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Abstract

In this paper, we investigate the oscillation of the following nonlinear fractional difference equations,

∆ (a (t) [∆ (r (t) (∆αx (t))γ1)]γ2) + q (t) f

(
t−1+α∑
s=t0

(t− s− 1)(−α) x (s)

)
= 0,

where t ∈ Nt0+1−α, γ1 and γ2 are the quotient of two odd positive number, and ∆α denotes the Riemann-
Liouville fractional difference operator of order 0 < α ≤ 1. c©2016 All rights reserved.
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1. Introduction

Fractional calculus is one of the most novel types of calculus having a broad range of applications in
many scientific and engineering disciplines. Order of the derivatives in the fractional calculus might be any
real number which separates the fractional calculus from the ordinary calculus where the derivatives are
allowed only positive integer numbers. Therefore, fractional calculus might be considered as an extension
of ordinary calculus. Fractional calculus is a highly valuable tool in the modeling of many sorts of scientific
phenomena in various fields of science, engineering and physics [5, 25, 26]. Recently, many articles have
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investigated some aspects of differential equations with fractional-order derivatives, especially the existence,
the uniqueness the methods for explicit and numerical solutions and the stability of solutions, we refer to
[6, 8, 9, 15, 16, 23, 24] and the references cited therein. In recent years, oscillatory behaviour of fractional
differential equations has been investigated by authors, see papers [2–4, 7, 10, 12, 14, 17–19, 27]. But the
discrete analog of fractional difference equations are studied by very few authors, see [13, 20–22].

In [20], Sagayaraj et al. researched oscillation of the following fractional difference equations

∆ (p (t) (∆αx (t))γ) + q (t) f

(
t−1+α∑
s=t0

(t− s− 1)(−α) x (s)

)
= 0

for t ∈ Nt0+1−α, α ∈ (0, 1], and γ > 0 is a quotient of odd positive integers.
In [22], Selvam et al. investigated the oscillation of a class of fractional difference equations with damping

term of the following form

∆ (c (t) (∆αx (t))γ) + p (t) (∆αx (t))γ + q (t)

(
t−1+α∑
s=t0

(t− s− 1)(−α) x (s)

)γ
= 0

for t ∈ Nt0+1−α, α ∈ (0, 1], and γ > 0 is a quotient of odd positive integers.
In [13], Li investigated the oscillation of forced fractional difference equations with damping term of the

form
(1 + p (t)) ∆ (∆αx (t)) + p (t) ∆αx (t) + f (t, x (t)) = g (t) , t ∈ N0

with initial condition ∆α−1x (t) |t=0 = x0, where α ∈ (0, 1).
In [21], Sagayaraj et al. studied the oscillatory behavior of the fractional difference equations of the

following form

∆ (p (t) ∆ ([r (t) (∆αx (t))]η)) + F

(
t,
t−1+α∑
s=t0

(t− s− 1)(−α) x (s)

)
= 0

for t ∈ Nt0+1−α, α ∈ (0, 1], and η > 0 is a quotient of odd positive integers.
In this study, we investigate the following fractional differential equations

∆ (a (t) [∆ (r (t) (∆αx (t))γ1)]γ2) + q (t) f

(
t−1+α∑
s=t0

(t− s− 1)(−α) x (s)

)
= 0, (1.1)

where t ∈ Nt0+1−α, γ1 and γ2 are the quotient of two odd positive numbers. In [13, 20–22], and equation
(1.1), ∆α denotes the Riemann-Liouville fractional difference operator of order 0 < α ≤ 1. We shall make
use of the following conditions in our results:

(C1) a (t), r (t) and q (t) are positive sequences,
∑∞

s=t0

(
1/a1/γ2 (s)

)
=∞, and the function of f belongs to

C (R,R), f (x) /x ≥ k for all k ∈ R+, x 6= 0.

As usual, a solution x (t) of (1.1) is called oscillatory if it has arbitrarily large zeros, otherwise it is called
non-oscillatory. Equation (1.1) is called oscillatory if all of its solutions are oscillatory.

2. Preliminaries

In this section, we introduce preliminary results of discrete fractional calculus.

Definition 2.1 ([1]). The v-th fractional sum f , for v > 0, is defined by

∆−vf (t) =
1

Γ (v)

t−v∑
s=a

(t− s− 1)v−1 f (s) ,

where f is defined for s ≡ amod (1), ∆−vf is defined for t ≡ (a+ v) mod (1) and t(v) = Γ(t+1)
Γ(t−v+1) . The frac-

tional sum ∆−vf maps functions defined on Na to functions defined on Na+v, where Nt = {t, t+ 1, t+ 2, · · · }.



A. Secer, H. Adiguzel, J. Nonlinear Sci. Appl. 9 (2016), 5862–5869 5864

Definition 2.2 ([1]). Let µ > 0 and m − 1 < µ < m, where m denotes a positive integer, m = dµe. Set
v = m− µ. The µ-th fractional difference is defined as

∆µf (t) = ∆m−vf (t) = ∆m∆−vf (t) . (2.1)

Lemma 2.3 ([11]). Assume that A and B are nonnegative real numbers. Then,

λABλ−1 −Aλ ≤ (λ− 1)Bλ

for all λ > 1.

3. Main results

In this section, we establish some oscillation criteria. Throughout this paper, we denote i = 0, 1, 2, 3,
δ1 (t, ti) =

∑t−1
s=ti

(
1/a1/γ2 (s)

)
and ∆φ+ (s) = max {∆φ (s) , 0} .

Before we state and prove our main results, we give the following lemmas which will play an important
role in the proof of our main results.

Lemma 3.1. Let x (t) be a solution of (1.1) and let

G (t) =
t−1+α∑
s=t0

(t− s− 1)(−α) x (s) ,

then
∆ (G (t)) = Γ (1− α) ∆αx (t) .

Proof. Using Definition 2.1

G (t) =

t−1+α∑
s=t0

(t− s− 1)(−α) x (s) =

t−1+α∑
s=t0

(t− s− 1)(1−α)−1 x (s) = Γ (1− α) ∆−(1−α)x (t) .

So, we obtain
∆ (G (t)) = Γ (1− α) ∆∆−(1−α)x (t) = Γ (1− α) ∆αx (t) .

The proof is complete.

Lemma 3.2. Assume x (t) is an eventually positive solution of (1.1) and (C1) holds. If ∆αx (t) > 0, then
∆ (r (t) (∆αx (t))γ1) > 0 for t ≥ t0.

Proof. From the hypothesis, there exist a t1 such that x (t) > 0 on [t1,∞), so that G (t) > 0 on [t1,∞), and
from (1.1), we have

∆ (a (t) [∆ (r (t) (∆αx (t))γ1)]γ2) = −q (t) f

(
t−1+α∑
s=t0

(t− s− 1)(−α) x (s)

)
< 0. (3.1)

Then a (t) [∆ (r (t) (∆αx (t))γ1)]γ2 is an eventually non increasing sequence on [t1,∞). So, we know that
∆ (r (t) (∆αx (t))γ1) is eventually of one sign. For t2 > t1 is sufficiently large, we claim ∆ (r (t) (∆αx (t))γ1) >
0 on [t2,∞). Otherwise, assume that there exists a sufficiently large t3 > t2 such that ∆ (r (t) (∆αx (t))γ1) < 0
on [t3,∞). For [t3,∞), we have

a (t) [∆ (r (t) (∆αx (t))γ1)]γ2 ≤ a (t3) [∆ (r (t3) (∆αx (t3))γ1)]γ2 = l < 0.

So,

∆ (r (t) (∆αx (t))γ1) ≤ l1/γ2

a1/γ2 (t)
. (3.2)
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Summing both sides of (3.2) from t3 to t− 1, we obtain

r (t) (∆αx (t))γ1 − r (t3) (∆αx (t3))γ1 ≤
t−1∑
t3

l1/γ2

a1/γ2 (s)
. (3.3)

Letting t→∞ (3.3), we obtain a contradiction with ∆αx (t) > 0. This completes the proof.

Lemma 3.3. Assume x (t) is an eventually positive solution of (1.1) such that ∆αx (t) > 0 and

∆ (r (t) (∆αx (t))γ1) > 0

on [t1,∞), where t1 > t0 is sufficiently large. Then we have

∆G (t) ≥ Γ (1− α) δ
1/γ1
1 (t, t1) a1/γ1γ2 (t) [∆ (r (t) (∆αx (t))γ1)]1/γ1

r1/γ1 (t)
(3.4)

for t1 > t0.

Proof. Assume that x is an eventually positive solution of (1.1). Then we have that

a (t) [∆ (r (t) (∆αx (t))γ1)]γ2

is non-increasing on [t1,∞) by (3.1) and we have ∆ (r (t) (∆αx (t))γ1) > 0. So,

r (t) (∆αx (t))γ1 ≥ r (t) (∆αx (t))γ1 − r (t1) (∆αx (t1))γ1

=

t−1∑
t1

(a (s) [∆ (r (s) (∆αx (s))γ1)]γ2)
1/γ2

a1/γ2 (s)

≥ a1/γ2 (t) ∆ (r (t) (∆αx (t))γ1)
t−1∑
t1

1

a1/γ2 (s)

and then,

∆αx (t) ≥ a1/γ1γ2 (t) [∆ (r (t) (∆αx (t))γ1)]1/γ1

r1/γ1 (t)

(
t−1∑
t1

1

a1/γ2 (s)

)1/γ1

.

That is,

∆G (t) ≥ Γ (1− α) a1/γ1γ2 (t) [∆ (r (t) (∆αx (t))γ1)]1/γ1 δ
1/γ1
1 (t, t1)

r1/γ1 (t)
.

So, the proof is complete.

Theorem 3.4. Assume (C1) and γ1γ2 = 1 hold. If there exists a positive sequence φ such that

lim
t→∞

sup
t−1∑
s=t2

(
kφ (s) q (s)− r1/γ1 (s) (∆φ+ (s))2

4φ (s) Γ (1− α) δ
1/γ1
1 (s, t1)

)
=∞, (3.5)

then every solution of (1.1) is oscillatory.

Proof. Suppose to the contrary that x(t) is non-oscillatory solution of (1.1). Then without loss of generality,
we may assume that there is a solution x (t) of (1.1) such that x (t) > 0 on [t1,∞), where t1 is sufficiently
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large. By Lemma 3.2, we have ∆αx (t) > 0 and ∆ (r (t) (∆αx (t))γ1) > 0 on [t2,∞), where t2 is sufficiently
large. Define the following generalized Riccati function:

ω (t) = φ (t)
a (t) [∆ (r (t) (∆αx (t))γ1)]γ2

G (t)
.

For t ∈ [t2,∞), we have

∆ω (t) = ∆φ (t)
a (t+ 1) [∆ (r (t+ 1) (∆αx (t+ 1))γ1)]γ2

G (t+ 1)

+ φ (t)
∆ (a (t) [∆ (r (t) (∆αx (t))γ1)]γ2)G (t+ 1)− a (t+ 1) [∆ (r (t+ 1) (∆αx (t+ 1))γ1)]γ2 ∆G (t)

G (t)G (t+ 1)
.

That is,

∆ω (t) = ∆φ (t)
ω (t+ 1)

φ (t+ 1)
− φ (t)

q (t) f (G (t))

G (t)
− φ (t)

a (t+ 1) [∆ (r (t+ 1) (∆αx (t+ 1))γ1)]γ2 ∆G (t)

G2 (t+ 1)
.

Using f (x) /x > k and (3.4),

∆ω (t) ≤ ∆φ+ (t)
ω (t+ 1)

φ (t+ 1)
− kφ (t) q (t)

− φ (t)
a (t+ 1) [∆ (r (t+ 1) (∆αx (t+ 1))γ1)]γ2 Γ (1− α) a (t) [∆ (r (t) (∆αx (t))γ1)]γ2 δ

1/γ1
1 (t, t2)

G2 (t+ 1) r1/γ1 (t)
.

And, from (3.1), we have

a (t) [∆ (r (t) (∆αx (t))γ1)]γ2 ≥ a (t+ 1) [∆ (r (t+ 1) (∆αx (t+ 1))γ1)]γ2 .

So,

∆ω (t) ≤ ∆φ+ (t)
ω (t+ 1)

φ (t+ 1)
− kφ (t) q (t)− φ (t)

Γ (1− α) δ
1/γ1
1 (t, t2)

r1/γ1 (t)

ω2 (t+ 1)

φ2 (t+ 1)
.

Setting λ = 2, A =

(
φ(t)Γ(1−α)δ

1/γ1
1 (t,t2)

r1/γ1 (t)

)1/2
ω(t+1)
φ(t+1) , and B = 1

2

(
r1/γ1 (t)

φ(t)Γ(1−α)δ
1/γ1
1 (t,t2)

)1/2

∆φ+ (t) , using

Lemma 2.3, we obtain

∆ω (t) ≤ −kφ (t) q (t) +
r1/γ1 (t) (∆φ+ (t))2

4φ (t) Γ (1− α) δ
1/γ1
1 (t, t2)

. (3.6)

Summing both sides of (3.6) from t2 to t− 1, we have

t−1∑
s=t2

(
kφ (s) q (s)− r1/γ1 (s) (∆φ+ (s))2

4φ (s) Γ (1− α) δ
1/γ1
1 (s, t2)

)
≤ ω (t1)− ω (t) ≤ ω (t1) <∞. (3.7)

Letting t→∞ in (3.7),

lim
t→∞

sup
t−1∑
s=t2

(
kφ (s) q (s)− r1/γ1 (s) (∆φ+ (s))2

4φ (s) Γ (1− α) δ
1/γ1
1 (s, t2)

)
≤ ω (t1) <∞.

We obtain a contradiction with (3.5). So, the proof is complete.
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Theorem 3.5. Assume (C1) and γ1γ2 = 1 hold. Let φ be a positive sequence. Furthermore, we assume
that there exists a double sequence such that

H (t, t) = 0 for t ≥ 0, H (t, s) > 0 for t > s ≥ 0,

∆2H (t, s) = H (t, s+ 1)−H (t, s) ≤ 0 for t > s ≥ 0.

If

lim
t→∞

sup
1

H (t, t0)

t−1∑
t0

H (t, s)

(
kφ (s) q (s)− r1/γ1 (s) (∆φ+ (s))2

4φ (s) Γ (1− α) δ
1/γ1
1 (s, t2)

)
=∞, (3.8)

then every solution of (1.1) is oscillatory.

Proof. Suppose to the contrary that x(t) is non-oscillatory solution of (1.1). Then without loss of generality,
we may assume that there is a solution x (t) of (1.1) such that x (t) > 0 on [t1,∞), where t1 is sufficiently
large. By Lemma 3.2, we have ∆αx (t) > 0 and ∆ (r (t) (∆αx (t))γ1) > 0 on [t2,∞), where t2 is sufficiently
large. Let ω (t), be defined as in Theorem 3.4. So, we have (3.6). Multiplying both sides by H (t, s) and
then summing from t2 to t− 1, we have

t−1∑
t2

H (t, s) kφ (s) q (s) ≤ −
t−1∑
t2

H (t, s) ∆ω (s) +

t−1∑
t2

H (t, s)
r1/γ1 (s) (∆φ+ (s))2

4φ (s) Γ (1− α) δ
1/γ1
1 (s, t2)

,

t−1∑
t2

H (t, s)

(
kφ (s) q (s)− r1/γ1 (s) (∆φ+ (s))2

4φ (s) Γ (1− α) δ
1/γ1
1 (s, t2)

)
≤ −

t−1∑
t2

H (t, s) ∆ω (s) .

By using summation by parts formula, we have

t−1∑
t2

H (t, s)

(
kφ (s) q (s)− r1/γ1 (s) (∆φ+ (s))2

4φ (s) Γ (1− α) δ
1/γ1
1 (s, t2)

)
≤ H (t, t2)ω (t2) +

t−1∑
t2

ω (s+ 1) ∆2H (t, s)

≤ H (t, t2)ω (t2)

≤ H (t, t0)ω (t2) .

Then,

t−1∑
t0

H (t, s)

(
kφ (s) q (s)− r1/γ1 (s) (∆φ+ (s))2

4φ (s) Γ (1− α) δ
1/γ1
1 (s, t2)

)

=

t2−1∑
t0

H (t, s)

(
kφ (s) q (s)− r1/γ1 (s) (∆φ+ (s))2

4φ (s) Γ (1− α) δ
1/γ1
1 (s, t2)

)

+

t−1∑
t2

H (t, s)

(
kφ (s) q (s)− r1/γ1 (s) (∆φ+ (s))2

4φ (s) Γ (1− α) δ
1/γ1
1 (s, t2)

)

≤ H (t, t0)ω (t2) +H (t, t0)

t2−1∑
t0

∣∣∣∣∣kφ (s) q (s)− r1/γ1 (s) (∆φ+ (s))2

4φ (s) Γ (1− α) δ
1/γ1
1 (s, t2)

∣∣∣∣∣ .
So,

lim
t→∞

sup
1

H (t, t0)

t−1∑
t0

H (t, s)

(
kφ (s) q (s)− r1/γ1 (s) (∆φ+ (s))2

4φ (s) Γ (1− α) δ
1/γ1
1 (s, t2)

)

≤ ω (t2) +

t2−1∑
t0

∣∣∣∣∣kφ (s) q (s)− r1/γ1 (s) (∆φ+ (s))2

4φ (s) Γ (1− α) δ
1/γ1
1 (s, t2)

∣∣∣∣∣ <∞,
which contradicts (3.8). So the proof is complete.
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By choosing the sequences H and φ in appropriate manners, we can derive a lot of oscillation criteria
for (1.1). For instance, we can choose the double sequence H (t, s) = (t− s)λ with λ ≥ 1, t ≥ s ≥ 0. So, we
have the following corollary.

Corollary 3.6. Under the conditions of Theorem 3.5 and

lim
t→∞

sup
1

(t− t0)λ

t−1∑
t0

(t− s)λ
(
kφ (s) q (s)− r1/γ1 (s) (∆φ+ (s))2

4φ (s) Γ (1− α) δ
1/γ1
1 (s, t2)

)
=∞,

every solution of (1.1) is oscillatory.

4. Applications

Example 4.1. Consider the following fractional difference equation

∆

(
t1/5

[
∆
(

(∆αx (t))5
)]1/5

)

+ t−2

(t−1+α∑
s=t0

(t− s− 1)(−α) x (s)

)
+

(
t−1+α∑
s=t0

(t− s− 1)(−α) x (s)

)2
 = 0, t ≥ 2.

(4.1)

This corresponds to (1.1) with t0 = 2, γ1 = 5, γ2 = 1/5, α ∈ (0, 1], a (t) = t1/5, r (t) = 1, q (t) = t−2, and
f (x) /x ≥ 1 = k. On the other hand,

∞∑
s=t2

1

a1/γ2 (s)
=
∞∑
s=t2

1

s
=∞.

Letting φ (t) = t in (3.5),

lim
t→∞

sup
t−1∑
s=t2

(
kφ (s) q (s)− r1/γ1 (s) (∆φ+ (s))2

4φ (s) Γ (1− α) δ
1/γ1
1 (s, t2)

)

= lim
t→∞

sup
t−1∑
s=t2

(
s−1 − 1

4sΓ (1− α) δ
1/5
1 (s, t2)

)

= lim
t→∞

sup
t−1∑
s=t2

1

s

(
1− 1

4Γ (1− α)
(∑∞

s=t2
1
s

)1/5
)

=∞.

So (3.5) holds, and then we deduce that (4.1) is oscillatory by Theorem 3.4.

5. Conclusion

In this paper, we have established some oscillation criteria for a class of nonlinear fractional difference
equations by using some inequalities and Riccati transformation. Then, an example illustrating the results
was presented. As a result, it can be seen that this approach can also be applied to research the oscillation
of fractional difference equations with more complicated forms.
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