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Abstract

In this paper, we introduce certain new concepts of α-η-lower semi-continuous and α-η-upper semi-
continuous mappings. By using these concepts, we prove some fixed point results for generalized multivalued
nonlinear F-contractions in metric spaces and ordered metric spaces. As an application of our results we
deduce Suzuki-Wardowski type fixed point results and fixed point results for orbitally lower semi-continuous
mappings in complete metric spaces. Our results generalize and extend many recent fixed point theorems
including the main results of Minak et al. [G. Minak, M. Olgun, I. Altun, Carpathian J. Math., 31 (2015),
241–248], Altun et al. [I. Altun, G. Mınak, M. Olgun, Nonlinear Anal. Model. Control, 21 (2016), 201–210]
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1. Introduction and preliminaries

Let (X , d) be a metric space. 2X denotes the family of all nonempty subsets of X , C(X ) denotes
the family of all nonempty, closed subsets of X , CB(X ) denotes the family of all nonempty, closed, and
bounded subsets of X and K(X ) denotes the family of all nonempty compact subsets of X . It is clear that,
K(X ) ⊆ CB(X ) ⊆ C(X ) ⊆ P (X ). For A,B ∈ C(X ), let

H(A,B) = max

{
sup
x∈A

D(x,B), sup
y∈B

D(y,A)

}
,
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where D(x,B) = inf {d(x, y) : y ∈ B}. Then H is called generalized Pompeiu-Hausdorff distance on C(X ).
It is well-known that H is a metric on CB(X ), which is called Pompeiu-Hausdorff metric induced by d. For
more details see [3],[11].

An interesting generalization of the Banach contraction principle to multivalued mappings is known as
Nadler’s fixed point theorem [25]. After this, many authors extended Nadler’s fixed point theorem in many
directions (see [10, 12, 24, 29] and references therein). In 2012, Samet et al. [28] defined α-admissible
mappings. This notion is generalized by many authors (see [20, 21]). Salimi et al. [27] generalized this idea
by introducing the function η and established fixed point theorems. Next, Asl et al. [8] extended these
concepts to multivalued mappings by introducing the notion of α∗-admissible mappings as follows:

Definition 1.1 ([8]). Let T : X → 2X be a multivalued map on a metric space (X , d), α : X ×X → R+ be
a function, then T is an α∗-admissible mapping, if

α(y, z) ≥ 1 implies that α∗(T y, T z) ≥ 1, y, z ∈ X ,

where
α∗(A,B) = inf

y∈A,z∈B
α(y, z).

Hussain et al. [19] modified the notion of α∗-admissible as follows:

Definition 1.2 ([19]). Let T : X → 2X be a multivalued map on a metric space (X , d), α, η : X ×X → R+

be two functions where η is bounded, then T is an α∗-admissible mapping with respect to η, if

α(y, z) ≥ η(y, z) implies that α∗(T y, T z) ≥ η∗(T y, T z), y, z ∈ X ,

where
α∗(A,B) = inf

y∈A,z∈B
α(y, z), η∗(A,B) = sup

y∈A,z∈B
η(y, z).

Further, Ali et al. [4] generalized Definition 1.2 in the following way.

Definition 1.3 ([4]). Let T : X → 2X be a multivalued map on a metric space (X , d), α, η : X ×X → R+

be two functions. We say that T is generalized α∗-admissible mapping with respect to η, if

α(y, z) ≥ η(y, z) implies that α(u, v) ≥ η(u, v), for all u ∈ Ty, v ∈ Tz.

In 2014, Hussain et al. [16] introduced the notion of α-η continuous mappings as follows:

Definition 1.4 ([16]). Let (X , d) be a metric space, α, η : X × X → [0,∞) and T : X → X be functions.
Then T is an α-η-continuous mapping on X , if for given z ∈ X and sequence {zn} with

zn → z as n→∞, α(zn, zn+1) ≥ η(zn, zn+1), for all n ∈ N⇒ T zn → T z.

After that Hussain et al. [15] generalized Definition 1.4 to multivalued maps.

Definition 1.5 ([15]). Let T : X → 2X be a multivalued map on a metric space (X , d), α, η : X ×X → R+

be two functions. We say that T is α-η continuous multivalued mapping, if for given z ∈ X and sequence
{zn} with zn → z as n → ∞, α(zn, zn+1) ≥ η(zn, zn+1), for all n ∈ N we have T zn → T z. That is,
limn→∞ d(zn, z) = 0 and α(zn, zn+1) ≥ η(zn, zn+1) implies limn→∞H(T zn, T z) = 0.

Recently, Wardowski [31] defined F-contraction and proved a fixed point result as a generalization of
the Banach contraction principle for this contraction. This idea has been extended in many directions (see
[1, 14, 17] and references therein). Hussain et al. [18] broadened this idea to α-GF-contraction with respect
to a general family of functions G. Following Wardowski and Hussain, we denote by F, the set of all functions
F : R+ → R satisfying the following conditions:
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(F1) F is strictly increasing;

(F2) for all sequence {αn} ⊆ R+, limn→∞ αn = 0, if and only if limn→∞F(αn) = −∞;

(F3) there exists 0 < k < 1 such that limα→0+ α
kF(α) = 0,

F∗, if F also satisfies the following:

(F4) F(inf A) = inf F(A) for all A ⊂ (0,∞) with inf A > 0,

G, the set of all functions G : R+4 → R+ satisfying:

(G) for all t1, tt, t3, t4 ∈ R+ with t1t2t3t4 = 0 there exists τ > 0 such that G(t1, t2, t3, t4) = τ.

On unifying the concepts of Wardowski’s and Nadlers, Altun et al. [5] gave the concept of multivalued
F-contractions and established some fixed point results. On the other side, Minak et al. [23], extended the
results of Wardowski as follows:

Theorem 1.6 ([23]). Let (X , d) be a complete metric space, T : X → K(X ) and F ∈ F. If there exists
τ > 0 such that for any z ∈ X with d(z, T z) > 0, there exists y ∈ Fzσ satisfying

τ + F(D(y, T y)) ≤ F(d(z, y)),

where
Fzσ = {y ∈ T z : F(d(z, y)) ≤ F(D(z, T z)) + σ},

then T has a fixed point in X provided σ < τ and z → d(z, T z) is lower semi-continuous.

Theorem 1.7 ([23]). Let (X , d) be a complete metric space, T : X → C(X ) and F ∈ F∗. If there exists
τ > 0 such that for any z ∈ X with d(z, T z) > 0, there exists y ∈ Fzσ satisfying

τ + F(D(y, T y)) ≤ F(d(z, y)),

then T has a fixed point in X provided σ < τ and z → d(z, T z) is lower semi-continuous.

Minak et al. [23] also showed that Fzσ 6= ∅ in both cases when F ∈ F and F ∈ F∗. The aim of the
present paper is to introduce the concept of α-η-semicontinuous multivalued mappings and to prove fixed
point theorem for multivalued nonlinear F-contractions that generalize the results of Altun et al. [6], Minak
et al. [23], Olgun et al. [26] and Hussain et al. [18]. The following lemmas will be used in the sequel.

Lemma 1.8 ([3]). Let T : X → Y be a multivalued function, then the following statements are equivalent.

1. T is lower semi-continuous.

2. V ⊂ Y ⇒ T −1[int(V )] is open in X ,

where int(V ) denotes the interior of V .

Lemma 1.9 ([3]). Let T : X → Y be a multivalued function, then the following statements are equivalent.

1. T is upper semi-continuous.

2. V ⊂ Y ⇒ T −1[V ] is closed in X ,

where V denotes the closure of V .

2. Fixed point results for modified α-η-GF-contraction

We begin this section with the following definitions.

Definition 2.1. Let T : X → 2X be a multivalued map on a metric space (X , d), α, η : X × X → R+ be
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two functions. We say that T is α-η lower semi-continuous multivalued mapping on X , if for given z ∈ X
and sequence {zn} with

lim
n→∞

d(zn, z) = 0, α(zn, zn+1) ≥ η(zn, zn+1), for all n ∈ N,

implies
lim
n→∞

inf D(zn, T zn) ≥ D(z, T z).

Definition 2.2. Let T : X → 2X be a multivalued map on a metric space (X , d), α, η : X × X → R+ be
two functions. We say that T is α-η upper semi-continuous multivalued mapping on X , if for given z ∈ X
and sequence {zn} with

lim
n→∞

d(zn, z) = 0, α(zn, zn+1) ≥ η(zn, zn+1), for all n ∈ N,

implies
lim
n→∞

supD(zn, T zn) ≤ D(z, T z).

Lemma 2.3. Let T : X → 2X be a multivalued map on a metric space (X , d), α, η : X × X → R+ be
two functions. Then T is α-η continuous, if and only if it is α-η upper semi-continuous and α-η lower
semi-continuous.

Proof. Suppose that T is α-η upper semi-continuous and α-η lower semi-continuous. Then there exists a
sequence {zn} in X and z ∈ X with

lim
n→∞

d(zn, z) = 0, α(zn, zn+1) ≥ η(zn, zn+1), for all n ∈ N,

implies
lim
n→∞

inf D(zn, T zn) ≥ D(z, T z), (2.1)

and
lim
n→∞

supD(zn, T zn) ≤ D(z, T z). (2.2)

From (2.1) and (2.2), we get that D(zn, T zn) → D(z, T z) as n → ∞. This is possible only when
T zn → T z. Consequently, T is α-η continuous.

Conversely, suppose that T is α-η continuous. Then there exists a sequence {zn} in X and z ∈ X
with zn → z as n → ∞ and α(zn, zn+1) ≥ η(zn, zn+1) for all n ∈ N implies T zn → T z as n → ∞. This
implies that D(zn, T zn) → D(z, T z) as n → ∞ or limn→∞D(zn, T zn) = D(z, T z). From here it follows
that limn→∞ inf D(zn, T zn) ≥ D(z, T z) and limn→∞ supD(zn, T zn) ≤ D(z, T z). Hence T is α-η upper
semi-continuous and α-η lower semi-continuous.

Remark 2.4. As semi-continuity is a weaker property than continuity, an α-η upper semi-continuous and α-η
lower semi-continuous mapping need not to be α-η continuous mapping, as shown in the examples below.

Example 2.5. Let X = R with usual metric d. Then (X , d) is a metric space. Define T1 : X → 2X ,
α, η : X × X → R+ by

T1z =

{
{0} if z 6= 0,

[−1, 1] if z = 0,

α(y, z) =

{
1 if z, y 6= 0,
0 if z = y = 0,

and η(z, y) = 1
2 , for all z, y ∈ X .

Firstly, we show that T1 is not lower semi-continuous multivalued map. For this, let V = [−1, 1] ⊂ 2X ,
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then T −11 (int(V )) = T −11 ((−1, 1)) = {0} which is not open in R, so by Lemma 1.8, T1 is not lower semi-
continuous. But T1 is α-η lower semi-continuous multivalued map. Indeed, α(zn, zn+1) ≥ η(zn, zn+1) for
sequence zn of non-zero real numbers. Here arises two cases:

Case I. zn → z = 0.
If zn → 0, then T1zn = {0} and T1z = [−1, 1] such that D(zn, T1zn) = D(zn, {0}) = zn and D(z, T1z) =
D(0, [−1, 1]) = 0. This implies that

lim
n→∞

inf D(zn, T zn) = lim
n→∞

inf zn = z = 0 = D(z, T z).

Case II. zn → z 6= 0.
If zn → z, then T1zn = {0} and T1z = {0} such that D(zn, T1zn) = D(zn, {0}) = zn and D(z, T1z) = z. This
implies that

lim
n→∞

inf D(zn, T1zn) = lim
n→∞

inf zn = z = D(z, T1z).

On the other hand, in Case I we have

lim
n→∞

H(T1zn, T1z) = 1.

Hence T1 is not α-η-continuous multivalued map.

Example 2.6. Consider X the same as in Example 2.5. Define T2 : X → 2X , α, η : X × X → R+ by

T2z =

{
[−1, 1] if z 6= 0,
{0} if z = 0,

α(z, y) =

{
0 if z, y 6= 0,
2 if z = y = 0,

and η(z, y) = 1
4 , for all z, y ∈ X .

Firstly, we show that T2 is not upper semi-continuous multivalued map. For this, let V = [−1, 1] ⊂ 2X ,
then T −12 (V ) = T −12 ([−1, 1]) = R\{0} = (−∞, 0) ∪ (0,∞), which is not closed in R, so by Lemma 1.9, T2 is
not upper semi-continuous. But T2 is α-η upper semi-continuous multivalued map. Indeed, α(zn, zn+1) ≥
η(zn, zn+1) for sequence zn = 0 for all n ∈ N. Then zn approaches to z = 0 only. Therefore, If zn → 0, then
T2zn = {0} and T2z = {0}. This implies that

lim
n→∞

supD(zn, T2zn) = 0 = D(z, T2z).

On the other hand,
lim
n→∞

H(T2zn, T2z) = 1.

Hence T2 is not α-η-continuous multivalued map.

Remark 2.7. Let T : X → 2X be a multivalued map on a metric space (X , d). Let f : X → R, defined by
f(z) = D(z, T z), for all z ∈ X , be a lower semi-continuous mapping. Take α(z, y) = η(z, y), for all z, y ∈ X ,
then for z ∈ X and a sequence {zn} with

lim
n→∞

d(zn, z) = 0, α(zn, zn+1) ≥ η(zn, zn+1) for all n ∈ N,

we have
lim
n→∞

inf f(zn) ≥ f(z),

and so
lim
n→∞

inf D(zn, T zn) ≥ D(z, T z).

This shows that T is α-η lower semi-continuous mapping. But if T is α-η lower semi-continuous mapping,
then f needs to be lower semi-continuous as shown in Example 2.12. Similarly, if f : X → R is upper semi-
continuous mapping then, T is α-η upper semi-continuous mapping but not conversely.
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Theorem 2.8. Let (X , d) be a complete metric space and α, η : X × X → R+ be two functions. Let
T : X → K(X ), F ∈ F and G ∈ G fulfilling the following assertions:

(1) if for any z ∈ X with D(z, T z) > 0, there exists y ∈ Fzσ with α(z, y) ≥ η(z, y) satisfying

G(D(z, T z), D(y, T y), D(z, T y), D(y, T z)) + F(D(y, T y)) ≤ F(d(z, y));

(2) T is generalized α∗-admissible mapping with respect to η;

(3) T is α-η lower semi-continuous mapping;

(4) there exists z0 ∈ X and y0 ∈ T z0 such that α(z0, y0) ≥ η(z0, y0).

Then T has a fixed point in X provided σ < τ .

Proof. Let z0 ∈ X , since T z ∈ K(X ) for every z ∈ X , the set Fzσ is non-empty for any σ > 0, then there
exists z1 ∈ Fz0σ and by hypothesis α(z0, z1) ≥ η(z0, z1). Assume that z1 /∈ T z1, otherwise z1 is the fixed
point of T . Then, since T z1 is closed, D(z1, T z1) > 0, so from condition (1), we have

G(D(z0, T z0), D(z1, T z1), D(z0, T z1), D(z1, T z0)) + F(D(z1, T z1)) ≤ F(d(z0, z1)). (2.3)

Now for z1 ∈ X there exists z2 ∈ Fz1σ with z2 /∈ T z2, otherwise z2 is the fixed point of T , since
T z2 is closed, so, D(z2, T z2) > 0. Since T is generalized α∗-admissible mapping with respect to η, then
α(z1, z2) ≥ η(z1, z2). Again by using condition (1), we get

G(D(z1, T z1), D(z2, T z2), D(z1, T z2), D(z2, T z1)) + F(D(z2, T z2)) ≤ F(d(z1, z2)).

On continuing recursively, we get a sequence {zn}n∈N in X such that zn+1 ∈ Fznσ , zn+1 /∈ T zn+1,
α(zn, zn+1) ≥ η(zn, zn+1) and

G(D(zn, T zn), D(zn+1, T zn+1), D(zn, T zn+1), D(zn+1, T zn)) + F(D(zn+1, T zn+1)) ≤ F(d(zn, zn+1)).

As zn+1 ∈ T zn, this implies that

G(D(zn, T zn), D(zn+1, T zn+1), D(zn, T zn+1), 0) + F(D(zn+1, T zn+1)) ≤ F(d(zn, zn+1)). (2.4)

From (G) there exists τ > 0 such that

G(D(zn, T zn), D(zn+1, T zn+1), D(zn, T zn+1), 0) = τ.

From equation (2.4), we get that

F(D(zn+1, T zn+1)) ≤ F(d(zn, zn+1))− τ. (2.5)

Since zn+1 ∈ Fznσ , we have
F(d(zn, zn+1)) ≤ F(D(zn, T zn)) + σ. (2.6)

Combining equations (2.5) and (2.6) gives

F(D(zn+1, T zn+1)) ≤ F(D(zn, T zn)) + σ − τ. (2.7)

Since T zn and T zn+1 is compact, there exists zn+1 ∈ T zn and zn+2 ∈ T zn+1 such that d(zn, zn+1) =
D(zn, T zn) and d(zn+1, zn+2) = D(zn+1, T zn+1), so equation (2.7) implies

F(d(zn+1, zn+2)) ≤ F(d(zn, zn+1)) + σ − τ. (2.8)
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By using equation (2.8), we get

F(d(zn+1, zn+2)) ≤ F(d(zn, zn+1)) + σ − τ
≤ F(d(zn−1, zn)) + 2σ − 2τ

...

≤ F(d(z0, z1)) + nσ − nτ
= F(d(z0, z1))− n(τ − σ).

(2.9)

By letting limit as n → ∞ in equation (2.9), we get limn→∞F(d(zn+1, zn+2)) = −∞, so by (F2), we
obtain

lim
n→∞

d(zn+1, zn+2) = 0. (2.10)

Now from (F3), there exists 0 < k < 1 such that

lim
n→∞

[d(zn+1, zn+2)]
kF(d(zn+1, zn+2)) = 0. (2.11)

By equation (2.9), we get

lim
n→∞

[d(zn+1, zn+2)]
k[F(d(zn+1, zn+2))− d(z0, z1)] ≤ −n(τ − σ)[d(zn+1, zn+2)]

k ≤ 0. (2.12)

By taking limit as n→∞ in equation (2.12) and applying equations (2.10) and (2.11), we have

lim
n→∞

n[d(zn+1, zn+2)]
k = 0.

This implies that there exists n1 ∈ N such that n[d(zn+1, zn+2)]
k ≤ 1, or d(zn+1, zn+2) ≤ 1

n1/k , for all
n > n1. Next, for m > n > n1 we have

d(zn, zm) ≤
m−1∑
i=n

d(zi, zi+1) ≤
m−1∑
i=n

1

i1/k
,

since 0 < k < 1,
∑m−1

i=n
1
i1/k

converges. Therefore, d(zn, zm) → 0 as m,n → ∞. Thus, {zn} is a Cauchy
sequence. Since X is complete, there exists z∗ ∈ X such that zn → z∗ as n→∞. From equations (2.7) and
(2.10), we have

lim
n→∞

D(zn, T zn) = 0.

Since T is α-η lower semi-continuous mapping, then

0 ≤ D(z, Tz) ≤ lim
n→∞

inf D(zn, T zn) = 0.

Thus, T has a fixed point.

Theorem 2.9. Let (X , d) be a complete metric space and α, η : X × X → R+ be two functions. Let
T : X → C(X ), F ∈ F∗ and G ∈ G satisfy all assertions of Theorem 2.8. Then T has a fixed point in X .

Proof. Let z0 ∈ X , since T z ∈ C(X ) for every z ∈ X and F ∈ F∗, the set Fzσ is non-empty for any σ > 0,
then there exists z1 ∈ Fz0σ and by hypothesis α(z0, z1) ≥ η(z0, z1). Assume that z1 /∈ T z1, otherwise z1 is
the fixed point of T . Then, since T z1 is closed, D(z1, T z1) > 0, so from condition (1) of Theorem 2.8, we
have

G(D(z0, T z0), D(z1, T z1), D(z0, T z1), D(z1, T z0)) + F(D(z1, T z1)) ≤ F(d(z0, z1)).

Now for z1 ∈ X there exists z2 ∈ Fz1σ with z2 /∈ T z2, otherwise z2 is the fixed point of T , since
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T z2 is closed, so, D(z2, T z2) > 0. Since T is generalized α∗-admissible mapping with respect to η, then
α(z1, z2) ≥ η(z1, z2). Again by using condition (1) of Theorem 2.8, we get

G(D(z1, T z1), D(z2, T z2), D(z1, T z2), D(z2, T z1)) + F(D(z2, T z2)) ≤ F(d(z1, z2)).

On continuing recursively, we get a sequence {zn}n∈N in X such that zn+1 ∈ Fznσ , zn+1 /∈ T zn+1,
α(zn, zn+1) ≥ η(zn, zn+1) and

G(D(zn, T zn), D(zn+1, T zn+1), D(zn, T zn+1), D(zn+1, T zn)) + F(D(zn+1, T zn+1))

≤ F(d(zn, zn+1)).

The rest of the proof can be completed as the proof of Theorem 2.8.

Corollary 2.10. Let (X , d) be a complete metric space and α, η : X × X → R+ be two functions. Let
T : X → K(X ) and F ∈ F fulfill the conditions (2)-(4) of Theorem 2.8 and if for any z ∈ X with
D(z, T z) > 0, there exists y ∈ Fzσ with α(z, y) ≥ η(z, y) satisfying

τ + F(D(y, T y)) ≤ F(d(z, y)),

then T has a fixed point in X provided σ < τ .

Proof. Define GL : R+4 → R+ by G(t1, t2, t3, t4) = Lmin{t1, t2, t3, t4} + τ , where L ∈ R+ and τ > 0. Then
GL ∈ G (see Example 2.1 of [18]). Therefore, the result follows by taking G = GL in Theorem 2.8.

Corollary 2.11. Let (X , d) be a complete metric space and α, η : X × X → R+ be two functions. Let
T : X → C(X ) and F ∈ F∗ satisfy all conditions of Corollary 2.10. Then T has a fixed point in X .

Proof. By defining same GL as in Corollary 2.10 and using Theorem 2.9, we get the required result.

Example 2.12. Let X =
{

1
2n−1 : n ∈ N

}
∪ {0} with usual metric d. Then (X , d) is a metric space. Define

T : X → K(X ), α, η : X × X → R+, G : R4 → R+ and F : R+ → R by

T z =

{ {
1
2n

}
if z = 1

2n−1 ,
{0} if z = 0,

α(z, y) =

{
2 if z = 1

2n−1 ,
1
2 if z = 0,

η(z, y) = 1, for all z, y ∈ X , G(t1, t2, t3, t4) = τ , where τ > 0 and F(r) = ln(r). Then

D(z, T z) =

{
1
2n if z = 1

2n−1 ,
0 if z = 0.

Let D(z, T z) > 0, then z = 1
2n−1 , so, T z =

{
1
2n

}
. Thus for y = 1

2n ∈ T z, we have

F(d(z, y))−F(D(z, T z)) = F
(

1

2n

)
−F

(
1

2n

)
= 0.

Therefore, y ∈ Fzσ for σ > 0 with α(z, y) ≥ η(z, y) and

F(D(y, T y))−F(d(z, y)) = F
(

1

2n+1

)
−F

(
1

2n

)
= ln

(
1

2n+1

)
− ln

(
1

2n

)
= ln

(
2n

2n+1

)
= ln

(
1

2

)
= − ln 2.

Hence τ + F(D(y, T y)) ≤ F(d(z, y)) is satisfied for 0 < σ < τ ≤ ln 2.
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Since α(z, y) ≥ η(z, y) when z, y ∈
{

1
2n−1 : n ∈ N

}
, this implies that α(u, v) = 2 > 1 = η(u, v) for all

u ∈ T z and v ∈ T y. Hence T is generalized α∗-admissible mapping with respect to η.
Next, let limn→∞ d(zn, z) = 0 and α(zn, zn+1) ≥ η(zn, zn+1), for all n ∈ N, then zn ∈

{
1

2n−1 : n ∈ N
}

.
This implies that T zn =

{
1
2n

}
and D(zn, T zn) = 1

2n , for all n ∈ N. Here arises two cases:

Case I. zn → z = 0.
Then T z = {0} and D(z, T z) = 0. Thus

lim
n→∞

inf D(zn, T zn) = lim
n→∞

inf

(
1

2n

)
≥ 0 = D(z, T z).

Case II. zn → z = 1
2n−1 .

Then T z =
{

1
2n

}
and D (z, T z) = 1

2n . Thus

lim
n→∞

inf D(zn, T zn) = lim
n→∞

inf(
1

2n
)

=
1

2n
= D(z, T z).

Hence T is α-η lower semi-continuous mapping. Thus, all conditions of Corollary 2.10 (and Theorem
2.8) hold and 0 is a fixed point of T .

On the other hand, define f : X → R, by f(z) = D(z, T z), for all z ∈ X . Then

lim
z→1

inf f(z) = 0 �
1

2
= f(1).

Hence f is not lower semi-continuous mapping at z = 1. That is, Theorems 1.6 and 1.7 can not be
applied for this example.

Example 2.13. Consider the sequence {Sn}n∈N as follows:

S1 = 1,

S2 = 1 + 2,

...

Sn = 1 + 2 + 3 + ...+ n =
n(n+ 1)

2
,

...

Let X = {Sn : n ∈ N} with usual metric d. Then (X , d) is a metric space. Define T : X → K(X ),
α, η : X × X → R+, G : R4 → R+ and F : R+ → R by

T z =

{
{Sn−1, Sn+1} if z = Sn, n > 2,

{z} otherwise,

α(z, y) =

{
3 if z ∈ {Sn : n ≥ 2} ,
1 otherwiswe,

η(z, y) = 2, for all z, y ∈ X , G(t1, t2, t3, t4) = Lmin{t1, t2, t3, t4} + τ , where τ = 1
en , n ∈ N, L ∈ R+ and

F(r) = ln(r). Then

D(z, T z) =

{
|n| if z = Sn, n > 2,
0 otherwise.
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Let D(z, T z) > 0, then z = Sn, n > 2, so, T z = {Sn−1, Sn+1}. Thus for y = Sn−1 ∈ T z, we have

F(d(z, y))−F(D(z, T z)) = F (|n|)−F (|n|) = 0.

Therefore, y ∈ Fzσ for σ = 1
en+1 , n ∈ N with α(z, y) ≥ η(z, y) and

F(D(y, T y))−F(d(z, y)) = F (|n− 1|)−F (|n|)
= ln (|n− 1|)− ln (|n|)

= ln

(
|n− 1|
|n|

)
< − 1

en
.

This implies that τ + F(D(y, T y)) ≤ F(d(z, y)). Since D(z, T y) = 0, we have,

G(D(z, T z), D(y, T y), D(z, T y), D(y, T z)) + F(D(y, T y)) = τ + F(D(y, T y))

≤ F(d(z, y)).

Hence condition (1) of Theorem 2.8 is satisfied for 0 < σ = 1
en+1 < τ = 1

en .
Since α(z, y) ≥ η(z, y) when z, y ∈ {Sn : n ≥ 2}, this implies that α(u, v) = 3 > 2 = η(u, v) for all

u ∈ T z and v ∈ T y. Hence T is generalized α∗-admissible mapping with respect to η.
Next, let limn→∞ d(zn, z) = 0 and α(zn, zn+1) ≥ η(zn, zn+1), for all n ∈ N, then zn ∈ {Sn : n ∈ N, n ≥ 2}.

Here arises two cases:

Case I. zn ∈ {Sn : n > 2}.
Then T zn = {Sn−1, Sn+1} and D(zn, T zn) = |n|, for all n ∈ N.

Subcase I. zn → z = Sn, n > 2.
Then T z = {Sn−1, Sn+1} and D(z, T z) = |n|. Thus

lim
n→∞

inf D(zn, T zn) = lim
n→∞

inf (|n|)

= |n| = D(z, T z).

Subcase II. zn → z = S1.
Then T z = {S1} and D(z, T z) = 0. Thus

lim
n→∞

inf D(zn, T zn) = lim
n→∞

inf (|n|)

≥ 0 = D(z, T z).

Subcase III. zn → z = S2.
Then T z = {S2} and D(z, T z) = 0. Thus

lim
n→∞

inf D(zn, T zn) = lim
n→∞

inf (|n|)

≥ 0 = D(z, T z).

Case II. zn ∈ {S2}.
Then zn approaches to S2 only. Therefore, T zn = {zn} and T z = {z}. This implies that

lim
n→∞

inf D(zn, T zn) = 0 = D(z, T z).

Hence T is α-η lower semi-continuous mapping. Thus, all the conditions of Theorem 2.8 hold and
{S1, S2} is set of fixed points of T .
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As an application of Theorems 2.8 and 2.9, we get the following results.

Theorem 2.14. Let (X , d) be a complete metric space and α, η : X × X → R+ be two functions. Let
T : X → K(X ), F ∈ F and G ∈ G fulfill the conditions (2) and (4) of Theorem 2.8. If for any y, z ∈ X with
α(z, y) ≥ η(z, y) and H(T z, T y) > 0 we have

G(D(z, T z), D(y, T y), D(z, T y), D(y, T z)) + F(H(T z, T y)) ≤ F(d(z, y)),

then T has a fixed point in X provided T is α-η continuous mapping.

Proof. By Lemma 2.3, we have T is α-η-lower semi-continuous mapping. Also, for z ∈ X and y ∈ Fzσ with
D(z, T z) > 0 we have

G(D(z, T z), D(y, T y), D(z, T y), D(y, T z)) + F(D(y, T y))

≤ G(D(z, T z), D(y, T y), D(z, T y), D(y, T z)) + F(H(T z, T y))

≤ F(d(z, y)).

Thus, all the conditions of Theorem 2.8 are satisfied, so, T has a fixed point.

By similar arguments of Theorem 2.14, we state the following and omit its proof.

Theorem 2.15. Let (X , d) be a complete metric space and α, η : X × X → R+ be two functions. Let
T : X → C(X ), F ∈ F∗ and G ∈ G satisfy all assertions of Theorem 2.14. Then T has a fixed point in X .

On considering G = GL, as in Corollary 2.10, Theorems 2.14 and 2.15 reduce to the following corollaries.

Corollary 2.16. Let (X , d) be a complete metric space and α, η : X × X → R+ be two functions. Let
T : X → K(X ) and F ∈ F fulfill the conditions (2) and (4) of Theorem 2.8. If for any y, z ∈ X with
α(z, y) ≥ η(z, y) and H(T z, T y) > 0 we have

τ + F(H(T z, T y)) ≤ F(d(z, y)),

then T has a fixed point in X provided T is α-η continuous mapping.

Corollary 2.17. Let (X , d) be a complete metric space and α, η : X × X → R+ be two functions. Let
T : X → C(X ) and F ∈ F∗ satisfy all assertions of Corollary 2.16. Then T has a fixed point in X .

Theorem 2.18. Let (X , d) be a complete metric space, T : X → K(X ), F ∈ F and G ∈ G. If for z ∈ X
with D(z, T z) > 0, there exists y ∈ Fzσ satisfying

G(D(z, T z), D(y, T y), D(z, T y), D(y, T z)) + F(D(y, T y)) ≤ F(d(z, y)),

then T has a fixed point in X provided σ < τ and z → D(z, T z) is lower semi-continuous.

Proof. Define α(z, y) = d(z, y) = η(z, y) for all z, y ∈ X . Then α(u, v) = d(z, y) = η(u, v), for all u ∈ T z
and v ∈ T y, that is, T is generalized α∗-admissible mapping with respect to η. Since z → D(z, T z) is
lower semi-continuous, therefore by Remark 2.7, T is α-η-lower semi-continuous. Thus, all the conditions
of Theorem 2.8 holds. Hence T has a fixed point in X .

Theorem 2.19. Let (X , d) be a complete metric space, T : X → C(X ), F ∈ F∗ and G ∈ G. If for z ∈ X
with D(z, T z) > 0, there exists y ∈ Fzσ satisfying

G(D(z, T z), D(y, T y), D(z, T y), D(y, T z)) + F(D(y, T y)) ≤ F(d(z, y)),

then T has a fixed point in X provided σ < τ and z → D(z, T z) is lower semi-continuous.

Proof. By defining α(z, y) and η(z, y) the same as in proof of Theorem 2.18 and by using Theorem 2.8, we
get the required result.

Remark 2.20. By taking G = GL, as in Corollary 2.11, in Theorems 2.18 and 2.19, we get Theorems 1.6 and
1.7.
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3. Fixed point results for α-η-F-contraction of Hardy-Rogers type

In this section we establish certain fixed point results for α-η-F-contraction of Hardy-Rogers type.

Theorem 3.1. Let (X , d) be a complete metric space and α, η : X × X → R+ be two functions. Let
T : X → K(X ) and F ∈ F fulfill the following assertions:

1. T is generalized α∗-admissible mapping with respect to η;

2. T is α-η lower semi-continuous mapping;

3. there exist z0 ∈ X and y0 ∈ T z0 such that α(z0, y0) ≥ η(z0, y0);

4. there exist σ > 0 and a function τ : (0,∞)→ (σ,∞) such that

lim
t→s+

inf τ(t) > σ, for all s ≥ 0,

and for any z ∈ X with D(z, T z) > 0, there exists y ∈ Fzσ with α(z, y) ≥ η(z, y) satisfying

τ(d(z, y)) + F(D(y, T y)) ≤ F(a1d(z, y) + a2D(z, T z) + a3D(y, T y)

+ a4D(z, T y) + a5D(y, T z)),

where a1, a2, a3, a4, a5 ∈ [0,+∞) such that a1 + a2 + a3 + 2a4 = 1 and a3 6= 1.

Then T has a fixed point in X .

Proof. Let z0 ∈ X , since T z ∈ K(X ) for every z ∈ X , the set Fzσ is non-empty for any σ > 0, then there
exists z1 ∈ Fz0σ and by hypothesis α(z0, z1) ≥ η(z0, z1). Assume that z1 /∈ T z1, otherwise z1 is the fixed
point of T . Then, since T z1 is closed, D(z1, T z1) > 0, so, from (4), we have

τ(d(z0, z1)) + F(D(z1, T z1)) ≤ F(a1d(z0, z1) + a2D(z0, T z0) + a3D(z1, T z1)
+ a4D(z0, T z1) + a5D(z1, T z0)).

Now for z1 ∈ X there exists z2 ∈ Fz1σ with z2 /∈ T z2, otherwise z2 is the fixed point of T , since
T z2 is closed, so, D(z2, T z2) > 0. Since T is generalized α∗-admissible mapping with respect to η, then
α(z1, z2) ≥ η(z1, z2). Again by using (4), we get

τ(d(z1, z2)) + F(D(z2, T z2)) ≤ F(a1d(z1, z2) + a2D(z1, T z1) + a3D(z2, T z2)
+ a4D(z1, T z2) + a5D(z2, T z1)).

On continuing recursively, we get a sequence {zn}n∈N in X such that zn+1 ∈ Fznσ , zn+1 /∈ T zn+1,
α(zn, zn+1) ≥ η(zn, zn+1) and

τ(d(zn, zn+1)) + F(D(zn+1, T zn+1)) ≤ F(a1d(zn, zn+1) + a2D(zn, T zn) + a3D(zn+1, T zn+1)

+ a4D(zn, T zn+1) + a5D(zn+1, T zn)).

As zn+1 ∈ T zn, this implies that

τ(d(zn, zn+1)) + F(D(zn+1, T zn+1)) ≤ F(a1d(zn, zn+1) + a2D(zn, T zn)

+ a3D(zn+1, T zn+1) + a4D(zn, T zn+1)).
(3.1)

Since zn+1 ∈ Fznσ , we have
F(d(zn, zn+1)) ≤ F(D(zn, T zn)) + σ. (3.2)

As T zn and T zn+1 is compact, there exist zn+1 ∈ T zn and zn+2 ∈ T zn+1 such that d(zn, zn+1) =
D(zn, T zn) and d(zn+1, zn+2) = D(zn+1, T zn+1), so equations (3.1) and (3.2) imply

τ(d(zn, zn+1)) + F(d(zn+1, zn+2)) ≤ F(a1d(zn, zn+1) + a2d(zn, zn+1)

+ a3d(zn+1, zn+2) + a4d(zn, zn+2)),
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and
F(d(zn, zn+1)) ≤ F(d(zn, zn+1)) + σ. (3.3)

Let dn = d(zn, zn+1), for n ∈ N, then

τ(dn) + F(dn+1) ≤ F((a1 + a2)dn + a3dn+1 + a4d(zn, zn+2)

≤ F((a1 + a2 + a4)dn + (a3 + a4)dn+1).
(3.4)

Assume that there exists n ∈ N such that dn+1 ≥ dn, then from (3.4), we get

τ(dn) + F(dn+1) ≤ F(dn+1).

This is a contradiction to the fact that τ(dn) > 0. Hence dn+1 < dn for all n ∈ N. This shows that
sequence {dn} is decreasing. Therefore, there exists δ ≥ 0 such that limn→∞ dn = δ. Now let δ > 0. From
(3.4), we get

τ(dn) + F(dn+1) ≤ F(dn). (3.5)

Combining (3.3) and (3.5) gives

F(dn+1) ≤ F(dn) + σ − τ(dn)

≤ F(dn−1) + 2σ − τ(dn)− τ(dn−1)

...

≤ F(d0) + nσ − τ(dn)− τ(dn−1)− · · · − τ(d0).

(3.6)

Let τ(dpn) = min{τ(d0), τ(d1), · · · , τ(dn)} for all n ∈ N. From (3.6), we get

F(dn+1) ≤ F(d0) + n(σ − τ(dpn)). (3.7)

From (3.6), we also get

F(D(zn+1, T zn+1)) ≤ F(D(z0, T z0)) + n(σ − τ(dpn)).

Now consider the sequence {τ(dpn)}. We distinguish two cases.

Case 1. For each n ∈ N, there is m > n such that τ(dpn) > τ(dpm). Then we obtain a subsequence {dpnk
}

of {dpn} with τ(dpnk
) > τ(dpnk+1

) for all k. Since dpnk
→ δ+, we deduce that

lim
k→∞

inf τ(dpnk
) > σ.

Hence F(dnk
) ≤ F(d0) +n(σ− τ(dpnk

)) for all k. Consequently, limk→∞F(dnk
) = −∞ and by (F2), we

obtain limk→∞ dpnk
= 0, which contradicts that limn→∞ dn > 0.

Case 2. There is n0 ∈ N such that τ(dpn0
) > τ(dpm) for all m > n0. Then F(dm) ≤ F(d0) +m(σ− τ(dpn0

))
for all m > n0. Hence limm→∞F(dm) = −∞, so limm→∞ dm = 0, which contradicts that limm→∞ dm > 0.
Thus, limn→∞ dn = 0. From (F3), there exists 0 < r < 1 such that

lim
n→∞

(dn)rF(dn) = 0.

By (3.7), we get for all n ∈ N

(dn)rF(dn)− (dn)rF(d0) ≤ (dn)rn(σ − τ(d− pn)) ≤ 0. (3.8)

By letting n→∞ in (3.8), we obtain
lim
n→∞

n(dn)r = 0

This implies that there exists n1 ∈ N such that n(dn)r ≤ 1, or, dn ≤ 1
n1/r , for all n > n1. Rest of the

proof can be completed as in Theorem 2.8.
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Following the arguments in the proof of Theorem 3.1 and taking F ∈ F∗, we obtain the following result.

Theorem 3.2. Let (X , d) be a complete metric space and α, η : X × X → R+ be two functions. Let
T : X → C(X ) and F ∈ F∗ satisfy all conditions of Theorem 3.1. Then T has a fixed point in X .

By taking a1 = 1 and a2 = a3 = a4 = a5 = 0 in Theorems 3.1 and 3.2 respectively, we get the following.

Corollary 3.3. Let (X , d) be a complete metric space and α, η : X × X → R+ be two functions. Let
T : X → K(X ) and F ∈ F fulfill the following assertions:

1. T is generalized α∗-admissible mapping with respect to η;

2. T is α-η lower semi-continuous mapping;

3. there exist z0 ∈ X and y0 ∈ T z0 such that α(z0, y0) ≥ η(z0, y0);

4. there exist σ > 0 and a function τ : (0,∞)→ (σ,∞) such that

lim
t→s+

inf τ(t) > σ, for all s ≥ 0,

and for any z ∈ X with D(z, T z) > 0, there exists y ∈ Fzσ with α(z, y) ≥ η(z, y) satisfying

τ(d(z, y)) + F(D(y, T y)) ≤ F(d(z, y)).

Then T has a fixed point in X .

Corollary 3.4. Let (X , d) be a complete metric space and α, η : X × X → R+ be two functions. Let
T : X → C(X ) and F ∈ F∗ satisfy all conditions of Corollary 3.3. Then T has a fixed point in X .

By taking a1 = a2 = a3 = 0 and a4 = a5 = 1/2 in Theorems 3.1 and 3.2 respectively, we get the following
results for F-contraction of Chatterjea type.

Corollary 3.5. Let (X , d) be a complete metric space and α, η : X × X → R+ be two functions. Let
T : X → K(X ) and F ∈ F fulfill the following assertions:

1. T is generalized α∗-admissible mapping with respect to η;

2. T is α-η lower semi-continuous mapping;

3. there exist z0 ∈ X and y0 ∈ T z0 such that α(z0, y0) ≥ η(z0, y0);

4. there exist σ > 0 and a function τ : (0,∞)→ (σ,∞) such that

lim
t→s+

inf τ(t) > σ, for all s ≥ 0,

and for any z ∈ X with D(z, T z) > 0, there exists y ∈ Fzσ with α(z, y) ≥ η(z, y) satisfying

τ(d(z, y)) + F(D(y, T y)) ≤ F
(
D(z, T y) +D(y, T z)

2

)
.

Then T has a fixed point in X .

Corollary 3.6. Let (X , d) be a complete metric space and α, η : X × X → R+ be two functions. Let
T : X → C(X ) and F ∈ F∗ satisfy all conditions of Corollary 3.5. Then T has a fixed point in X .

If we choose a4 = a5 = 0 in Theorems 3.1 and 3.2 respectively, we obtain the following results for
F-contraction of Reich-type.

Corollary 3.7. Let (X , d) be a complete metric space and α, η : X × X → R+ be two functions. Let
T : X → K(X ) and F ∈ F fulfill the following assertions:

1. T is generalized α∗-admissible mapping with respect to η;
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2. T is α-η lower semi-continuous mapping;

3. there exist z0 ∈ X and y0 ∈ T z0 such that α(z0, y0) ≥ η(z0, y0);

4. there exist σ > 0 and a function τ : (0,∞)→ (σ,∞) such that

lim
t→s+

inf τ(t) > σ, for all s ≥ 0,

and for any z ∈ X with D(z, T z) > 0, there exists y ∈ Fzσ with α(z, y) ≥ η(z, y) satisfying

τ(d(z, y)) + F(D(y, T y)) ≤ F(a1d(z, y) + a2D(z, T z) + a3D(y, T y)),

where a1, a2, a3 ∈ [0,+∞) such that a1 + a2 + a3 = 1 and a3 6= 1.

Then T has a fixed point in X .

Corollary 3.8. Let (X , d) be a complete metric space and α, η : X × X → R+ be two functions. Let
T : X → C(X ) and F ∈ F∗ satisfy all conditions of Corollary 3.7. Then T has a fixed point in X .

As an application of Theorems 3.1 and 3.2, we obtain the following.

Theorem 3.9. Let (X , d) be a complete metric space and α, η : X × X → R+ be two functions. Let
T : X → K(X ) and F ∈ F fulfill the conditions (1) and (3) of Theorem 3.1 and the following assertions:

1. T is α-η continuous mapping;

2. there exists a function τ : (0,∞)→ (0,∞) such that

lim
t→s+

inf τ(t) > 0, for all s ≥ 0,

and for any y, z ∈ X with α(z, y) ≥ η(z, y) and H(T z, T y) > 0 satisfying

τ(d(z, y)) + F(H(T z, T y)) ≤ F(a1d(z, y) + a2D(z, T z) + a3D(y, T y)

+ a4D(z, T y) + a5D(y, T z)),

where a1, a2, a3, a4, a5 ∈ [0,+∞) such that a1 + a2 + a3 + 2a4 = 1 and a3 6= 1.

Then T has a fixed point in X .

Proof. By Lemma 2.3, we have T is α-η-lower semi continuous mapping. Also, for z ∈ X and y ∈ Fzσ with
D(z, T z) > 0, we have

F(D(y, T y)) ≤ F(H(T z, T y)) ≤ F(a1d(z, y) + a2D(z, T z) + a3D(y, T y)

+ a4D(z, T y) + a5D(y, T z))− τ(d(z, y)).

Thus, all conditions of Theorem 3.1 are satisfied. Hence T has a fixed point.

By similar arguments of Theorem 3.9 and using Theorem 3.2, we state the following theorem.

Theorem 3.10. Let (X , d) be a complete metric space and α, η : X × X → R+ be two functions. Let
T : X → C(X ) and F ∈ F∗ satisfy all conditions of Theorem 3.9. Then T has a fixed point in X .

Theorem 3.11. Let (X , d) be a complete metric space, T : X → K(X ) and F ∈ F. If there exist σ > 0 and
a function τ : (0,∞)→ (σ,∞) such that

lim
t→s+

inf τ(t) > σ, for all s ≥ 0,

and for any z ∈ X with D(z, T z) > 0, there exists y ∈ Fzσ satisfying

τ(d(z, y)) + F(D(y, T y)) ≤ F(a1d(z, y) + a2D(z, T z) + a3D(y, T y)

+ a4D(z, T y) + a5D(y, T z)),

where a1, a2, a3, a4, a5 ∈ [0,+∞) such that a1 + a2 + a3 + 2a4 = 1 and a3 6= 1, then T has a fixed point in
X provided z → D(z, T z) is lower semi-continuous.
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Proof. Define α(z, y) = d(z, y) = η(z, y) for all z, y ∈ X . Then by using Remark 2.7 and Theorem 3.1, we
get the required result.

Theorem 3.12. Let (X , d) be a complete metric space, T : X → C(X ) and F ∈ F∗ satisfy all assertions of
Theorem 3.11. Then T has a fixed point in X .

Proof. Define α(z, y) = d(z, y) = η(z, y) for all z, y ∈ X . Then by using Remark 2.7 and Theorem 3.2, we
get the required result.

By taking a1 = 1 and a2 = a3 = a4 = a5 = 0 in Theorems 3.11 and 3.12, we get the following corollaries.

Corollary 3.13 (Theorem 11 of [6]). Let (X , d) be a complete metric space, T : X → K(X ) and F ∈ F. If
there exist σ > 0 and a function τ : (0,∞)→ (σ,∞) such that

lim
t→s+

inf τ(t) > σ, for all s ≥ 0,

and for any z ∈ X with D(z, T z) > 0, there exists y ∈ Fzσ satisfying

τ(d(z, y)) + F(D(y, T y)) ≤ F(d(z, y)),

then T has a fixed point in X provided z → D(z, T z) is lower semi-continuous.

Corollary 3.14 (Theorem 10 of [6]). Let (X , d) be a complete metric space, T : X → C(X ) and F ∈ F∗
satisfy all assertions of Corollary 3.13. Then T has a fixed point in X .

By taking a1 = a2 = a3 = 0 and a4 = a5 = 1/2 in Theorems 3.11 and 3.12, we get the following.

Corollary 3.15. Let (X , d) be a complete metric space, T : X → K(X ) and F ∈ F. If there exist σ > 0
and a function τ : (0,∞)→ (σ,∞) such that

lim
t→s+

inf τ(t) > σ, for all s ≥ 0,

and for any z ∈ X with D(z, T z) > 0, there exists y ∈ Fzσ satisfying

τ(d(z, y)) + F(D(y, T y)) ≤ F
(
D(z, T y) +D(y, T z)

2

)
,

then T has a fixed point in X provided z → D(z, T z) is lower semi-continuous.

Corollary 3.16. Let (X , d) be a complete metric space, T : X → C(X ) and F ∈ F∗ satisfy all assertions
of Corollary 3.15. Then T has a fixed point in X .

By choosing a4 = a5 = 0 in Theorems 3.11 and 3.12, we get the following.

Corollary 3.17. Let (X , d) be a complete metric space, T : X → K(X ) and F ∈ F. If there exist σ > 0
and a function τ : (0,∞)→ (σ,∞) such that

lim
t→s+

inf τ(t) > σ, for all s ≥ 0,

and for any z ∈ X with D(z, T z) > 0, there exists y ∈ Fzσ satisfying

τ(d(z, y)) + F(D(y, T y)) ≤ F (a1d(z, y) + a2D(z, T z) + a3D(y, T y)) ,

where a1, a2, a3 ∈ [0,+∞) such that a1 + a2 + a3 = 1 and a3 6= 1, then T has a fixed point in X provided
z → D(z, T z) is lower semi-continuous.
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Corollary 3.18. Let (X , d) be a complete metric space, T : X → C(X ) and F ∈ F∗ satisfy all assertions
of Corollary 3.17. Then T has a fixed point in X .

Remark 3.19. Corollary 3.13 is a generalization of Theorem 2.3 of [26]. In fact, if τ is a constant, then T
is a multivalued F-contraction and every multivalued F-contraction is multivalued nonexpansive and every
multivalued nonexpansive map is upper semi-continuous, then T is upper semi-continuous. Therefore, the
function z → D(z, T z) is lower semi-continuous. On the other hand for any z ∈ X with D(z, T z) > 0 and
y ∈ Fzσ , we have

τ(d(z, y)) + F(D(y, T y)) ≤ τ(d(z, y)) + F(H(T z, T y)) ≤ F(d(z, y)).

Hence T satisfies all conditions of Corollary 3.13. Similarly, Corollary 3.14 generalizes Theorem 2.5 of [26].

Remark 3.20. If we take T , a single self-mapping on X , Theorems 3.11 and 3.12 reduce to Theorem 1 of
[30].

4. Fixed point results in partially ordered metric space

Let (X , d,�) be a partially ordered metric space and T : X → 2X be a multivalued mapping. For
A,B ∈ 2X , A � B implies that a � b for all a ∈ A and b ∈ B. We say that T is monotone increasing,
if T y � T z, for all y, z ∈ X , for which y � z. There are many applications in differential and integral
equations of monotone mappings in ordered metric spaces (see [2, 7, 16, 17] and references therein). In this
section, from Sections 2 and 3, we derive the following new results in partially ordered metric spaces.

Theorem 4.1. Let (X , d,�) be a complete partially ordered metric space, T : X → K(X ), F ∈ F and
G ∈ G fulfill the following assertions:

1. if for any z ∈ X with D(z, T z) > 0, there exists y ∈ Fzσ with z � y satisfying

G(D(z, T z), D(y, T y), D(z, T y), D(y, T z)) + F(D(y, T y)) ≤ F(d(z, y));

2. T is monotone increasing;

3. there exist z0 ∈ X and y0 ∈ T z0 such that z0 � y0;

4. for given z ∈ X and sequence {zn} with zn → z as n→∞ and zn � zn+1 for all n ∈ N, we have

lim
n→∞

inf D(zn, T zn) ≥ D(z, T z),

then T has a fixed point in X provided σ < τ .

Proof. Define α, η : X × X → [0,∞) by

α(z, y) =

{
2 z � y,
0 otherwise,

η(z, y) =

{
1 z � y,
0 otherwise,

then for z, y ∈ X with z � y, α(y, z) ≥ η(y, z) implies u � v for all u ∈ T z and v ∈ T y. Hence
α(u, v) = 2 > 1 = η(u, v), for all u ∈ T z and v ∈ T y and α(u, v) = η(u, v) = 0 otherwise. This shows
that T is generalized α∗-admissible mapping with respect to η. Thus, all the conditions of Theorem 2.8 are
satisfied and T has a fixed point.

By similar arguments as in Theorem 4.1, we state the following.

Theorem 4.2. Let (X , d,�) be a complete partially ordered metric space, T : X → C(X ), F ∈ F∗ and
G ∈ G fulfill all conditions of Theorem 4.1. Then T has a fixed point in X provided σ < τ .

Theorem 4.3. Let (X , d,�) be a complete partially ordered metric space, T : X → K(X ), F ∈ F and
G ∈ G fulfill the conditions (2) and (3) of Theorem 4.1 and the following assertions:
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1. If for any z, y ∈ X with z � y and H(T z, T y) > 0 satisfying

G(D(z, T z), D(y, T y), D(z, T y), D(y, T z)) + F(H(T z, T y)) ≤ F(d(z, y));

2. for given z ∈ X and sequence {zn} with zn → z as n → ∞ and zn � zn+1 for all n ∈ N, we have
T zn → T z,

then T has a fixed point in X .

Theorem 4.4. Let (X , d,�) be a complete partially ordered metric space, T : X → C(X ), F ∈ F∗ and
G ∈ G fulfill all conditions of Theorem 4.3. Then T has a fixed point in X .

By taking G = GL, as in Corollary 2.10, Theorems 4.1–4.4 reduce to the following.

Corollary 4.5. Let (X , d,�) be a complete partially ordered metric space, T : X → K(X ) and F ∈ F
satisfy conditions (2)-(4) of Theorem 4.1 and if for any z ∈ X with D(z, T z) > 0, there exists y ∈ Fzσ with
z � y satisfying

τ + F(D(y, T y)) ≤ F(d(z, y)),

then T has a fixed point in X provided σ < τ .

Corollary 4.6. Let (X , d,�) be a complete partially ordered metric space, T : X → C(X ) and F ∈ F∗
satisfy all conditions of Corollary 4.5. Then T has a fixed point in X provided σ < τ .

Corollary 4.7. Let (X , d,�) be a complete partially ordered metric space, T : X → K(X ) and F ∈ F fulfill
conditions (2)-(4) of Theorem 4.1 and if for any z ∈ X with z � y and H(T z, T y) > 0 we have

τ + F(H(T z, T y)) ≤ F(d(z, y)),

then T has a fixed point in X .

Corollary 4.8. Let (X , d,�) be a complete partially ordered metric space, T : X → C(X ) and F ∈ F∗
satisfy all conditions of Corollary 4.7. Then T has a fixed point in X provided σ < τ .

Theorem 4.9. Let (X , d) be a complete metric space, T : X → K(X ) and F ∈ F fulfill the following
assertions:

1. T is monotone increasing;

2. there exist z0 ∈ X and y0 ∈ T z0 such that z0 � y0;

3. for given z ∈ X and sequence {zn} with zn → z as n→∞ and zn � zn+1 for all n ∈ N we have

lim
n→∞

inf D(zn, T zn) ≥ D(z, T z);

4. there exist σ > 0 and a function τ : (0,∞)→ (σ,∞) such that

lim
t→s+

inf τ(t) > σ, for all s ≥ 0,

and for any z ∈ X with D(z, T z) > 0, there exists y ∈ Fzσ with z � y satisfying

τ(d(z, y)) + F(D(y, T y)) ≤ F(a1d(z, y) + a2D(z, T z) + a3D(y, T y)

+ a4D(z, T y) + a5D(y, T z)),

where a1, a2, a3, a4, a5 ∈ [0,+∞) such that a1 + a2 + a3 + 2a4 = 1 and a3 6= 1.

Then T has a fixed point in X .
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Theorem 4.10. Let (X , d,�) be a complete partially ordered metric space, T : X → C(X ) and F ∈ F∗
fulfill all conditions of Theorem 4.9. Then T has a fixed point in X provided σ < τ .

Theorem 4.11. Let (X , d,�) be a complete partially ordered metric space, T : X → K(X ) and F ∈ F fulfill
the conditions (1) and (2) of Theorem 4.9 and the following assertions:

1. for given z ∈ X and sequence {zn} with zn → z as n → ∞ and zn � zn+1 for all n ∈ N, we have
T zn → T z;

2. there exist σ > 0 and a function τ : (0,∞)→ (σ,∞) such that

lim
t→s+

inf τ(t) > σ, for all s ≥ 0,

and for any z, y ∈ X with z � y and H(T z, T y) > 0, satisfying

τ(d(z, y)) + F(H(T z, T y)) ≤ F(a1d(z, y) + a2D(z, T z) + a3D(y, T y)

+ a4D(z, T y) + a5D(y, T z)),

where a1, a2, a3, a4, a5 ∈ [0,+∞) such that a1 + a2 + a3 + 2a4 = 1 and a3 6= 1.

Then T has a fixed point in X .

Theorem 4.12. Let (X , d,�) be a complete partially ordered metric space, T : X → C(X ) and F ∈ F∗
fulfill all conditions of Theorem 4.11. Then T has a fixed point in X provided σ < τ .

5. Suzuki-Wardowski type fixed point results

In this section we establish certain fixed point results for Suzuki-Wardowski type multivalued F-contrac-
tions.

Theorem 5.1. Let (X , d) be a complete metric space, T : X → K(X ) and F ∈ F. If for z, y ∈ X with
1
2D(z, T z) ≤ d(z, y) and D(z, T z) > 0, we have

τ + F(D(y, T y)) ≤ F(d(z, y)), (5.1)

then T has a fixed point in X provided z → D(z, T z) is lower semi-continuous.

Proof. Suppose that G = GL as in Corollary 2.10. Let z ∈ X with D(z, T z) > 0 and y ∈ Fzσ , σ < τ . Then
y ∈ T z, therefore we have 1

2D(z, T z) ≤ D(z, T z) ≤ d(z, y). So, by using (5.1), we get

G(D(z, T z), D(y, T y), D(z, T y), D(y, T z)) + F(D(y, T y)) = τ + F(D(y, T y))

≤ F(d(z, y)).

Thus, all conditions of Theorem 2.18 hold and T has a fixed point.

Theorem 5.2. Let (X , d) be a complete metric space, T : X → C(X ) and F ∈ F∗. If for z, y ∈ X with
1
2 D(z, T z) ≤ d(z, y) and D(z, T z) > 0, we have

τ + F(D(y, T y)) ≤ F(d(z, y)),

then T has a fixed point in X provided z → D(z, T z) is lower semi-continuous.

Proof. By taking G = GL as in Corollary 2.10 and by using Theorem 2.19, we get the required result.

Theorem 5.3. Let (X , d) be a complete metric space, T : X → K(X ) and F ∈ F. If for z, y ∈ X with
1
2 D(z, T z) ≤ d(z, y) and H(T z, T y) > 0, we have

τ + F(H(T z, T y)) ≤ F(d(z, y)),

then T has a fixed point in X .
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Proof. Since every multivalued F-contraction is multivalued nonexpansive and every multivalued nonexpan-
sive map is upper semi-continuous, then T is upper semi-continuous. Therefore, the function z → D(z, T z)
is lower semi-continuous (see the Proposition 4.2.6 of [3]). Also, for z, y ∈ X with 1

2D(z, T z) ≤ d(z, y) and
D(z, T z) > 0 we have

τ + F(D(y, T y)) ≤ τ + F(H(T z, T y))

≤ F(d(z, y)).

Thus, all conditions of Theorem 5.1 hold and T has a fixed point.

By similar arguments as in Theorem 5.3, we state the following theorem and omit its proof.

Theorem 5.4. Let (X , d) be a complete metric space, T : X → C(X ) and F ∈ F∗. If for z, y ∈ X with
1
2 D(z, T z) ≤ d(z, y) and H(T z, T y) > 0, we have

τ + F(H(T z, T y)) ≤ F(d(z, y)),

then T has a fixed point in X .

By considering T a single-valued mapping in Theorem 5.3, we get the following.

Corollary 5.5. Let (X , d) be a complete metric space, T : X → X and F ∈ F. If for z, y ∈ X with
1
2 d(z, T z) ≤ d(z, y) and d(T z, T y) > 0, we have

τ + F(d(T z, T y)) ≤ F(d(z, y)),

then T has a fixed point in X .

Remark 5.6. Corollary 5.5 is a generalization of the Corollary 3.1 of [18]. In fact, let Corollary 3.1 of [18]
holds, then 1

2d(z, T z) ≤ d(z, T z) ≤ d(z, y). This implies that τ + F(d(T z, T y)) ≤ F(d(z, y)). Hence T
satisfies all conditions of Corollary 5.5 and T has a fixed point.

Theorem 5.7. Let (X , d) be a complete metric space, T : X → K(X ) be a continuous mapping and F ∈ F.
If there exists a function τ : (0,∞)→ (σ,∞) such that

lim
t→s+

inf τ(t) > 0, for all s ≥ 0,

and for z, y ∈ X with 1
2D(z, T z) ≤ d(z, y) and H(T z, T y) > 0, we have

τ(d(z, y)) + F(H(T z, T y)) ≤ F(a1d(z, y) + a2D(z, T z) + a3D(y, T y)

+ a4D(z, T y) + a5D(y, T z)),
(5.2)

where a1, a2, a3, a4, a5 ∈ [0,+∞) such that a1 +a2 +a3 + 2a4 = 1 and a3 6= 1, then T has a fixed point in X .

Proof. Let limt→s+ inf τ(t) > σ for σ > 0, and for all s ≥ 0. Also suppose that z ∈ X with D(z, T z) > 0 and
y ∈ Fzσ , σ < τ . Then limt→s+ inf τ(t) > 0 and y ∈ T z, therefore we have 1

2D(z, T z) ≤ D(z, T z) ≤ d(z, y).
So, by using (5.2), we get

τ(d(z, y)) + F(D(y, T y)) ≤ τ(d(z, y)) + F(H(T z, T y))

≤ F(a1d(z, y) + a2D(z, T z) + a3D(y, T y) + a4D(z, T y) + a5D(y, T z)).

Since T is continuous, then T is upper semi-continuous. Therefore, the function z → D(z, T z) is lower
semi-continuous (see the Proposition 4.2.6 of [3]). Thus, all conditions of Theorem 3.11 hold and T has a
fixed point.
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Theorem 5.8. Let (X , d) be a complete metric space, T : X → C(X ) be a continuous mapping and F ∈ F∗.
If there exists a function τ : (0,∞)→ (σ,∞) such that

lim
t→s+

inf τ(t) > 0, for all s ≥ 0,

and for z, y ∈ X with 1
2D(z, T z) ≤ d(z, y) and H(T z, T y) > 0, we have

τ(d(z, y)) + F(H(T z, T y)) ≤ F(a1d(z, y) + a2D(z, T z) + a3D(y, T y)

+ a4D(z, T y) + a5D(y, T z)),

where a1, a2, a3, a4, a5 ∈ [0,+∞) such that a1 + a2 + a3 + 2a4 = 1 and a3 6= 1. Then T has a fixed point in
X .

Proof. By using the same arguments as in Theorem 5.7 and by using Theorem 3.12, we get the required
result.

6. Applications to orbitally lower semi-continuous mappings

Let z0 ∈ X be any point. Then an orbit O(z0) of a mapping T : X → 2X at a point z0 is a set

O(z0) = {zn+1 : zn+1 ∈ T zn, n = 0, 1, 2, ...}.

Recall that a function g : X → R is called T -orbitally lower semi-continuous, if for any sequence {zn}
in X with zn+1 ∈ T zn for all n = 0, 1, 2, · · · , g(z) ≤ limn→∞ inf g(zn), whenever limn→∞ zn = z [9]. Many
authors extended Nadler’s fixed point theorem for lower semi-continuous mappings (see [13, 22, 23] and
references therein). In this section, as an application of our results proved in Sections 1 and 2, we deduce
certain fixed point theorems.

Theorem 6.1. Let (X , d) be a complete metric space, T : X → K(X ), F ∈ F and G ∈ G. If for
z ∈ O(w), w ∈ X with D(z, T z) > 0, there exists y ∈ Fzσ satisfying

G(D(z, T z), D(y, T y), D(z, T y), D(y, T z)) + F(D(y, T y)) ≤ F(d(z, y)), (6.1)

then T has a fixed point in X provided σ < τ and z → D(z, T z) is T -orbitally lower semi-continuous.

Proof. Define α, η : X × X → R+ by

α(z, y) =

{
2 if z, y ∈ O(w),
0 otherwise,

and η(z, y) = 1, ∀z, y ∈ X .

Then α(z, y) ≥ η(z, y), when z, y ∈ O(w). Since z → D(z, T z) is T -orbitally lower semi-continuous, so
for any sequence {zn} in X with zn+1 ∈ T zn and limn→∞ d(zn, z) = 0, we have

D(z, T z) ≤ lim
n→∞

inf D(zn, T zn).

This implies that T is α-η-lower semi-continuous mapping. Now let α(z, y) ≥ η(z, y), then z, y ∈ O(w).
So, for all u ∈ T z and v ∈ T y we have u, v ∈ O(w). Therefore, α(u, v) = 2 > 1 = η(u, v). This shows that
T is generalized α∗-admissible mapping with respect to η. Also, from equation (6.1), for any z ∈ X with
D(z, T z) > 0, there exists y ∈ Fzσ with α(z, y) ≥ η(z, y), we have

G(D(z, T z), D(y, T y), D(z, T y), D(y, T z)) + F(D(y, T y)) ≤ F(d(z, y)).

Thus, all the conditions of Theorem 2.8 are satisfied and so T has a fixed point.
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By similar arguments as in Theorem 6.1, we state the following theorem and omit its proof.

Theorem 6.2. Let (X , d) be a complete metric space, T : X → C(X ), F ∈ F∗ and G ∈ G. If for
z ∈ O(w), w ∈ X with D(z, T z) > 0, there exists y ∈ Fzσ satisfying

G(D(z, T z), D(y, T y), D(z, T y), D(y, T z)) + F(D(y, T y)) ≤ F(d(z, y)),

then T has a fixed point in X provided σ < τ and z → D(z, T z) is T -orbitally lower semi-continuous.

Theorem 6.3. Let (X , d) be a complete metric space, T : X → K(X ), F ∈ F and G ∈ G. If for z, y ∈ O(w)
with H(T z, T y) > 0 we have

G(D(z, T z), D(y, T y), D(z, T y), D(y, T z)) + F(H(T z, T y)) ≤ F(d(z, y)),

then T has a fixed point in X provided T is orbitally continuous.

Proof. By defining α(z, y), η(z, y) the same as in the proof of Theorem 6.1 and applying Theorem 2.14, we
get the required result.

Theorem 6.4. Let (X , d) be a complete metric space, T : X → C(X ), F ∈ F∗ and G ∈ G. If for z, y ∈ O(w)
with H(T z, T y) > 0 satisfying

G(D(z, T z), D(y, T y), D(z, T y), D(y, T z)) + F(H(T z, T y)) ≤ F(d(z, y)),

then T has a fixed point in X provided T is orbitally continuous.

Proof. By defining α(z, y), η(z, y) the same as in the proof of Theorem 6.1 and applying Theorem 2.15 we
get the required result.

By taking G = GL, as in Corollary 2.11, Theorems 6.1, 6.2, 6.3 and 6.4 reduce to the following.

Corollary 6.5. Let (X , d) be a complete metric space, T : X → K(X ) and F ∈ F. If for z ∈ O(w), w ∈ X
with D(z, T z) > 0, there exists y ∈ Fzσ satisfying

τ + F(D(y, T y)) ≤ F(d(z, y)),

then T has a fixed point in X provided σ < τ and z → D(z, T z) is T -orbitally lower semi-continuous.

Corollary 6.6. Let (X , d) be a complete metric space, T : X → C(X ) and F ∈ F∗. If for z ∈ O(w), w ∈ X
with D(z, T z) > 0, there exists y ∈ Fzσ satisfying

τ + F(D(y, T y)) ≤ F(d(z, y)),

then T has a fixed point in X provided σ < τ and z → D(z, T z) is T -orbitally lower semi-continuous.

Corollary 6.7. Let (X , d) be a complete metric space, T : X → K(X ) and F ∈ F. If for z, y ∈ O(w) with
H(T z, T y) > 0 satisfying

τ + F(H(T z, T y)) ≤ F(d(z, y)),

then T has a fixed point in X provided T is orbitally continuous.

Corollary 6.8. Let (X , d) be a complete metric space, T : X → C(X ) and F ∈ F∗. If for z, y ∈ O(w) with
H(T z, T y) > 0 satisfying

τ + F(H(T z, T y)) ≤ F(d(z, y)),

then T has a fixed point in X provided T is orbitally continuous.
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Remark 6.9. If we take T , a single mapping from X to X , Theorems 6.3 and 6.4 reduce to the Theorem 4.1
of [18] and Corollaries 6.7 and 6.8 reduce to Corollary 4.1 of [18].

Theorem 6.10. Let (X , d) be a complete metric space, T : X → K(X ) and F ∈ F. If there exist σ > 0 and
a function τ : (0,∞)→ (σ,∞) such that

lim
t→s+

inf τ(t) > σ, for all s ≥ 0,

and for any z ∈ O(w), w ∈ X with D(z, T z) > 0, there exists y ∈ Fzσ satisfying

τ(d(z, y)) + F(D(y, T y)) ≤ F(a1d(z, y) + a2D(z, T z) + a3D(y, T y)

+ a4D(z, T y) + a5D(y, T z)),

where a1, a2, a3, a4, a5 ∈ [0,+∞) such that a1 + a2 + a3 + 2a4 = 1 and a3 6= 1, then T has a fixed point in
X provided z → D(z, T z) is T -orbitally lower semi-continuous.

Proof. By defining α(z, y), η(z, y) the same as in the proof of Theorem 6.1 and applying Theorem 3.11 we
get the required result.

Theorem 6.11. Let (X , d) be a complete metric space, T : X → C(X ) and F ∈ F∗ satisfying all conditions
of Theorem 6.10. Then T has a fixed point in X .
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