k6l

2pipj |∆Sk|(xi − xj)2[wi,j(x,p, ξk,1, ξk,2)]γ−2

 . (2.7)

From (2.7) we obtain that

Var[γ](x + y,p) = lim
‖G‖→0

∑
16i<j6n,16k6l

2pipj |∆Sk|(xi + yi − xj − yj)2[wi,j(x + y,p, ξk,1, ξk,2)]γ−2

6 lim
‖G‖→0

∑
16i<j6n,16k6l

2pipj |∆Sk|(|xi − xj |+ |yi − yj |)2[wi,j(x + y,p, ξk,1, ξk,2)]γ−2,
(2.8)

where
wi,j(x,p, ξk,1, ξk,2) = ξk,1xi + ξk,2xj + (1− ξk,1 − ξk,2)A(x,p) ∈ [0,∞).

Set

ai,j,k = wi,j(x,p, ξk,1, ξk,2), bi,j,k = wi,j(y,p, ξk,1, ξk,2),
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and

ci,j,k =
√

2pipj |∆Sk||xi − xj |, di,j,k =
√

2pipj |∆Sk||yi − yj |.

By (2.8) and

wi,j(x + y,p, ξk,1, ξk,2) = wi,j(x,p, ξk,1, ξk,2) + wi,j(y,p, ξk,1, ξk,2) = ai,j,k + bi,j,k, (2.9)

we get

Var[γ](x + y,p) 6 lim
‖G‖→0

∑
16i<j6n,16k6l

2pipj |∆Sk| (|xi − xj |+ |yi − yj |)2 [wi,j(x + y,p, ξk,1, ξk,2)]γ−2

= lim
‖G‖→0

∑
16i<j6n,16k6l

(ai,j,k + bi,j,k)
γ−2(ci,j,k + di,j,k)

2.
(2.10)

Since
(ai,j,k, bi,j,k) ∈ (0,∞)2, (ci,j,k, di,j,k) ∈ (0,∞)2, 1 < γ < 2,

according to Lemma 2.3, we have

(ai,j,k + bi,j,k)
γ−2(ci,j,k + di,j,k)

2 6

[(
aγ−2
i,j,kc

2
i,j,k

)1/γ
+
(
bγ−2
i,j,kd

2
i,j,k

)1/γ
]γ
. (2.11)

By (2.10), (2.11), 1 < γ < 2 and Lemma 2.2, we see that

[
Var[γ](x + y,p)

]1/γ
6 lim
‖G‖→0

 ∑
16i<j6n,16k6l

(ai,j,k + bi,j,k)
γ−2(ci,j,k + di,j,k)

2

1/γ

6 lim
‖G‖→0

 ∑
16i<j6n,16k6l

[
(aγ−2
i,j,kc

2
i,j,k)

1/γ + (bγ−2
i,j,kd

2
i,j,k)

1/γ
]γ

1/γ

6 lim
‖G‖→0


 ∑

16i<j6n,16k6l

aγ−2
i,j,kc

2
i,j,k

1/γ

+

 ∑
16i<j6n,16k6l

bγ−2
i,j,kd

2
i,j,k

1/γ


= lim
‖G‖→0

 ∑
16i<j6n,16k6l

aγ−2
i,j,kc

2
i,j,k

1/γ

+ lim
‖G‖→0

 ∑
16i<j6n,16k6l

bγ−2
i,j,kd

2
i,j,k

1/γ

=
[
Var[γ](x,p)

]1/γ
+
[
Var[γ](y,p)

]1/γ
.

This shows that inequality (2.5) is correct, and equality in (2.5) holds if x and y are linearly dependent.
This ends the proof of Lemma 2.4.

Now let us start to prove Theorem 1.1.

Proof. By continuity considerations, we may assume that 1 < γ < 2. Let T , {∆Ω1, . . . ,∆Ωn} be a
partition of Ω, and let

‖T‖ , max
16i6n

max
X,Y∈∆Ωi

{‖ X−Y ‖}

be the diameter of the partition T. Pick any ξi ∈ ∆Ωi for each i = 1, 2, . . . , n. Set

ξ , (ξ1, ξ2, . . . , ξn), f(ξ) , (f(ξ1), f(ξ2), . . . , f(ξn)),



J. J. Wen, S. H. Wu, T. Y. Han, J. Nonlinear Sci. Appl. 9 (2016), 5836–5849 5843

and

p(ξ) , (p1(ξ), p2(ξ), . . . , pn(ξ)) =
(p(ξ1)|∆Ω1|, p(ξ2)|∆Ω2|, . . . , p(ξn)|∆Ωn|)∑n

i=1 p(ξi)|∆Ωi|
.

Then

p(ξ) ∈ Ωn and lim
‖T‖→0

n∑
i=1

p(ξi)|∆Ωi| =
∫

Ω
p = 1, (2.12)

where |∆Ωi| is the m-dimensional measure of ∆Ωi, i = 1, 2, . . . , n.
From (2.12), γ > 1 and the definition of the Riemann integral, we have

Var[γ]f =
2

γ(γ − 1)
[Efγ − (Ef)γ ]

=
2

γ(γ − 1)

[
lim
‖T‖→0

n∑
i=1

p(ξi)f
γ(ξi)|∆Ωi| −

(
lim
‖T‖→0

n∑
i=1

p(ξi)f(ξi)|∆Ωi|

)γ]

=
2

γ(γ − 1)

[(
lim
‖T‖→0

n∑
i=1

p(ξi)|∆Ωi|

)(
lim
‖T‖→0

n∑
i=1

pi(ξ)f
γ(ξi)

)

−

(
lim
‖T‖→0

n∑
i=1

p(ξi)|∆Ωi|

)γ (
lim
‖T‖→0

n∑
i=1

pi(ξ)f(ξi)

)γ]

=
2

γ(γ − 1)

[
lim
‖T‖→0

n∑
i=1

pi(ξ)f
γ(ξi)−

(
lim
‖T‖→0

n∑
i=1

pi(ξ)f(ξi)

)γ]

= lim
‖T‖→0

2

γ(γ − 1)

[
n∑
i=1

pi(ξ)f
γ(ξi)−

(
n∑
i=1

pi(ξ)f(ξi)

)γ]
= lim
‖T‖→0

Var[γ](f(ξ),p(ξ)),

i.e.,

Var[γ]f = lim
‖T‖→0

Var[γ](f(ξ),p(ξ)). (2.13)

By (2.13) and Lemma 2.4, we obtain that

Var
[γ]

(f + g) = lim
‖T‖→0

[
Var[γ](f(ξ) + g(ξ),p(ξ))

]1/γ

6 lim
‖T‖→0

{[
Var[γ](f(ξ),p(ξ))

]1/γ
+
[
Var[γ](g(ξ),p(ξ))

]1/γ
}

= lim
‖T‖→0

[
Var[γ](f(ξ),p(ξ))

]1/γ
+ lim
‖T‖→0

[
Var[γ](g(ξ),p(ξ))

]1/γ

= Var
[γ]
f + Var

[γ]
g.

The inequality (1.4) is proved.
Based on the above analysis we know that equality in (1.4) holds if f/g is a constant function. This

completes the proof of Theorem 1.1.

A large number of algebra, functional analysis and inequality theories are used in the proof of Theorem
1.1. Based on these tools, we obtained Lemmas 2.1, 2.2, and 2.3. And then according to these lemmas
and the definition of the Riemann integral, we prove Lemma 2.4 which is the discrete form of the result
of Theorem 1.1. Finally, by applying Lemma 2.4 and the definition of the Riemann integral, we finish the
proof of Theorem 1.1.
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3. Proof of inequality (1.5)

Proof. Recalling the proof of Theorem 1.1, and setting

g(t) = C > 0, ∀t ∈ Ω

and
y = (C,C, . . . , C) ∈ (0,∞)n.

By (2.9), we get

wi,j(x + y,p, ξk,1, ξk,2) = ai,j,k + bi,j,k = ai,j,k + C > ai,j,k. (3.1)

From (2.7), (3.1) and γ > 2, we obtain that

Var[γ](x + y,p) = lim
‖G‖→0

∑
16i<j6n,16k6l

2pipj |∆Sk|(xi + yi − xj − yj)2[wi,j(x + y,p, ξk,1, ξk,2)]γ−2

= lim
‖G‖→0

∑
16i<j6n,16k6l

2pipj |∆Sk|(xi − xj)2[wi,j(x + y,p, ξk,1, ξk,2)]γ−2

> lim
‖G‖→0

∑
16i<j6n,16k6l

2pipj |∆Sk|(xi − xj)2 (ai,j,k)
γ−2

= Var[γ](x,p),

that is,

Var[γ](x + y,p) > Var[γ](x,p). (3.2)

By (3.2), we get

Var[γ](f(ξ) + g(ξ),p(ξ)) > Var[γ](f(ξ),p(ξ)). (3.3)

By (2.13), (3.3) and Var
[γ]
C = 0, we obtain that

Var
[γ]

(f + g) = lim
‖T‖→0

[
Var[γ](f(ξ) + g(ξ),p(ξ))

]1/γ

> lim
‖T‖→0

[
Var[γ](f(ξ),p(ξ))

]1/γ

= Var
[γ]
f

= Var
[γ]
f + Var

[γ]
C.

This completes the proof of inequality (1.5).

4. Application to the performance appraisal of education

In higher education, we are most concerned about the students’ academic performance.
Suppose that X is a random variable with probability density function given by

p(X) ,
2√
2πσ

exp

[
−(X − µ)2

2σ2

]
, µ, σ ∈ (0,∞), X ∈ Ω , (µ,∞) . (4.1)

Firstly, we shall prove the following equality:

Var[γ]A (X;µ, α, c) =
2cγ

(√
2σ
)αγ

γ(γ − 1)

{
1√
π

Γ

(
αγ + 1

2

)
−
[

1√
π

Γ

(
α+ 1

2

)]γ}
, (4.2)



J. J. Wen, S. H. Wu, T. Y. Han, J. Nonlinear Sci. Appl. 9 (2016), 5836–5849 5845

where

A (X;µ, α, c) , c (X − µ)α , X ∈ Ω, α, c ∈ (0,∞) (4.3)

is an allowance function [16], Γ(s) is the gamma function, γ > −1/α and γ 6= 0, 1.

Proof. Let c = 1. Since
∫

Ω p =
∫∞
µ p = 1,

∫ ∞
µ

2 (X − µ)αγ√
2πσ

exp

[
−(X − µ)2

2σ2

]
dX =

∫ ∞
0

2xαγ√
2πσ

exp

(
− x2

2σ2

)
dx,

and ∫ ∞
µ

2 (X − µ)α√
2πσ

exp

[
−(X − µ)2

2σ2

]
dX =

∫ ∞
0

2xα√
2πσ

exp

(
− x2

2σ2

)
dx,

we have

Var[γ]A (X;µ, α, c) =
2

γ(γ − 1)

[∫ ∞
µ

p(X)Aγ (X;µ, α, c) dX −
(∫ ∞

µ
p(X)A (X;µ, α, c) dX

)γ]
=

2

γ(γ − 1)

{∫ ∞
0

2xαγ√
2πσ

exp

(
− x2

2σ2

)
dx−

[∫ ∞
0

2xα√
2πσ

exp

(
− x2

2σ2

)
dx

]γ}
.

Since ∫ ∞
0

2xα√
2πσ

exp

(
− x2

2σ2

)
dx =

∫ ∞
0

2
(√

2tσ
)α

√
2πσ

e−td
(√

2tσ
)

=

(√
2σ
)α

√
π

Γ

(
α+ 1

2

)
,

we see that

Var[γ]A (X;µ, α, c) =
2

γ(γ − 1)

{(√
2σ
)αγ

√
π

Γ

(
αγ + 1

2

)
−

[(√
2σ
)α

√
π

Γ

(
α+ 1

2

)]γ}

=
2
(√

2σ
)αγ

γ(γ − 1)

{
1√
π

Γ

(
αγ + 1

2

)
−
[

1√
π

Γ

(
α+ 1

2

)]γ}
.

That is, (4.2) holds for the case of c = 1.
For c > 0, from

Var[γ]A (X;µ, α, c) = cγVar[γ]A (X;µ, α, 1) ,

we see that (4.2) also holds. The formula (4.2) is proved.

The usual teaching model assumes that the scores of each student in a class of a university is treated as
a continuous random variable, written as XI , which takes on some value in the real interval I = [a0, am],
and its probability density function pI : I → (0,∞) is continuous. Suppose that we divide the students into
m classes, written as

Class [a0, a1] ,Class [a1, a2] , . . . ,Class [am−1, am] ,

where 0 6 a0 6 a1 6 · · · 6 am, m > 2, and ai, ai+1, i = 0, 1, · · · ,m − 1, are the lowest and the highest
allowable scores of the students of the Class [ai, ai+1], respectively. We say that the set

HTM {a0, . . . , am, pI} , {Class[a0, a1],Class[a1, a2], . . . ,Class[am−1, am], pI}

is a hierarchical teaching model. Particularly, the traditional teaching model, denoted by HTM {a0, am, pI} ,
is just a special HTM {a0, . . . , am, pI}, where m = 1 (see [16]).
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If a0 = −∞ and am =∞, then we say that HTM {−∞, . . . ,∞, pR} and HTM {−∞,∞, pR} are general-
ized hierarchical teaching model and generalized traditional teaching model, respectively (see [16]).

In the generalized traditional teaching model HTM {−∞,∞, pR} , the score of the student in a class is
treated as a continuous random variable, written as XR, and its probability density function pR : R→ (0,∞)
is continuous. By the central limit theorem (see [10]), we may assume that the random variable XR follows
a normal distribution (see [11, 13]), i.e., the probability density function of XR is

pR(X) ,
1√
2πσ

exp

[
−(X − µ)2

2σ2

]
, µ, σ ∈ (0,∞), X ∈ R, (4.4)

where µ is the average score of the students and σ is the mean variance of the scores.
We remark here that if the score XI of each student satisfies XI ∈ [0, 1], and µ ∈ [0, 1], then, by (4.4),

we have

P (XR < 0) =

∫ 0

−∞
pR(t)dt ≈ 0 and P (XR > 1) =

∫ ∞
1

pR(t)dt ≈ 0.

Hence we can use the generalized traditional teaching model instead of the traditional teaching model,
approximately.

In the generalized traditional teaching model, in order to stimulate the learning enthusiasm of students,
we may give the student a bonus payment A (X) if X > µ, the function A : (µ,∞)→ (0,∞) may be regarded
as an allowance function, where X = X(0,∞) ∈ (0,∞) is a truncated random variable of the random variable
XR, which is the score of the student. The probability density function p(X) of X should be defined by
(4.1). Indeed, by the definition of the truncated random variable (see [16]), we have

p(X) =
pR(X)∫∞

µ pR(t)dt
= 2pR(X) =

2√
2πσ

exp

[
−(X − µ)2

2σ2

]
.

For example, we consider

A(X) ≡ A (X;µ, α1, c1) + A (X;µ, α2, c2) , αi > 0, ci > 0, i = 1, 2.

Here we may interpret A (X;µ, α1, c1) as the allowance from the university, and A (X,µ, α2, c2) as the
allowance from the parents of the student. Then, Theorem 1.1 implies the following Brunn-Minkowski-type
inequality:

Var
[γ]A(X) 6 Var

[γ]A (X;µ, α1, c1) + Var
[γ]A (X;µ, α2, c2) , ∀ γ ∈ [1, 2] , (4.5)

where

Var
[γ]A (X;µ, αi, ci) =

[
Var[γ]A (X;µ, αi, ci)

]1/γ
, i = 1, 2,

which can be calculated by (4.2). Equality in (4.5) holds if α1 = α2.

Inequality (4.5) provides a better upper bound of Var
[γ]A(X). Since the calculation of Var

[γ]A(X) is very
difficult, the inequality (4.5) has important theoretical significance.

According to the theory of mathematical analysis, we know that an integral analogue of inequality (4.5)
is the following: Let the allowance function A (X,µ, α, c) be defined by (4.3), where α ∈ [a, b], 0 < a < b. If
γ ∈ [1, 2] , then for any constants µ > 0 and c > 0, we have the following Brunn-Minkowski-type inequality:

Var
[γ]
[∫ b

a
A (X;µ, α, c) dα

]
6
∫ b

a
Var

[γ]A (X;µ, α, c) dα,

i.e.,

Var
[γ]
[

1

b− a

∫ b

a
A (X;µ, α, c) dα

]
6

1

b− a

∫ b

a
Var

[γ]A (X;µ, α, c) dα,
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where
1

b− a

∫ b

a
A (X;µ, α, c) dα

is the mean allowance function for the parameter α, and

1

b− a

∫ b

a
Var

[γ]A (X;µ, α, c) dα

is the mean of the γ-mean variance of the allowance function for the parameter α.

5. Application to the performance appraisal of business

In the field of business, we are most concerned about the commercial profit.
Suppose that C is a product for sale. Then the sales X of C in a day is a random variable. Assume

that X ∈ (µ,∞), µ > 0, where µ is the minimum quantity of sale, and the probability density function
p : Ω→ (0,∞) of X is a continuous function. Then

P (µ 6 X < x) =

∫ x

µ
p(t)dt, x ∈ Ω , (µ,∞),

∫ ∞
µ
p(t)dt = 1,

where P (µ 6 X < x) is the probability of the random event “ µ 6 X < x ”.
Assume that the price of the product is p0, where p0 > 0 is a constant, then the income function i, the

income of C in a day, is

i , i(X) = p0X, X ∈ (µ,∞),

where i is a random variable.
Assume that the cost function (or expenditure function) e, the cost of C in a day, is

e , e(X), X ∈ (µ,∞),

then e is also a random variable. Here we assume that function e(X) is continuous, and

0 6 e(X) < i(X), ∀X ∈ (µ,∞).

We say that e0 = p0µ is the fixed cost, and e1 = e− p0µ is the variable cost.
Therefore, the profit function p, the profit of C in a day, is

p = p(X) , i(X)− e(X) = p0X − e(X) > 0, ∀X ∈ (µ,∞),

where p is still a random variable.
Theorem 1.1 implies the following Brunn-Minkowski-type inequality:

Var
[γ]
p > Var

[γ]
i−Var

[γ]
e, ∀ γ ∈ [1, 2] , (5.1)

equality in (5.1) holds if e(X)/X is a constant function.
Roughly, inequality (5.1) says that the γ-mean variance of the profit function is greater than or equal to

the γ-mean variance of the income function minus the γ-mean variance of the expenditure function. Equality
in (5.1) holds if e(X) ≡ CX, where C is a constant, and 0 < C < p0. That is to say, if e(X) ≡ CX, then

Var
[γ]
p ≡ Var

[γ]
i−Var

[γ]
e ≡ (p0 − C) Var

[γ]
X.

If γ = 2, then equality in (5.1) also holds if e(X) ≡ CX + C0, which is linearly increasing, where C,C0

are constants, and
CX + C0 < pX ∀X ∈ Ω⇔ 0 6 C0 6 (p− C)µ.
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In the field of business, we need to have a very small γ-mean variance Var
[γ]
p.

If Var
[γ]
i and Var

[γ]
e are fixed, then by inequality (5.1), we have

min
{

Var
[γ]
p
}

= Var
[γ]
i−Var

[γ]
e, ∀ γ ∈ [1, 2]

and
min

{
Varp

}
= Vari−Vare.

If we choose the cost function e(X) ≡ CX + C0, which is linearly increasing, where the constants
C, C0 > 0, then Varp is the minimal. That is,

Varp
∣∣
e(X)≡CX+C0

= min
{

Varp
}
.

If the company C sells m products Pj , j = 1, 2, . . . ,m, then the sales X , (X1, X2, · · · , Xm) of C in a
day is an m-dimensional and continuous random vector variable. The income function i associated with the
income of C in a day is

i , i(X) =
m∑
j=1

p0,jXj = p0X,

where Xj and p0,j are the sales and the price of the product Pj (j = 1, 2, . . . ,m) respectively. p0X is the
inner product of the vectors p0 , (p0,1, p0,2, . . . , p0,m) and X. It is worth noting that the inequality (5.1)
also holds true for this case.

Based on the above analysis, we suggest that the cost function e should be linearly increasing, that is,
e(X) ≡ CX+C0, where the constants C,C0 ∈ (0,∞). In this way, it can maintain the stability of the profit
function p, this also enables us to control the cost function e.
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