Research Article

Journal of Nonlinear Science and Applications

Fixed point theorems for generalized multivalued nonlinear \mathcal{F} -contractions

Print: ISSN 2008-1898 Online: ISSN 2008-1901

Iram Iqbal^a, Nawab Hussain^{b,*}

^aDepartment of Mathematics, University of Sargodha, Sargodha, Pakistan. ^bDepartment of Mathematics, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia.

Communicated by M. Eslamian

Abstract

In this paper, we introduce certain new concepts of α - η -lower semi-continuous and α - η -upper semicontinuous mappings. By using these concepts, we prove some fixed point results for generalized multivalued nonlinear \mathcal{F} -contractions in metric spaces and ordered metric spaces. As an application of our results we deduce Suzuki-Wardowski type fixed point results and fixed point results for orbitally lower semi-continuous mappings in complete metric spaces. Our results generalize and extend many recent fixed point theorems including the main results of Minak et al. [G. Minak, M. Olgun, I. Altun, Carpathian J. Math., **31** (2015), 241–248], Altun et al. [I. Altun, G. Minak, M. Olgun, Nonlinear Anal. Model. Control, **21** (2016), 201–210] and Olgun et al. [M. Olgun, G. Minak, I. Altun, J. Nonlinear Convex Anal., **17** (2016), 579–587]. ©2016 All rights reserved.

Keywords: α - η - \mathcal{GF} -contraction, α - η - \mathcal{F} -contraction of Hardy-Rogers type, nonlinear \mathcal{F} -contraction. 2010 MSC: 46N40, 47H10, 54H25, 46T99.

1. Introduction and preliminaries

Let (\mathcal{X}, d) be a metric space. $2^{\mathcal{X}}$ denotes the family of all nonempty subsets of \mathcal{X} , $C(\mathcal{X})$ denotes the family of all nonempty, closed subsets of \mathcal{X} , $CB(\mathcal{X})$ denotes the family of all nonempty, closed, and bounded subsets of \mathcal{X} and $K(\mathcal{X})$ denotes the family of all nonempty compact subsets of \mathcal{X} . It is clear that, $K(\mathcal{X}) \subseteq CB(\mathcal{X}) \subseteq C(\mathcal{X}) \subseteq P(\mathcal{X})$. For $\mathcal{A}, \mathcal{B} \in C(\mathcal{X})$, let

$$H(\mathcal{A},\mathcal{B}) = \max\left\{\sup_{x\in\mathcal{A}} D(x,\mathcal{B}), \sup_{y\in\mathcal{B}} D(y,\mathcal{A})\right\},\$$

^{*}Corresponding author

Email addresses: irami@uos.edu.pk (Iram Iqbal), nhusain@kau.edu.sa (Nawab Hussain)

where $D(x, \mathcal{B}) = \inf \{ d(x, y) : y \in \mathcal{B} \}$. Then *H* is called generalized Pompeiu-Hausdorff distance on $C(\mathcal{X})$. It is well-known that *H* is a metric on $CB(\mathcal{X})$, which is called Pompeiu-Hausdorff metric induced by *d*. For more details see [3],[11].

An interesting generalization of the Banach contraction principle to multivalued mappings is known as Nadler's fixed point theorem [25]. After this, many authors extended Nadler's fixed point theorem in many directions (see [10, 12, 24, 29] and references therein). In 2012, Samet et al. [28] defined α -admissible mappings. This notion is generalized by many authors (see [20, 21]). Salimi et al. [27] generalized this idea by introducing the function η and established fixed point theorems. Next, Asl et al. [8] extended these concepts to multivalued mappings by introducing the notion of α^* -admissible mappings as follows:

Definition 1.1 ([8]). Let $\mathcal{T} : \mathcal{X} \to 2^{\mathcal{X}}$ be a multivalued map on a metric space (\mathcal{X}, d) , $\alpha : \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+$ be a function, then \mathcal{T} is an α_* -admissible mapping, if

$$\alpha(y,z) \ge 1$$
 implies that $\alpha_*(\mathcal{T}y,\mathcal{T}z) \ge 1, \quad y,z \in \mathcal{X}$

where

$$\alpha_*(\mathcal{A},\mathcal{B}) = \inf_{y \in \mathcal{A}, z \in \mathcal{B}} \alpha(y, z).$$

Hussain et al. [19] modified the notion of α_* -admissible as follows:

Definition 1.2 ([19]). Let $\mathcal{T} : \mathcal{X} \to 2^{\mathcal{X}}$ be a multivalued map on a metric space $(\mathcal{X}, d), \alpha, \eta : \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+$ be two functions where η is bounded, then \mathcal{T} is an α_* -admissible mapping with respect to η , if

$$\alpha(y,z) \ge \eta(y,z)$$
 implies that $\alpha_*(\mathcal{T}y,\mathcal{T}z) \ge \eta_*(\mathcal{T}y,\mathcal{T}z), \quad y,z \in \mathcal{X},$

where

$$\alpha_*(\mathcal{A},\mathcal{B}) = \inf_{y \in \mathcal{A}, z \in \mathcal{B}} \alpha(y, z), \quad \eta_*(\mathcal{A},\mathcal{B}) = \sup_{y \in \mathcal{A}, z \in \mathcal{B}} \eta(y, z).$$

Further, Ali et al. [4] generalized Definition 1.2 in the following way.

Definition 1.3 ([4]). Let $\mathcal{T} : \mathcal{X} \to 2^{\mathcal{X}}$ be a multivalued map on a metric space $(\mathcal{X}, d), \alpha, \eta : X \times X \to \mathbb{R}_+$ be two functions. We say that \mathcal{T} is generalized α_* -admissible mapping with respect to η , if

 $\alpha(y,z) \ge \eta(y,z)$ implies that $\alpha(u,v) \ge \eta(u,v)$, for all $u \in Ty$, $v \in Tz$.

In 2014, Hussain et al. [16] introduced the notion of α - η continuous mappings as follows:

Definition 1.4 ([16]). Let (\mathcal{X}, d) be a metric space, $\alpha, \eta : \mathcal{X} \times \mathcal{X} \to [0, \infty)$ and $\mathcal{T} : \mathcal{X} \to \mathcal{X}$ be functions. Then \mathcal{T} is an α - η -continuous mapping on \mathcal{X} , if for given $z \in X$ and sequence $\{z_n\}$ with

 $z_n \to z$ as $n \to \infty$, $\alpha(z_n, z_{n+1}) \ge \eta(z_n, z_{n+1})$, for all $n \in \mathbb{N} \Rightarrow \mathcal{T} z_n \to \mathcal{T} z$.

After that Hussain et al. [15] generalized Definition 1.4 to multivalued maps.

Definition 1.5 ([15]). Let $\mathcal{T} : \mathcal{X} \to 2^{\mathcal{X}}$ be a multivalued map on a metric space (\mathcal{X}, d) , $\alpha, \eta : \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+$ be two functions. We say that \mathcal{T} is α - η continuous multivalued mapping, if for given $z \in X$ and sequence $\{z_n\}$ with $z_n \to z$ as $n \to \infty$, $\alpha(z_n, z_{n+1}) \ge \eta(z_n, z_{n+1})$, for all $n \in \mathbb{N}$ we have $\mathcal{T}z_n \to \mathcal{T}z$. That is, $\lim_{n\to\infty} d(z_n, z) = 0$ and $\alpha(z_n, z_{n+1}) \ge \eta(z_n, z_{n+1})$ implies $\lim_{n\to\infty} H(\mathcal{T}z_n, \mathcal{T}z) = 0$.

Recently, Wardowski [31] defined \mathcal{F} -contraction and proved a fixed point result as a generalization of the Banach contraction principle for this contraction. This idea has been extended in many directions (see [1, 14, 17] and references therein). Hussain et al. [18] broadened this idea to α - \mathcal{GF} -contraction with respect to a general family of functions \mathcal{G} . Following Wardowski and Hussain, we denote by \mathfrak{F} , the set of all functions $\mathcal{F}: \mathbb{R}^+ \to \mathbb{R}$ satisfying the following conditions: (\mathcal{F}_1) \mathcal{F} is strictly increasing;

- (\mathcal{F}_2) for all sequence $\{\alpha_n\} \subseteq \mathbb{R}^+$, $\lim_{n \to \infty} \alpha_n = 0$, if and only if $\lim_{n \to \infty} \mathcal{F}(\alpha_n) = -\infty$;
- (\mathcal{F}_3) there exists 0 < k < 1 such that $\lim_{\alpha \to 0^+} \alpha^k \mathcal{F}(\alpha) = 0$,

 \mathfrak{F}_* , if \mathcal{F} also satisfies the following:

 (\mathcal{F}_4) $\mathcal{F}(\inf A) = \inf \mathcal{F}(A)$ for all $A \subset (0, \infty)$ with $\inf A > 0$,

 \mathfrak{G} , the set of all functions $\mathcal{G}: \mathbb{R}^{+^4} \to \mathbb{R}^+$ satisfying:

(\mathcal{G}) for all $t_1, t_t, t_3, t_4 \in \mathbb{R}^+$ with $t_1 t_2 t_3 t_4 = 0$ there exists $\tau > 0$ such that $\mathcal{G}(t_1, t_2, t_3, t_4) = \tau$.

On unifying the concepts of Wardowski's and Nadlers, Altun et al. [5] gave the concept of multivalued \mathcal{F} -contractions and established some fixed point results. On the other side, Minak et al. [23], extended the results of Wardowski as follows:

Theorem 1.6 ([23]). Let (\mathcal{X}, d) be a complete metric space, $\mathcal{T} : \mathcal{X} \to K(\mathcal{X})$ and $\mathcal{F} \in \mathfrak{F}$. If there exists $\tau > 0$ such that for any $z \in \mathcal{X}$ with $d(z, \mathcal{T}z) > 0$, there exists $y \in \mathcal{F}^z_{\sigma}$ satisfying

$$au + \mathcal{F}(D(y, \mathcal{T}y)) \le \mathcal{F}(d(z, y)),$$

where

$$\mathcal{F}_{\sigma}^{z} = \{ y \in \mathcal{T}z : \mathcal{F}(d(z, y)) \le \mathcal{F}(D(z, \mathcal{T}z)) + \sigma \},\$$

then \mathcal{T} has a fixed point in \mathcal{X} provided $\sigma < \tau$ and $z \to d(z, \mathcal{T}z)$ is lower semi-continuous.

Theorem 1.7 ([23]). Let (\mathcal{X}, d) be a complete metric space, $\mathcal{T} : \mathcal{X} \to C(\mathcal{X})$ and $\mathcal{F} \in \mathfrak{F}_*$. If there exists $\tau > 0$ such that for any $z \in \mathcal{X}$ with $d(z, \mathcal{T}z) > 0$, there exists $y \in \mathcal{F}_{\sigma}^z$ satisfying

$$\tau + \mathcal{F}(D(y, \mathcal{T}y)) \le \mathcal{F}(d(z, y)),$$

then \mathcal{T} has a fixed point in \mathcal{X} provided $\sigma < \tau$ and $z \to d(z, \mathcal{T}z)$ is lower semi-continuous.

Minak et al. [23] also showed that $\mathcal{F}_{\sigma}^{z} \neq \emptyset$ in both cases when $\mathcal{F} \in \mathfrak{F}$ and $\mathcal{F} \in \mathfrak{F}_{*}$. The aim of the present paper is to introduce the concept of α - η -semicontinuous multivalued mappings and to prove fixed point theorem for multivalued nonlinear \mathcal{F} -contractions that generalize the results of Altun et al. [6], Minak et al. [23], Olgun et al. [26] and Hussain et al. [18]. The following lemmas will be used in the sequel.

Lemma 1.8 ([3]). Let $\mathcal{T} : \mathcal{X} \to \mathcal{Y}$ be a multivalued function, then the following statements are equivalent.

- 1. \mathcal{T} is lower semi-continuous.
- 2. $V \subset \mathcal{Y} \Rightarrow \mathcal{T}^{-1}[int(V)]$ is open in \mathcal{X} ,

where int(V) denotes the interior of V.

Lemma 1.9 ([3]). Let $\mathcal{T} : \mathcal{X} \to \mathcal{Y}$ be a multivalued function, then the following statements are equivalent.

- 1. \mathcal{T} is upper semi-continuous.
- 2. $V \subset \mathcal{Y} \Rightarrow \mathcal{T}^{-1}[\overline{V}]$ is closed in \mathcal{X} ,

where \overline{V} denotes the closure of V.

2. Fixed point results for modified α - η - \mathcal{GF} -contraction

We begin this section with the following definitions.

Definition 2.1. Let $\mathcal{T}: \mathcal{X} \to 2^{\mathcal{X}}$ be a multivalued map on a metric space $(\mathcal{X}, d), \alpha, \eta: \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+$ be

two functions. We say that \mathcal{T} is $\alpha - \eta$ lower semi-continuous multivalued mapping on \mathcal{X} , if for given $z \in X$ and sequence $\{z_n\}$ with

$$\lim_{n \to \infty} d(z_n, z) = 0, \quad \alpha(z_n, z_{n+1}) \ge \eta(z_n, z_{n+1}), \quad \text{for all } n \in \mathbb{N},$$

implies

$$\lim_{n \to \infty} \inf D(z_n, \mathcal{T}z_n) \ge D(z, \mathcal{T}z)$$

Definition 2.2. Let $\mathcal{T} : \mathcal{X} \to 2^{\mathcal{X}}$ be a multivalued map on a metric space (\mathcal{X}, d) , $\alpha, \eta : \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+$ be two functions. We say that \mathcal{T} is α - η upper semi-continuous multivalued mapping on \mathcal{X} , if for given $z \in X$ and sequence $\{z_n\}$ with

$$\lim_{n \to \infty} d(z_n, z) = 0, \quad \alpha(z_n, z_{n+1}) \ge \eta(z_n, z_{n+1}), \quad \text{for all } n \in \mathbb{N},$$

implies

$$\lim_{n \to \infty} \sup D(z_n, \mathcal{T}z_n) \le D(z, \mathcal{T}z).$$

Lemma 2.3. Let $\mathcal{T} : \mathcal{X} \to 2^{\mathcal{X}}$ be a multivalued map on a metric space (\mathcal{X}, d) , $\alpha, \eta : \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+$ be two functions. Then \mathcal{T} is α - η continuous, if and only if it is α - η upper semi-continuous and α - η lower semi-continuous.

Proof. Suppose that \mathcal{T} is α - η upper semi-continuous and α - η lower semi-continuous. Then there exists a sequence $\{z_n\}$ in \mathcal{X} and $z \in \mathcal{X}$ with

$$\lim_{n \to \infty} d(z_n, z) = 0, \quad \alpha(z_n, z_{n+1}) \ge \eta(z_n, z_{n+1}), \quad \text{for all } n \in \mathbb{N},$$

implies

$$\lim_{n \to \infty} \inf D(z_n, \mathcal{T}z_n) \ge D(z, \mathcal{T}z), \tag{2.1}$$

and

$$\lim_{n \to \infty} \sup D(z_n, \mathcal{T}z_n) \le D(z, \mathcal{T}z).$$
(2.2)

From (2.1) and (2.2), we get that $D(z_n, \mathcal{T}z_n) \to D(z, \mathcal{T}z)$ as $n \to \infty$. This is possible only when $\mathcal{T}z_n \to \mathcal{T}z$. Consequently, \mathcal{T} is $\alpha - \eta$ continuous.

Conversely, suppose that \mathcal{T} is α - η continuous. Then there exists a sequence $\{z_n\}$ in \mathcal{X} and $z \in \mathcal{X}$ with $z_n \to z$ as $n \to \infty$ and $\alpha(z_n, z_{n+1}) \ge \eta(z_n, z_{n+1})$ for all $n \in \mathbb{N}$ implies $\mathcal{T}z_n \to \mathcal{T}z$ as $n \to \infty$. This implies that $D(z_n, \mathcal{T}z_n) \to D(z, \mathcal{T}z)$ as $n \to \infty$ or $\lim_{n\to\infty} D(z_n, \mathcal{T}z_n) = D(z, \mathcal{T}z)$. From here it follows that $\lim_{n\to\infty} \inf D(z_n, \mathcal{T}z_n) \ge D(z, \mathcal{T}z)$ and $\lim_{n\to\infty} \sup D(z_n, \mathcal{T}z_n) \le D(z, \mathcal{T}z)$. Hence \mathcal{T} is α - η upper semi-continuous and α - η lower semi-continuous. \Box

Remark 2.4. As semi-continuity is a weaker property than continuity, an α - η upper semi-continuous and α - η lower semi-continuous mapping need not to be α - η continuous mapping, as shown in the examples below.

Example 2.5. Let $\mathcal{X} = \mathbb{R}$ with usual metric d. Then (\mathcal{X}, d) is a metric space. Define $\mathcal{T}_1 : \mathcal{X} \to 2^{\mathcal{X}}$, $\alpha, \eta : \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+$ by

$$\mathcal{T}_{1}z = \begin{cases} \{0\} & \text{if } z \neq 0, \\ [-1,1] & \text{if } z = 0, \end{cases}$$
$$\alpha(y,z) = \begin{cases} 1 & \text{if } z, y \neq 0, \\ 0 & \text{if } z = y = 0. \end{cases}$$

and $\eta(z, y) = \frac{1}{2}$, for all $z, y \in \mathcal{X}$.

Firstly, we show that \mathcal{T}_1 is not lower semi-continuous multivalued map. For this, let $V = [-1, 1] \subset 2^{\mathcal{X}}$,

then $\mathcal{T}_1^{-1}(\operatorname{int}(V)) = \mathcal{T}_1^{-1}((-1,1)) = \{0\}$ which is not open in \mathbb{R} , so by Lemma 1.8, \mathcal{T}_1 is not lower semicontinuous. But \mathcal{T}_1 is $\alpha \cdot \eta$ lower semi-continuous multivalued map. Indeed, $\alpha(z_n, z_{n+1}) \geq \eta(z_n, z_{n+1})$ for sequence z_n of non-zero real numbers. Here arises two cases:

Case I. $z_n \rightarrow z = 0$.

If $z_n \to 0$, then $\mathcal{T}_1 z_n = \{0\}$ and $\mathcal{T}_1 z = [-1, 1]$ such that $D(z_n, \mathcal{T}_1 z_n) = D(z_n, \{0\}) = z_n$ and $D(z, \mathcal{T}_1 z) = D(0, [-1, 1]) = 0$. This implies that

$$\lim_{n \to \infty} \inf D(z_n, \mathcal{T}z_n) = \lim_{n \to \infty} \inf z_n = z = 0 = D(z, \mathcal{T}z).$$

Case II. $z_n \to z \neq 0$.

If $z_n \to z$, then $\mathcal{T}_1 z_n = \{0\}$ and $\mathcal{T}_1 z = \{0\}$ such that $D(z_n, \mathcal{T}_1 z_n) = D(z_n, \{0\}) = z_n$ and $D(z, \mathcal{T}_1 z) = z$. This implies that

$$\lim_{n \to \infty} \inf D(z_n, \mathcal{T}_1 z_n) = \lim_{n \to \infty} \inf z_n = z = D(z, \mathcal{T}_1 z).$$

On the other hand, in Case I we have

$$\lim_{n \to \infty} H(\mathcal{T}_1 z_n, \mathcal{T}_1 z) = 1.$$

Hence \mathcal{T}_1 is not α - η -continuous multivalued map.

Example 2.6. Consider \mathcal{X} the same as in Example 2.5. Define $\mathcal{T}_2: \mathcal{X} \to 2^{\mathcal{X}}, \alpha, \eta: \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+$ by

$$\mathcal{T}_{2}z = \begin{cases} [-1,1] & \text{if } z \neq 0, \\ \{0\} & \text{if } z = 0, \end{cases}$$
$$\alpha(z,y) = \begin{cases} 0 & \text{if } z, y \neq 0, \\ 2 & \text{if } z = y = 0, \end{cases}$$

and $\eta(z, y) = \frac{1}{4}$, for all $z, y \in \mathcal{X}$.

Firstly, we show that \mathcal{T}_2 is not upper semi-continuous multivalued map. For this, let $V = [-1,1] \subset 2^{\mathcal{X}}$, then $\mathcal{T}_2^{-1}(\overline{V}) = \mathcal{T}_2^{-1}([-1,1]) = \mathbb{R} \setminus \{0\} = (-\infty, 0) \cup (0, \infty)$, which is not closed in \mathbb{R} , so by Lemma 1.9, \mathcal{T}_2 is not upper semi-continuous. But \mathcal{T}_2 is $\alpha \cdot \eta$ upper semi-continuous multivalued map. Indeed, $\alpha(z_n, z_{n+1}) \geq \eta(z_n, z_{n+1})$ for sequence $z_n = 0$ for all $n \in \mathbb{N}$. Then z_n approaches to z = 0 only. Therefore, If $z_n \to 0$, then $\mathcal{T}_2 z_n = \{0\}$ and $\mathcal{T}_2 z = \{0\}$. This implies that

$$\lim_{n \to \infty} \sup D(z_n, \mathcal{T}_2 z_n) = 0 = D(z, \mathcal{T}_2 z).$$

On the other hand,

$$\lim_{n \to \infty} H(\mathcal{T}_2 z_n, \mathcal{T}_2 z) = 1.$$

Hence \mathcal{T}_2 is not α - η -continuous multivalued map.

Remark 2.7. Let $\mathcal{T} : \mathcal{X} \to 2^{\mathcal{X}}$ be a multivalued map on a metric space (\mathcal{X}, d) . Let $f : \mathcal{X} \to \mathbb{R}$, defined by $f(z) = D(z, \mathcal{T}z)$, for all $z \in \mathcal{X}$, be a lower semi-continuous mapping. Take $\alpha(z, y) = \eta(z, y)$, for all $z, y \in \mathcal{X}$, then for $z \in \mathcal{X}$ and a sequence $\{z_n\}$ with

$$\lim_{n \to \infty} d(z_n, z) = 0, \quad \alpha(z_n, z_{n+1}) \ge \eta(z_n, z_{n+1}) \quad \text{for all } n \in \mathbb{N},$$

we have

$$\lim_{n \to \infty} \inf f(z_n) \ge f(z),$$

and so

$$\lim_{n \to \infty} \inf D(z_n, \mathcal{T}z_n) \ge D(z, \mathcal{T}z).$$

This shows that \mathcal{T} is α - η lower semi-continuous mapping. But if \mathcal{T} is α - η lower semi-continuous mapping, then f needs to be lower semi-continuous as shown in Example 2.12. Similarly, if $f : \mathcal{X} \to \mathbb{R}$ is upper semi-continuous mapping then, \mathcal{T} is α - η upper semi-continuous mapping but not conversely.

Theorem 2.8. Let (\mathcal{X}, d) be a complete metric space and $\alpha, \eta : \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+$ be two functions. Let $\mathcal{T} : \mathcal{X} \to K(\mathcal{X}), \ \mathcal{F} \in \mathfrak{F}$ and $\mathcal{G} \in \mathfrak{G}$ fulfilling the following assertions:

(1) if for any $z \in \mathcal{X}$ with $D(z, \mathcal{T}z) > 0$, there exists $y \in \mathcal{F}^z_{\sigma}$ with $\alpha(z, y) \ge \eta(z, y)$ satisfying

$$\mathcal{G}(D(z,\mathcal{T}z),D(y,\mathcal{T}y),D(z,\mathcal{T}y),D(y,\mathcal{T}z)) + \mathcal{F}(D(y,\mathcal{T}y)) \le \mathcal{F}(d(z,y));$$

- (2) \mathcal{T} is generalized α_* -admissible mapping with respect to η ;
- (3) \mathcal{T} is α - η lower semi-continuous mapping;
- (4) there exists $z_0 \in \mathcal{X}$ and $y_0 \in \mathcal{T}z_0$ such that $\alpha(z_0, y_0) \ge \eta(z_0, y_0)$.

Then \mathcal{T} has a fixed point in \mathcal{X} provided $\sigma < \tau$.

Proof. Let $z_0 \in \mathcal{X}$, since $\mathcal{T}z \in K(\mathcal{X})$ for every $z \in \mathcal{X}$, the set \mathcal{F}_{σ}^z is non-empty for any $\sigma > 0$, then there exists $z_1 \in \mathcal{F}_{\sigma}^{z_0}$ and by hypothesis $\alpha(z_0, z_1) \geq \eta(z_0, z_1)$. Assume that $z_1 \notin \mathcal{T}z_1$, otherwise z_1 is the fixed point of \mathcal{T} . Then, since $\mathcal{T}z_1$ is closed, $D(z_1, \mathcal{T}z_1) > 0$, so from condition (1), we have

$$\mathcal{G}(D(z_0, \mathcal{T}z_0), D(z_1, \mathcal{T}z_1), D(z_0, \mathcal{T}z_1), D(z_1, \mathcal{T}z_0)) + \mathcal{F}(D(z_1, \mathcal{T}z_1)) \le \mathcal{F}(d(z_0, z_1)).$$
(2.3)

Now for $z_1 \in \mathcal{X}$ there exists $z_2 \in \mathcal{F}_{\sigma}^{z_1}$ with $z_2 \notin \mathcal{T} z_2$, otherwise z_2 is the fixed point of \mathcal{T} , since $\mathcal{T} z_2$ is closed, so, $D(z_2, \mathcal{T} z_2) > 0$. Since \mathcal{T} is generalized α_* -admissible mapping with respect to η , then $\alpha(z_1, z_2) \geq \eta(z_1, z_2)$. Again by using condition (1), we get

$$\mathcal{G}(D(z_1, \mathcal{T}z_1), D(z_2, \mathcal{T}z_2), D(z_1, \mathcal{T}z_2), D(z_2, \mathcal{T}z_1)) + \mathcal{F}(D(z_2, \mathcal{T}z_2)) \le \mathcal{F}(d(z_1, z_2)).$$

On continuing recursively, we get a sequence $\{z_n\}_{n\in\mathbb{N}}$ in \mathcal{X} such that $z_{n+1} \in \mathcal{F}^{z_n}_{\sigma}$, $z_{n+1} \notin \mathcal{T} z_{n+1}$, $\alpha(z_n, z_{n+1}) \ge \eta(z_n, z_{n+1})$ and

$$\mathcal{G}(D(z_n, \mathcal{T}z_n), D(z_{n+1}, \mathcal{T}z_{n+1}), D(z_n, \mathcal{T}z_{n+1}), D(z_{n+1}, \mathcal{T}z_n)) + \mathcal{F}(D(z_{n+1}, \mathcal{T}z_{n+1})) \leq \mathcal{F}(d(z_n, z_{n+1})).$$

As $z_{n+1} \in \mathcal{T} z_n$, this implies that

$$\mathcal{G}(D(z_n, \mathcal{T}z_n), D(z_{n+1}, \mathcal{T}z_{n+1}), D(z_n, \mathcal{T}z_{n+1}), 0) + \mathcal{F}(D(z_{n+1}, \mathcal{T}z_{n+1})) \le \mathcal{F}(d(z_n, z_{n+1})).$$
(2.4)

From (\mathcal{G}) there exists $\tau > 0$ such that

$$\mathcal{G}(D(z_n, \mathcal{T}z_n), D(z_{n+1}, \mathcal{T}z_{n+1}), D(z_n, \mathcal{T}z_{n+1}), 0) = \tau.$$

From equation (2.4), we get that

$$\mathcal{F}(D(z_{n+1}, \mathcal{T}z_{n+1})) \le \mathcal{F}(d(z_n, z_{n+1})) - \tau.$$
 (2.5)

Since $z_{n+1} \in \mathcal{F}^{z_n}_{\sigma}$, we have

$$\mathcal{F}(d(z_n, z_{n+1})) \le \mathcal{F}(D(z_n, \mathcal{T}z_n)) + \sigma.$$
(2.6)

Combining equations (2.5) and (2.6) gives

$$\mathcal{F}(D(z_{n+1}, \mathcal{T}z_{n+1})) \le \mathcal{F}(D(z_n, \mathcal{T}z_n)) + \sigma - \tau.$$
(2.7)

Since $\mathcal{T}z_n$ and $\mathcal{T}z_{n+1}$ is compact, there exists $z_{n+1} \in \mathcal{T}z_n$ and $z_{n+2} \in \mathcal{T}z_{n+1}$ such that $d(z_n, z_{n+1}) = D(z_n, \mathcal{T}z_n)$ and $d(z_{n+1}, z_{n+2}) = D(z_{n+1}, \mathcal{T}z_{n+1})$, so equation (2.7) implies

$$\mathcal{F}(d(z_{n+1}, z_{n+2})) \le \mathcal{F}(d(z_n, z_{n+1})) + \sigma - \tau.$$
(2.8)

By using equation (2.8), we get

$$\mathcal{F}(d(z_{n+1}, z_{n+2})) \leq \mathcal{F}(d(z_n, z_{n+1})) + \sigma - \tau$$

$$\leq \mathcal{F}(d(z_{n-1}, z_n)) + 2\sigma - 2\tau$$

$$\vdots$$

$$\leq \mathcal{F}(d(z_0, z_1)) + n\sigma - n\tau$$

$$= \mathcal{F}(d(z_0, z_1)) - n(\tau - \sigma).$$
(2.9)

By letting limit as $n \to \infty$ in equation (2.9), we get $\lim_{n\to\infty} \mathcal{F}(d(z_{n+1}, z_{n+2})) = -\infty$, so by (\mathcal{F}_2), we obtain

$$\lim_{n \to \infty} d(z_{n+1}, z_{n+2}) = 0.$$
(2.10)

Now from ($\mathcal{F}3$), there exists 0 < k < 1 such that

$$\lim_{n \to \infty} [d(z_{n+1}, z_{n+2})]^k \mathcal{F}(d(z_{n+1}, z_{n+2})) = 0.$$
(2.11)

By equation (2.9), we get

$$\lim_{n \to \infty} [d(z_{n+1}, z_{n+2})]^k [\mathcal{F}(d(z_{n+1}, z_{n+2})) - d(z_0, z_1)] \le -n(\tau - \sigma) [d(z_{n+1}, z_{n+2})]^k \le 0.$$
(2.12)

By taking limit as $n \to \infty$ in equation (2.12) and applying equations (2.10) and (2.11), we have

$$\lim_{n \to \infty} n[d(z_{n+1}, z_{n+2})]^k = 0$$

This implies that there exists $n_1 \in \mathbb{N}$ such that $n[d(z_{n+1}, z_{n+2})]^k \leq 1$, or $d(z_{n+1}, z_{n+2}) \leq \frac{1}{n^{1/k}}$, for all $n > n_1$. Next, for $m > n > n_1$ we have

$$d(z_n, z_m) \le \sum_{i=n}^{m-1} d(z_i, z_{i+1}) \le \sum_{i=n}^{m-1} \frac{1}{i^{1/k}},$$

since 0 < k < 1, $\sum_{i=n}^{m-1} \frac{1}{i^{1/k}}$ converges. Therefore, $d(z_n, z_m) \to 0$ as $m, n \to \infty$. Thus, $\{z_n\}$ is a Cauchy sequence. Since \mathcal{X} is complete, there exists $z^* \in \mathcal{X}$ such that $z_n \to z^*$ as $n \to \infty$. From equations (2.7) and (2.10), we have

$$\lim_{n \to \infty} D(z_n, \mathcal{T}z_n) = 0$$

Since \mathcal{T} is α - η lower semi-continuous mapping, then

$$0 \le D(z, Tz) \le \lim_{n \to \infty} \inf D(z_n, \mathcal{T}z_n) = 0.$$

Thus, \mathcal{T} has a fixed point.

Theorem 2.9. Let (\mathcal{X}, d) be a complete metric space and $\alpha, \eta : \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+$ be two functions. Let $\mathcal{T} : \mathcal{X} \to C(\mathcal{X}), \ \mathcal{F} \in \mathfrak{F}_*$ and $\mathcal{G} \in \mathfrak{G}$ satisfy all assertions of Theorem 2.8. Then \mathcal{T} has a fixed point in \mathcal{X} .

Proof. Let $z_0 \in \mathcal{X}$, since $\mathcal{T}z \in C(\mathcal{X})$ for every $z \in \mathcal{X}$ and $\mathcal{F} \in \mathfrak{F}_*$, the set \mathcal{F}_{σ}^z is non-empty for any $\sigma > 0$, then there exists $z_1 \in \mathcal{F}_{\sigma}^{z_0}$ and by hypothesis $\alpha(z_0, z_1) \ge \eta(z_0, z_1)$. Assume that $z_1 \notin \mathcal{T}z_1$, otherwise z_1 is the fixed point of \mathcal{T} . Then, since $\mathcal{T}z_1$ is closed, $D(z_1, \mathcal{T}z_1) > 0$, so from condition (1) of Theorem 2.8, we have

$$\mathcal{G}(D(z_0, \mathcal{T}z_0), D(z_1, \mathcal{T}z_1), D(z_0, \mathcal{T}z_1), D(z_1, \mathcal{T}z_0)) + \mathcal{F}(D(z_1, \mathcal{T}z_1)) \le \mathcal{F}(d(z_0, z_1))$$

Now for $z_1 \in \mathcal{X}$ there exists $z_2 \in \mathcal{F}_{\sigma}^{z_1}$ with $z_2 \notin \mathcal{T} z_2$, otherwise z_2 is the fixed point of \mathcal{T} , since

 $\mathcal{T}z_2$ is closed, so, $D(z_2, \mathcal{T}z_2) > 0$. Since \mathcal{T} is generalized α_* -admissible mapping with respect to η , then $\alpha(z_1, z_2) \ge \eta(z_1, z_2)$. Again by using condition (1) of Theorem 2.8, we get

$$\mathcal{G}(D(z_1, \mathcal{T}z_1), D(z_2, \mathcal{T}z_2), D(z_1, \mathcal{T}z_2), D(z_2, \mathcal{T}z_1)) + \mathcal{F}(D(z_2, \mathcal{T}z_2)) \le \mathcal{F}(d(z_1, z_2)).$$

On continuing recursively, we get a sequence $\{z_n\}_{n\in\mathbb{N}}$ in \mathcal{X} such that $z_{n+1} \in \mathcal{F}^{z_n}_{\sigma}$, $z_{n+1} \notin \mathcal{T}z_{n+1}$, $\alpha(z_n, z_{n+1}) \ge \eta(z_n, z_{n+1})$ and

$$\mathcal{G}(D(z_n, \mathcal{T}z_n), D(z_{n+1}, \mathcal{T}z_{n+1}), D(z_n, \mathcal{T}z_{n+1}), D(z_{n+1}, \mathcal{T}z_n)) + \mathcal{F}(D(z_{n+1}, \mathcal{T}z_{n+1})) \\ \leq \mathcal{F}(d(z_n, z_{n+1})).$$

The rest of the proof can be completed as the proof of Theorem 2.8.

Corollary 2.10. Let (\mathcal{X}, d) be a complete metric space and $\alpha, \eta : \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+$ be two functions. Let $\mathcal{T} : \mathcal{X} \to K(\mathcal{X})$ and $\mathcal{F} \in \mathfrak{F}$ fulfill the conditions (2)-(4) of Theorem 2.8 and if for any $z \in \mathcal{X}$ with $D(z, \mathcal{T}z) > 0$, there exists $y \in \mathcal{F}_{\sigma}^z$ with $\alpha(z, y) \geq \eta(z, y)$ satisfying

$$\tau + \mathcal{F}(D(y, \mathcal{T}y)) \le \mathcal{F}(d(z, y)),$$

then \mathcal{T} has a fixed point in \mathcal{X} provided $\sigma < \tau$.

Proof. Define $\mathcal{G}_L : \mathbb{R}^{+^4} \to \mathbb{R}^+$ by $\mathcal{G}(t_1, t_2, t_3, t_4) = L \min\{t_1, t_2, t_3, t_4\} + \tau$, where $L \in \mathbb{R}^+$ and $\tau > 0$. Then $\mathcal{G}_L \in \mathfrak{G}$ (see Example 2.1 of [18]). Therefore, the result follows by taking $\mathcal{G} = \mathcal{G}_L$ in Theorem 2.8. \Box

Corollary 2.11. Let (\mathcal{X}, d) be a complete metric space and $\alpha, \eta : \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+$ be two functions. Let $\mathcal{T} : \mathcal{X} \to C(\mathcal{X})$ and $\mathcal{F} \in \mathfrak{F}_*$ satisfy all conditions of Corollary 2.10. Then \mathcal{T} has a fixed point in \mathcal{X} .

Proof. By defining same \mathcal{G}_L as in Corollary 2.10 and using Theorem 2.9, we get the required result.

Example 2.12. Let $\mathcal{X} = \left\{\frac{1}{2^{n-1}} : n \in \mathbb{N}\right\} \cup \{0\}$ with usual metric d. Then (\mathcal{X}, d) is a metric space. Define $\mathcal{T} : \mathcal{X} \to K(\mathcal{X}), \alpha, \eta : \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+, \mathcal{G} : \mathbb{R}^4 \to \mathbb{R}^+$ and $\mathcal{F} : \mathbb{R}^+ \to \mathbb{R}$ by

$$\mathcal{T}z = \begin{cases} \left\{\frac{1}{2^n}\right\} & \text{if } z = \frac{1}{2^{n-1}}, \\ \left\{0\right\} & \text{if } z = 0, \end{cases}$$
$$\alpha(z, y) = \begin{cases} 2 & \text{if } z = \frac{1}{2^{n-1}}, \\ \frac{1}{2} & \text{if } z = 0, \end{cases}$$

 $\eta(z,y) = 1$, for all $z, y \in \mathcal{X}$, $\mathcal{G}(t_1, t_2, t_3, t_4) = \tau$, where $\tau > 0$ and $\mathcal{F}(r) = \ln(r)$. Then

$$D(z,\mathcal{T}z) = \begin{cases} \frac{1}{2^n} & \text{if } z = \frac{1}{2^{n-1}} \\ 0 & \text{if } z = 0. \end{cases}$$

Let $D(z, \mathcal{T}z) > 0$, then $z = \frac{1}{2^{n-1}}$, so, $\mathcal{T}z = \left\{\frac{1}{2^n}\right\}$. Thus for $y = \frac{1}{2^n} \in \mathcal{T}z$, we have

$$\mathcal{F}(d(z,y)) - \mathcal{F}(D(z,\mathcal{T}z)) = \mathcal{F}\left(\frac{1}{2^n}\right) - \mathcal{F}\left(\frac{1}{2^n}\right) = 0.$$

Therefore, $y \in \mathcal{F}^z_{\sigma}$ for $\sigma > 0$ with $\alpha(z, y) \ge \eta(z, y)$ and

$$\mathcal{F}(D(y,\mathcal{T}y)) - \mathcal{F}(d(z,y)) = \mathcal{F}\left(\frac{1}{2^{n+1}}\right) - \mathcal{F}\left(\frac{1}{2^n}\right)$$
$$= \ln\left(\frac{1}{2^{n+1}}\right) - \ln\left(\frac{1}{2^n}\right)$$
$$= \ln\left(\frac{2^n}{2^{n+1}}\right) = \ln\left(\frac{1}{2}\right)$$
$$= -\ln 2.$$

Hence $\tau + \mathcal{F}(D(y, \mathcal{T}y)) \leq \mathcal{F}(d(z, y))$ is satisfied for $0 < \sigma < \tau \leq \ln 2$.

Since $\alpha(z, y) \ge \eta(z, y)$ when $z, y \in \left\{\frac{1}{2^{n-1}} : n \in \mathbb{N}\right\}$, this implies that $\alpha(u, v) = 2 > 1 = \eta(u, v)$ for all $u \in \mathcal{T}z$ and $v \in \mathcal{T}y$. Hence \mathcal{T} is generalized α_* -admissible mapping with respect to η .

Next, let $\lim_{n\to\infty} d(z_n, z) = 0$ and $\alpha(z_n, z_{n+1}) \ge \eta(z_n, z_{n+1})$, for all $n \in \mathbb{N}$, then $z_n \in \left\{\frac{1}{2^{n-1}} : n \in \mathbb{N}\right\}$. This implies that $\mathcal{T}z_n = \left\{\frac{1}{2^n}\right\}$ and $D(z_n, \mathcal{T}z_n) = \frac{1}{2^n}$, for all $n \in \mathbb{N}$. Here arises two cases:

Case I. $z_n \to z = 0$. Then $\mathcal{T}z = \{0\}$ and $D(z, \mathcal{T}z) = 0$. Thus

$$\lim_{n \to \infty} \inf D(z_n, \mathcal{T}z_n) = \lim_{n \to \infty} \inf \left(\frac{1}{2^n}\right)$$
$$\geq 0 = D(z, \mathcal{T}z).$$

Case II. $z_n \to z = \frac{1}{2^{n-1}}$. Then $\mathcal{T}z = \left\{\frac{1}{2^n}\right\}$ and $D(z, \mathcal{T}z) = \frac{1}{2^n}$. Thus

$$\lim_{n \to \infty} \inf D(z_n, \mathcal{T}z_n) = \lim_{n \to \infty} \inf(\frac{1}{2^n})$$
$$= \frac{1}{2^n} = D(z, \mathcal{T}z).$$

Hence \mathcal{T} is α - η lower semi-continuous mapping. Thus, all conditions of Corollary 2.10 (and Theorem 2.8) hold and 0 is a fixed point of \mathcal{T} .

On the other hand, define $f : \mathcal{X} \to \mathbb{R}$, by $f(z) = D(z, \mathcal{T}z)$, for all $z \in \mathcal{X}$. Then

$$\lim_{z \to 1} \inf f(z) = 0 \ngeq \frac{1}{2} = f(1).$$

Hence f is not lower semi-continuous mapping at z = 1. That is, Theorems 1.6 and 1.7 can not be applied for this example.

Example 2.13. Consider the sequence $\{S_n\}_{n \in \mathbb{N}}$ as follows:

$$\begin{split} S_1 &= 1, \\ S_2 &= 1+2, \\ &\vdots \\ S_n &= 1+2+3+\ldots+n = \frac{n(n+1)}{2}, \\ &\vdots \end{split}$$

Let $\mathcal{X} = \{S_n : n \in \mathbb{N}\}$ with usual metric d. Then (\mathcal{X}, d) is a metric space. Define $\mathcal{T} : \mathcal{X} \to K(\mathcal{X})$, $\alpha, \eta : \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+, \mathcal{G} : \mathbb{R}^4 \to \mathbb{R}^+$ and $\mathcal{F} : \mathbb{R}^+ \to \mathbb{R}$ by

$$\mathcal{T}z = \begin{cases} \{S_{n-1}, S_{n+1}\} & \text{if } z = S_n, \ n > 2, \\ \{z\} & \text{otherwise,} \end{cases}$$

$$\alpha(z,y) = \begin{cases} 3 & \text{if } z \in \{S_n : n \ge 2\}, \\ 1 & \text{otherwiswe,} \end{cases}$$

 $\eta(z,y) = 2$, for all $z, y \in \mathcal{X}$, $\mathcal{G}(t_1, t_2, t_3, t_4) = L \min\{t_1, t_2, t_3, t_4\} + \tau$, where $\tau = \frac{1}{e^n}$, $n \in \mathbb{N}$, $L \in \mathbb{R}^+$ and $\mathcal{F}(r) = \ln(r)$. Then

$$D(z, \mathcal{T}z) = \begin{cases} |n| & \text{if } z = S_n, \ n > 2, \\ 0 & \text{otherwise.} \end{cases}$$

Let $D(z, \mathcal{T}z) > 0$, then $z = S_n, n > 2$, so, $\mathcal{T}z = \{S_{n-1}, S_{n+1}\}$. Thus for $y = S_{n-1} \in \mathcal{T}z$, we have

$$\mathcal{F}(d(z,y)) - \mathcal{F}(D(z,\mathcal{T}z)) = \mathcal{F}(|n|) - \mathcal{F}(|n|) = 0$$

Therefore, $y \in \mathcal{F}_{\sigma}^{z}$ for $\sigma = \frac{1}{e^{n+1}}$, $n \in \mathbb{N}$ with $\alpha(z, y) \ge \eta(z, y)$ and

$$\mathcal{F}(D(y,\mathcal{T}y)) - \mathcal{F}(d(z,y)) = \mathcal{F}(|n-1|) - \mathcal{F}(|n|)$$
$$= \ln(|n-1|) - \ln(|n|)$$
$$= \ln\left(\frac{|n-1|}{|n|}\right)$$
$$< -\frac{1}{e^n}.$$

This implies that $\tau + \mathcal{F}(D(y, \mathcal{T}y)) \leq \mathcal{F}(d(z, y))$. Since $D(z, \mathcal{T}y) = 0$, we have,

$$\mathcal{G}(D(z,\mathcal{T}z),D(y,\mathcal{T}y),D(z,\mathcal{T}y),D(y,\mathcal{T}z)) + \mathcal{F}(D(y,\mathcal{T}y)) = \tau + \mathcal{F}(D(y,\mathcal{T}y))$$
$$\leq \mathcal{F}(d(z,y)).$$

Hence condition (1) of Theorem 2.8 is satisfied for $0 < \sigma = \frac{1}{e^{n+1}} < \tau = \frac{1}{e^n}$.

Since $\alpha(z, y) \geq \eta(z, y)$ when $z, y \in \{S_n : n \geq 2\}$, this implies that $\alpha(u, v) = 3 > 2 = \eta(u, v)$ for all $u \in \mathcal{T}z$ and $v \in \mathcal{T}y$. Hence \mathcal{T} is generalized α_* -admissible mapping with respect to η .

Next, let $\lim_{n\to\infty} d(z_n, z) = 0$ and $\alpha(z_n, z_{n+1}) \ge \eta(z_n, z_{n+1})$, for all $n \in \mathbb{N}$, then $z_n \in \{S_n : n \in \mathbb{N}, n \ge 2\}$. Here arises two cases:

Case I. $z_n \in \{S_n : n > 2\}$. Then $\mathcal{T}z_n = \{S_{n-1}, S_{n+1}\}$ and $D(z_n, \mathcal{T}z_n) = |n|$, for all $n \in \mathbb{N}$. Subcase I. $z_n \to z = S_n, n > 2$. Then $\mathcal{T}z = \{S_{n-1}, S_{n+1}\}$ and $D(z, \mathcal{T}z) = |n|$. Thus

$$\lim_{n \to \infty} \inf D(z_n, \mathcal{T} z_n) = \lim_{n \to \infty} \inf (|n|)$$
$$= |n| = D(z, \mathcal{T} z).$$

Subcase II. $z_n \to z = S_1$. Then $\mathcal{T}z = \{S_1\}$ and $D(z, \mathcal{T}z) = 0$. Thus

$$\lim_{n \to \infty} \inf D(z_n, \mathcal{T}z_n) = \lim_{n \to \infty} \inf (|n|)$$
$$\geq 0 = D(z, \mathcal{T}z).$$

Subcase III. $z_n \to z = S_2$. Then $\mathcal{T}z = \{S_2\}$ and $D(z, \mathcal{T}z) = 0$. Thus

$$\lim_{n \to \infty} \inf D(z_n, \mathcal{T}z_n) = \lim_{n \to \infty} \inf (|n|)$$
$$\geq 0 = D(z, \mathcal{T}z)$$

Case II. $z_n \in \{S_2\}$.

Then z_n approaches to S_2 only. Therefore, $\mathcal{T}z_n = \{z_n\}$ and $\mathcal{T}z = \{z\}$. This implies that

$$\lim_{n \to \infty} \inf D(z_n, \mathcal{T} z_n) = 0 = D(z, \mathcal{T} z).$$

Hence \mathcal{T} is α - η lower semi-continuous mapping. Thus, all the conditions of Theorem 2.8 hold and $\{S_1, S_2\}$ is set of fixed points of \mathcal{T} .

As an application of Theorems 2.8 and 2.9, we get the following results.

Theorem 2.14. Let (\mathcal{X}, d) be a complete metric space and $\alpha, \eta : \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+$ be two functions. Let $\mathcal{T} : \mathcal{X} \to K(\mathcal{X}), \mathcal{F} \in \mathfrak{F}$ and $\mathcal{G} \in \mathfrak{G}$ fulfill the conditions (2) and (4) of Theorem 2.8. If for any $y, z \in \mathcal{X}$ with $\alpha(z, y) \geq \eta(z, y)$ and $H(\mathcal{T}z, \mathcal{T}y) > 0$ we have

$$\mathcal{G}(D(z,\mathcal{T}z),D(y,\mathcal{T}y),D(z,\mathcal{T}y),D(y,\mathcal{T}z)) + \mathcal{F}(H(\mathcal{T}z,\mathcal{T}y)) \leq \mathcal{F}(d(z,y)),$$

then \mathcal{T} has a fixed point in \mathcal{X} provided \mathcal{T} is α - η continuous mapping.

Proof. By Lemma 2.3, we have \mathcal{T} is α - η -lower semi-continuous mapping. Also, for $z \in \mathcal{X}$ and $y \in \mathcal{F}_{\sigma}^{z}$ with $D(z, \mathcal{T}z) > 0$ we have

$$\begin{aligned} \mathcal{G}(D(z,\mathcal{T}z),D(y,\mathcal{T}y),D(z,\mathcal{T}y),D(y,\mathcal{T}z)) + \mathcal{F}(D(y,\mathcal{T}y)) \\ &\leq \mathcal{G}(D(z,\mathcal{T}z),D(y,\mathcal{T}y),D(z,\mathcal{T}y),D(y,\mathcal{T}z)) + \mathcal{F}(H(\mathcal{T}z,\mathcal{T}y)) \\ &\leq \mathcal{F}(d(z,y)). \end{aligned}$$

Thus, all the conditions of Theorem 2.8 are satisfied, so, \mathcal{T} has a fixed point.

By similar arguments of Theorem 2.14, we state the following and omit its proof.

Theorem 2.15. Let (\mathcal{X}, d) be a complete metric space and $\alpha, \eta : \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+$ be two functions. Let $\mathcal{T} : \mathcal{X} \to C(\mathcal{X}), \ \mathcal{F} \in \mathfrak{F}_*$ and $\mathcal{G} \in \mathfrak{G}$ satisfy all assertions of Theorem 2.14. Then \mathcal{T} has a fixed point in \mathcal{X} .

On considering $\mathcal{G} = \mathcal{G}_L$, as in Corollary 2.10, Theorems 2.14 and 2.15 reduce to the following corollaries.

Corollary 2.16. Let (\mathcal{X}, d) be a complete metric space and $\alpha, \eta : \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+$ be two functions. Let $\mathcal{T} : \mathcal{X} \to K(\mathcal{X})$ and $\mathcal{F} \in \mathfrak{F}$ fulfill the conditions (2) and (4) of Theorem 2.8. If for any $y, z \in \mathcal{X}$ with $\alpha(z, y) \geq \eta(z, y)$ and $H(\mathcal{T}z, \mathcal{T}y) > 0$ we have

$$\tau + \mathcal{F}(H(\mathcal{T}z, \mathcal{T}y)) \le \mathcal{F}(d(z, y)),$$

then \mathcal{T} has a fixed point in \mathcal{X} provided \mathcal{T} is α - η continuous mapping.

Corollary 2.17. Let (\mathcal{X}, d) be a complete metric space and $\alpha, \eta : \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+$ be two functions. Let $\mathcal{T} : \mathcal{X} \to C(\mathcal{X})$ and $\mathcal{F} \in \mathfrak{F}_*$ satisfy all assertions of Corollary 2.16. Then \mathcal{T} has a fixed point in \mathcal{X} .

Theorem 2.18. Let (\mathcal{X}, d) be a complete metric space, $\mathcal{T} : \mathcal{X} \to K(\mathcal{X})$, $\mathcal{F} \in \mathfrak{F}$ and $\mathcal{G} \in \mathfrak{G}$. If for $z \in \mathcal{X}$ with $D(z, \mathcal{T}z) > 0$, there exists $y \in \mathcal{F}_{\sigma}^z$ satisfying

$$\mathcal{G}(D(z,\mathcal{T}z),D(y,\mathcal{T}y),D(z,\mathcal{T}y),D(y,\mathcal{T}z)) + \mathcal{F}(D(y,\mathcal{T}y)) \le \mathcal{F}(d(z,y)),$$

then \mathcal{T} has a fixed point in \mathcal{X} provided $\sigma < \tau$ and $z \to D(z, \mathcal{T}z)$ is lower semi-continuous.

Proof. Define $\alpha(z, y) = d(z, y) = \eta(z, y)$ for all $z, y \in \mathcal{X}$. Then $\alpha(u, v) = d(z, y) = \eta(u, v)$, for all $u \in \mathcal{T}z$ and $v \in \mathcal{T}y$, that is, \mathcal{T} is generalized α_* -admissible mapping with respect to η . Since $z \to D(z, \mathcal{T}z)$ is lower semi-continuous, therefore by Remark 2.7, \mathcal{T} is α - η -lower semi-continuous. Thus, all the conditions of Theorem 2.8 holds. Hence \mathcal{T} has a fixed point in \mathcal{X} .

Theorem 2.19. Let (\mathcal{X}, d) be a complete metric space, $\mathcal{T} : \mathcal{X} \to C(\mathcal{X})$, $\mathcal{F} \in \mathfrak{F}_*$ and $\mathcal{G} \in \mathfrak{G}$. If for $z \in \mathcal{X}$ with $D(z, \mathcal{T}z) > 0$, there exists $y \in \mathcal{F}_{\sigma}^z$ satisfying

$$\mathcal{G}(D(z,\mathcal{T}z),D(y,\mathcal{T}y),D(z,\mathcal{T}y),D(y,\mathcal{T}z)) + \mathcal{F}(D(y,\mathcal{T}y)) \le \mathcal{F}(d(z,y)),$$

then \mathcal{T} has a fixed point in \mathcal{X} provided $\sigma < \tau$ and $z \to D(z, \mathcal{T}z)$ is lower semi-continuous.

Proof. By defining $\alpha(z, y)$ and $\eta(z, y)$ the same as in proof of Theorem 2.18 and by using Theorem 2.8, we get the required result.

Remark 2.20. By taking $\mathcal{G} = \mathcal{G}_L$, as in Corollary 2.11, in Theorems 2.18 and 2.19, we get Theorems 1.6 and 1.7.

3. Fixed point results for α - η - \mathcal{F} -contraction of Hardy-Rogers type

In this section we establish certain fixed point results for α - η - \mathcal{F} -contraction of Hardy-Rogers type.

Theorem 3.1. Let (\mathcal{X}, d) be a complete metric space and $\alpha, \eta : \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+$ be two functions. Let $\mathcal{T} : \mathcal{X} \to K(\mathcal{X})$ and $\mathcal{F} \in \mathfrak{F}$ fulfill the following assertions:

- 1. \mathcal{T} is generalized α_* -admissible mapping with respect to η ;
- 2. \mathcal{T} is α - η lower semi-continuous mapping;
- 3. there exist $z_0 \in \mathcal{X}$ and $y_0 \in \mathcal{T}z_0$ such that $\alpha(z_0, y_0) \ge \eta(z_0, y_0)$;
- 4. there exist $\sigma > 0$ and a function $\tau : (0, \infty) \to (\sigma, \infty)$ such that

$$\lim_{t \to s^+} \inf \tau(t) > \sigma, \quad for \ all \ s \ge 0,$$

and for any $z \in \mathcal{X}$ with $D(z, \mathcal{T}z) > 0$, there exists $y \in \mathcal{F}^z_{\sigma}$ with $\alpha(z, y) \geq \eta(z, y)$ satisfying

$$\tau(d(z,y)) + \mathcal{F}(D(y,\mathcal{T}y)) \le \mathcal{F}(a_1d(z,y) + a_2D(z,\mathcal{T}z) + a_3D(y,\mathcal{T}y) + a_4D(z,\mathcal{T}y) + a_5D(y,\mathcal{T}z)),$$

where $a_1, a_2, a_3, a_4, a_5 \in [0, +\infty)$ such that $a_1 + a_2 + a_3 + 2a_4 = 1$ and $a_3 \neq 1$.

Then \mathcal{T} has a fixed point in \mathcal{X} .

Proof. Let $z_0 \in \mathcal{X}$, since $\mathcal{T}z \in K(\mathcal{X})$ for every $z \in \mathcal{X}$, the set \mathcal{F}_{σ}^z is non-empty for any $\sigma > 0$, then there exists $z_1 \in \mathcal{F}_{\sigma}^{z_0}$ and by hypothesis $\alpha(z_0, z_1) \geq \eta(z_0, z_1)$. Assume that $z_1 \notin \mathcal{T}z_1$, otherwise z_1 is the fixed point of \mathcal{T} . Then, since $\mathcal{T}z_1$ is closed, $D(z_1, \mathcal{T}z_1) > 0$, so, from (4), we have

$$\tau(d(z_0, z_1)) + \mathcal{F}(D(z_1, \mathcal{T}z_1)) \le \mathcal{F}(a_1 d(z_0, z_1) + a_2 D(z_0, \mathcal{T}z_0) + a_3 D(z_1, \mathcal{T}z_1) + a_4 D(z_0, \mathcal{T}z_1) + a_5 D(z_1, \mathcal{T}z_0)).$$

Now for $z_1 \in \mathcal{X}$ there exists $z_2 \in \mathcal{F}_{\sigma}^{z_1}$ with $z_2 \notin \mathcal{T}z_2$, otherwise z_2 is the fixed point of \mathcal{T} , since $\mathcal{T}z_2$ is closed, so, $D(z_2, \mathcal{T}z_2) > 0$. Since \mathcal{T} is generalized α_* -admissible mapping with respect to η , then $\alpha(z_1, z_2) \geq \eta(z_1, z_2)$. Again by using (4), we get

$$\tau(d(z_1, z_2)) + \mathcal{F}(D(z_2, \mathcal{T}z_2)) \le \mathcal{F}(a_1 d(z_1, z_2) + a_2 D(z_1, \mathcal{T}z_1) + a_3 D(z_2, \mathcal{T}z_2) + a_4 D(z_1, \mathcal{T}z_2) + a_5 D(z_2, \mathcal{T}z_1)).$$

On continuing recursively, we get a sequence $\{z_n\}_{n\in\mathbb{N}}$ in \mathcal{X} such that $z_{n+1} \in \mathcal{F}^{z_n}_{\sigma}$, $z_{n+1} \notin \mathcal{T} z_{n+1}$, $\alpha(z_n, z_{n+1}) \ge \eta(z_n, z_{n+1})$ and

$$\tau(d(z_n, z_{n+1})) + \mathcal{F}(D(z_{n+1}, \mathcal{T}z_{n+1})) \le \mathcal{F}(a_1d(z_n, z_{n+1}) + a_2D(z_n, \mathcal{T}z_n) + a_3D(z_{n+1}, \mathcal{T}z_{n+1}) + a_4D(z_n, \mathcal{T}z_{n+1}) + a_5D(z_{n+1}, \mathcal{T}z_n)).$$

As $z_{n+1} \in \mathcal{T} z_n$, this implies that

$$\tau(d(z_n, z_{n+1})) + \mathcal{F}(D(z_{n+1}, \mathcal{T}z_{n+1})) \le \mathcal{F}(a_1 d(z_n, z_{n+1}) + a_2 D(z_n, \mathcal{T}z_n) + a_3 D(z_{n+1}, \mathcal{T}z_{n+1}) + a_4 D(z_n, \mathcal{T}z_{n+1})).$$
(3.1)

Since $z_{n+1} \in \mathcal{F}_{\sigma}^{z_n}$, we have

$$\mathcal{F}(d(z_n, z_{n+1})) \le \mathcal{F}(D(z_n, \mathcal{T}z_n)) + \sigma.$$
(3.2)

As $\mathcal{T}z_n$ and $\mathcal{T}z_{n+1}$ is compact, there exist $z_{n+1} \in \mathcal{T}z_n$ and $z_{n+2} \in \mathcal{T}z_{n+1}$ such that $d(z_n, z_{n+1}) = D(z_n, \mathcal{T}z_n)$ and $d(z_{n+1}, z_{n+2}) = D(z_{n+1}, \mathcal{T}z_{n+1})$, so equations (3.1) and (3.2) imply

$$\tau(d(z_n, z_{n+1})) + \mathcal{F}(d(z_{n+1}, z_{n+2})) \le \mathcal{F}(a_1 d(z_n, z_{n+1}) + a_2 d(z_n, z_{n+1}) + a_3 d(z_{n+1}, z_{n+2}) + a_4 d(z_n, z_{n+2})),$$

and

$$\mathcal{F}(d(z_n, z_{n+1})) \le \mathcal{F}(d(z_n, z_{n+1})) + \sigma.$$
(3.3)

Let $d_n = d(z_n, z_{n+1})$, for $n \in \mathbb{N}$, then

$$\tau(d_n) + \mathcal{F}(d_{n+1}) \le \mathcal{F}((a_1 + a_2)d_n + a_3d_{n+1} + a_4d(z_n, z_{n+2}))$$

$$\le \mathcal{F}((a_1 + a_2 + a_4)d_n + (a_3 + a_4)d_{n+1}).$$
(3.4)

Assume that there exists $n \in \mathbb{N}$ such that $d_{n+1} \geq d_n$, then from (3.4), we get

 $\tau(d_n) + \mathcal{F}(d_{n+1}) \le \mathcal{F}(d_{n+1}).$

This is a contradiction to the fact that $\tau(d_n) > 0$. Hence $d_{n+1} < d_n$ for all $n \in \mathbb{N}$. This shows that sequence $\{d_n\}$ is decreasing. Therefore, there exists $\delta \ge 0$ such that $\lim_{n\to\infty} d_n = \delta$. Now let $\delta > 0$. From (3.4), we get

$$\tau(d_n) + \mathcal{F}(d_{n+1}) \le \mathcal{F}(d_n). \tag{3.5}$$

Combining (3.3) and (3.5) gives

$$\mathcal{F}(d_{n+1}) \leq \mathcal{F}(d_n) + \sigma - \tau(d_n)$$

$$\leq \mathcal{F}(d_{n-1}) + 2\sigma - \tau(d_n) - \tau(d_{n-1})$$

$$\vdots$$

$$\leq \mathcal{F}(d_0) + n\sigma - \tau(d_n) - \tau(d_{n-1}) - \dots - \tau(d_0).$$
(3.6)

Let $\tau(d_{p_n}) = \min\{\tau(d_0), \tau(d_1), \cdots, \tau(d_n)\}$ for all $n \in \mathbb{N}$. From (3.6), we get

$$\mathcal{F}(d_{n+1}) \le \mathcal{F}(d_0) + n(\sigma - \tau(d_{p_n})). \tag{3.7}$$

From (3.6), we also get

$$\mathcal{F}(D(z_{n+1},\mathcal{T}z_{n+1})) \leq \mathcal{F}(D(z_0,\mathcal{T}z_0)) + n(\sigma - \tau(d_{p_n})).$$

Now consider the sequence $\{\tau(d_{p_n})\}$. We distinguish two cases.

Case 1. For each $n \in \mathbb{N}$, there is m > n such that $\tau(d_{p_n}) > \tau(d_{p_m})$. Then we obtain a subsequence $\{d_{p_{n_k}}\}$ of $\{d_{p_n}\}$ with $\tau(d_{p_{n_k}}) > \tau(d_{p_{n_{k+1}}})$ for all k. Since $d_{p_{n_k}} \to \delta^+$, we deduce that

$$\lim_{k \to \infty} \inf \tau(d_{p_{n_k}}) > \sigma.$$

Hence $\mathcal{F}(d_{n_k}) \leq \mathcal{F}(d_0) + n(\sigma - \tau(d_{p_{n_k}}))$ for all k. Consequently, $\lim_{k \to \infty} \mathcal{F}(d_{n_k}) = -\infty$ and by ($\mathcal{F}2$), we obtain $\lim_{k \to \infty} d_{p_{n_k}} = 0$, which contradicts that $\lim_{n \to \infty} d_n > 0$.

Case 2. There is $n_0 \in \mathbb{N}$ such that $\tau(d_{p_{n_0}}) > \tau(d_{p_m})$ for all $m > n_0$. Then $\mathcal{F}(d_m) \leq \mathcal{F}(d_0) + m(\sigma - \tau(d_{p_{n_0}}))$ for all $m > n_0$. Hence $\lim_{m \to \infty} \mathcal{F}(d_m) = -\infty$, so $\lim_{m \to \infty} d_m = 0$, which contradicts that $\lim_{m \to \infty} d_m > 0$. Thus, $\lim_{m \to \infty} d_n = 0$. From (\mathcal{F} 3), there exists 0 < r < 1 such that

$$\lim_{n \to \infty} (d_n)^r \mathcal{F}(d_n) = 0$$

By (3.7), we get for all $n \in \mathbb{N}$

$$(d_n)^r \mathcal{F}(d_n) - (d_n)^r \mathcal{F}(d_0) \le (d_n)^r n(\sigma - \tau(d - p_n)) \le 0.$$
(3.8)

By letting $n \to \infty$ in (3.8), we obtain

$$\lim_{n \to \infty} n(d_n)^r = 0$$

This implies that there exists $n_1 \in \mathbb{N}$ such that $n(d_n)^r \leq 1$, or, $d_n \leq \frac{1}{n^{1/r}}$, for all $n > n_1$. Rest of the proof can be completed as in Theorem 2.8.

Following the arguments in the proof of Theorem 3.1 and taking $\mathcal{F} \in \mathfrak{F}_*$, we obtain the following result.

Theorem 3.2. Let (\mathcal{X}, d) be a complete metric space and $\alpha, \eta : \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+$ be two functions. Let $\mathcal{T} : \mathcal{X} \to C(\mathcal{X})$ and $\mathcal{F} \in \mathfrak{F}_*$ satisfy all conditions of Theorem 3.1. Then \mathcal{T} has a fixed point in \mathcal{X} .

By taking $a_1 = 1$ and $a_2 = a_3 = a_4 = a_5 = 0$ in Theorems 3.1 and 3.2 respectively, we get the following.

Corollary 3.3. Let (\mathcal{X}, d) be a complete metric space and $\alpha, \eta : \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+$ be two functions. Let $\mathcal{T} : \mathcal{X} \to K(\mathcal{X})$ and $\mathcal{F} \in \mathfrak{F}$ fulfill the following assertions:

- 1. \mathcal{T} is generalized α_* -admissible mapping with respect to η ;
- 2. \mathcal{T} is α - η lower semi-continuous mapping;
- 3. there exist $z_0 \in \mathcal{X}$ and $y_0 \in \mathcal{T}z_0$ such that $\alpha(z_0, y_0) \ge \eta(z_0, y_0)$;
- 4. there exist $\sigma > 0$ and a function $\tau : (0, \infty) \to (\sigma, \infty)$ such that

$$\lim_{t \to s^+} \inf \tau(t) > \sigma, \quad for \ all \ s \ge 0,$$

and for any $z \in \mathcal{X}$ with $D(z, \mathcal{T}z) > 0$, there exists $y \in \mathcal{F}^z_{\sigma}$ with $\alpha(z, y) \geq \eta(z, y)$ satisfying

$$\tau(d(z,y)) + \mathcal{F}(D(y,\mathcal{T}y)) \le \mathcal{F}(d(z,y)).$$

Then \mathcal{T} has a fixed point in \mathcal{X} .

Corollary 3.4. Let (\mathcal{X}, d) be a complete metric space and $\alpha, \eta : \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+$ be two functions. Let $\mathcal{T} : \mathcal{X} \to C(\mathcal{X})$ and $\mathcal{F} \in \mathfrak{F}_*$ satisfy all conditions of Corollary 3.3. Then \mathcal{T} has a fixed point in \mathcal{X} .

By taking $a_1 = a_2 = a_3 = 0$ and $a_4 = a_5 = 1/2$ in Theorems 3.1 and 3.2 respectively, we get the following results for \mathcal{F} -contraction of Chatterjea type.

Corollary 3.5. Let (\mathcal{X}, d) be a complete metric space and $\alpha, \eta : \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+$ be two functions. Let $\mathcal{T} : \mathcal{X} \to K(\mathcal{X})$ and $\mathcal{F} \in \mathfrak{F}$ fulfill the following assertions:

- 1. \mathcal{T} is generalized α_* -admissible mapping with respect to η ;
- 2. \mathcal{T} is α - η lower semi-continuous mapping;
- 3. there exist $z_0 \in \mathcal{X}$ and $y_0 \in \mathcal{T}z_0$ such that $\alpha(z_0, y_0) \geq \eta(z_0, y_0)$;
- 4. there exist $\sigma > 0$ and a function $\tau : (0, \infty) \to (\sigma, \infty)$ such that

$$\lim_{t \to s^+} \inf \tau(t) > \sigma, \quad for \ all \ s \ge 0,$$

and for any $z \in \mathcal{X}$ with $D(z, \mathcal{T}z) > 0$, there exists $y \in \mathcal{F}_{\sigma}^{z}$ with $\alpha(z, y) \geq \eta(z, y)$ satisfying

$$au(d(z,y)) + \mathcal{F}(D(y,\mathcal{T}y)) \le \mathcal{F}\left(\frac{D(z,\mathcal{T}y) + D(y,\mathcal{T}z)}{2}\right).$$

Then \mathcal{T} has a fixed point in \mathcal{X} .

Corollary 3.6. Let (\mathcal{X}, d) be a complete metric space and $\alpha, \eta : \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+$ be two functions. Let $\mathcal{T} : \mathcal{X} \to C(\mathcal{X})$ and $\mathcal{F} \in \mathfrak{F}_*$ satisfy all conditions of Corollary 3.5. Then \mathcal{T} has a fixed point in \mathcal{X} .

If we choose $a_4 = a_5 = 0$ in Theorems 3.1 and 3.2 respectively, we obtain the following results for \mathcal{F} -contraction of Reich-type.

Corollary 3.7. Let (\mathcal{X}, d) be a complete metric space and $\alpha, \eta : \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+$ be two functions. Let $\mathcal{T} : \mathcal{X} \to K(\mathcal{X})$ and $\mathcal{F} \in \mathfrak{F}$ fulfill the following assertions:

1. \mathcal{T} is generalized α_* -admissible mapping with respect to η ;

- 2. \mathcal{T} is α - η lower semi-continuous mapping;
- 3. there exist $z_0 \in \mathcal{X}$ and $y_0 \in \mathcal{T}z_0$ such that $\alpha(z_0, y_0) \ge \eta(z_0, y_0)$;
- 4. there exist $\sigma > 0$ and a function $\tau : (0, \infty) \to (\sigma, \infty)$ such that

$$\lim_{t \to s^+} \inf \tau(t) > \sigma, \quad \text{for all } s \ge 0,$$

and for any $z \in \mathcal{X}$ with $D(z, \mathcal{T}z) > 0$, there exists $y \in \mathcal{F}_{\sigma}^{z}$ with $\alpha(z, y) \geq \eta(z, y)$ satisfying

$$\tau(d(z,y)) + \mathcal{F}(D(y,\mathcal{T}y)) \le \mathcal{F}(a_1d(z,y) + a_2D(z,\mathcal{T}z) + a_3D(y,\mathcal{T}y)),$$

where $a_1, a_2, a_3 \in [0, +\infty)$ such that $a_1 + a_2 + a_3 = 1$ and $a_3 \neq 1$.

Then \mathcal{T} has a fixed point in \mathcal{X} .

Corollary 3.8. Let (\mathcal{X}, d) be a complete metric space and $\alpha, \eta : \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+$ be two functions. Let $\mathcal{T} : \mathcal{X} \to C(\mathcal{X})$ and $\mathcal{F} \in \mathfrak{F}_*$ satisfy all conditions of Corollary 3.7. Then \mathcal{T} has a fixed point in \mathcal{X} .

As an application of Theorems 3.1 and 3.2, we obtain the following.

Theorem 3.9. Let (\mathcal{X}, d) be a complete metric space and $\alpha, \eta : \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+$ be two functions. Let $\mathcal{T} : \mathcal{X} \to K(\mathcal{X})$ and $\mathcal{F} \in \mathfrak{F}$ fulfill the conditions (1) and (3) of Theorem 3.1 and the following assertions:

- 1. \mathcal{T} is α - η continuous mapping;
- 2. there exists a function $\tau: (0,\infty) \to (0,\infty)$ such that

$$\lim_{t \to s^+} \inf \tau(t) > 0, \quad \text{for all } s \ge 0,$$

and for any $y, z \in \mathcal{X}$ with $\alpha(z, y) \ge \eta(z, y)$ and $H(\mathcal{T}z, \mathcal{T}y) > 0$ satisfying

$$\tau(d(z,y)) + \mathcal{F}(H(\mathcal{T}z,\mathcal{T}y)) \le \mathcal{F}(a_1d(z,y) + a_2D(z,\mathcal{T}z) + a_3D(y,\mathcal{T}y) + a_4D(z,\mathcal{T}y) + a_5D(y,\mathcal{T}z)),$$

where $a_1, a_2, a_3, a_4, a_5 \in [0, +\infty)$ such that $a_1 + a_2 + a_3 + 2a_4 = 1$ and $a_3 \neq 1$.

Then \mathcal{T} has a fixed point in \mathcal{X} .

Proof. By Lemma 2.3, we have \mathcal{T} is α - η -lower semi continuous mapping. Also, for $z \in \mathcal{X}$ and $y \in \mathcal{F}_{\sigma}^{z}$ with $D(z, \mathcal{T}z) > 0$, we have

$$\mathcal{F}(D(y,\mathcal{T}y)) \leq \mathcal{F}(H(\mathcal{T}z,\mathcal{T}y)) \leq \mathcal{F}(a_1d(z,y) + a_2D(z,\mathcal{T}z) + a_3D(y,\mathcal{T}y) + a_4D(z,\mathcal{T}y) + a_5D(y,\mathcal{T}z)) - \tau(d(z,y)).$$

Thus, all conditions of Theorem 3.1 are satisfied. Hence \mathcal{T} has a fixed point.

By similar arguments of Theorem 3.9 and using Theorem 3.2, we state the following theorem.

Theorem 3.10. Let (\mathcal{X}, d) be a complete metric space and $\alpha, \eta : \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+$ be two functions. Let $\mathcal{T} : \mathcal{X} \to C(\mathcal{X})$ and $\mathcal{F} \in \mathfrak{F}_*$ satisfy all conditions of Theorem 3.9. Then \mathcal{T} has a fixed point in \mathcal{X} .

Theorem 3.11. Let (\mathcal{X}, d) be a complete metric space, $\mathcal{T} : \mathcal{X} \to K(\mathcal{X})$ and $\mathcal{F} \in \mathfrak{F}$. If there exist $\sigma > 0$ and a function $\tau : (0, \infty) \to (\sigma, \infty)$ such that

$$\lim_{t \to s^+} \inf \tau(t) > \sigma, \quad for \ all \ s \ge 0,$$

and for any $z \in \mathcal{X}$ with $D(z, \mathcal{T}z) > 0$, there exists $y \in \mathcal{F}_{\sigma}^{z}$ satisfying

$$\tau(d(z,y)) + \mathcal{F}(D(y,\mathcal{T}y)) \le \mathcal{F}(a_1d(z,y) + a_2D(z,\mathcal{T}z) + a_3D(y,\mathcal{T}y) + a_4D(z,\mathcal{T}y) + a_5D(y,\mathcal{T}z)),$$

where $a_1, a_2, a_3, a_4, a_5 \in [0, +\infty)$ such that $a_1 + a_2 + a_3 + 2a_4 = 1$ and $a_3 \neq 1$, then \mathcal{T} has a fixed point in \mathcal{X} provided $z \to D(z, \mathcal{T}z)$ is lower semi-continuous.

Proof. Define $\alpha(z, y) = d(z, y) = \eta(z, y)$ for all $z, y \in \mathcal{X}$. Then by using Remark 2.7 and Theorem 3.1, we get the required result.

Theorem 3.12. Let (\mathcal{X}, d) be a complete metric space, $\mathcal{T} : \mathcal{X} \to C(\mathcal{X})$ and $\mathcal{F} \in \mathfrak{F}_*$ satisfy all assertions of Theorem 3.11. Then \mathcal{T} has a fixed point in \mathcal{X} .

Proof. Define $\alpha(z, y) = d(z, y) = \eta(z, y)$ for all $z, y \in \mathcal{X}$. Then by using Remark 2.7 and Theorem 3.2, we get the required result.

By taking $a_1 = 1$ and $a_2 = a_3 = a_4 = a_5 = 0$ in Theorems 3.11 and 3.12, we get the following corollaries.

Corollary 3.13 (Theorem 11 of [6]). Let (\mathcal{X}, d) be a complete metric space, $\mathcal{T} : \mathcal{X} \to K(\mathcal{X})$ and $\mathcal{F} \in \mathfrak{F}$. If there exist $\sigma > 0$ and a function $\tau : (0, \infty) \to (\sigma, \infty)$ such that

$$\lim_{t \to s^+} \inf \tau(t) > \sigma, \quad \text{for all } s \ge 0,$$

and for any $z \in \mathcal{X}$ with $D(z, \mathcal{T}z) > 0$, there exists $y \in \mathcal{F}_{\sigma}^{z}$ satisfying

$$\tau(d(z,y)) + \mathcal{F}(D(y,\mathcal{T}y)) \le \mathcal{F}(d(z,y)),$$

then \mathcal{T} has a fixed point in \mathcal{X} provided $z \to D(z, \mathcal{T}z)$ is lower semi-continuous.

Corollary 3.14 (Theorem 10 of [6]). Let (\mathcal{X}, d) be a complete metric space, $\mathcal{T} : \mathcal{X} \to C(\mathcal{X})$ and $\mathcal{F} \in \mathfrak{F}_*$ satisfy all assertions of Corollary 3.13. Then \mathcal{T} has a fixed point in \mathcal{X} .

By taking $a_1 = a_2 = a_3 = 0$ and $a_4 = a_5 = 1/2$ in Theorems 3.11 and 3.12, we get the following.

Corollary 3.15. Let (\mathcal{X}, d) be a complete metric space, $\mathcal{T} : \mathcal{X} \to K(\mathcal{X})$ and $\mathcal{F} \in \mathfrak{F}$. If there exist $\sigma > 0$ and a function $\tau : (0, \infty) \to (\sigma, \infty)$ such that

$$\lim_{t \to s^+} \inf \tau(t) > \sigma, \quad for \ all \ s \ge 0,$$

and for any $z \in \mathcal{X}$ with $D(z, \mathcal{T}z) > 0$, there exists $y \in \mathcal{F}_{\sigma}^{z}$ satisfying

$$au(d(z,y)) + \mathcal{F}(D(y,\mathcal{T}y)) \le \mathcal{F}\left(\frac{D(z,\mathcal{T}y) + D(y,\mathcal{T}z)}{2}\right),$$

then \mathcal{T} has a fixed point in \mathcal{X} provided $z \to D(z, \mathcal{T}z)$ is lower semi-continuous.

Corollary 3.16. Let (\mathcal{X}, d) be a complete metric space, $\mathcal{T} : \mathcal{X} \to C(\mathcal{X})$ and $\mathcal{F} \in \mathfrak{F}_*$ satisfy all assertions of Corollary 3.15. Then \mathcal{T} has a fixed point in \mathcal{X} .

By choosing $a_4 = a_5 = 0$ in Theorems 3.11 and 3.12, we get the following.

Corollary 3.17. Let (\mathcal{X}, d) be a complete metric space, $\mathcal{T} : \mathcal{X} \to K(\mathcal{X})$ and $\mathcal{F} \in \mathfrak{F}$. If there exist $\sigma > 0$ and a function $\tau : (0, \infty) \to (\sigma, \infty)$ such that

$$\lim_{t \to s^+} \inf \tau(t) > \sigma, \quad for \ all \ s \ge 0,$$

and for any $z \in \mathcal{X}$ with $D(z, \mathcal{T}z) > 0$, there exists $y \in \mathcal{F}_{\sigma}^{z}$ satisfying

$$\tau(d(z,y)) + \mathcal{F}(D(y,\mathcal{T}y)) \le \mathcal{F}\left(a_1d(z,y) + a_2D(z,\mathcal{T}z) + a_3D(y,\mathcal{T}y)\right),$$

where $a_1, a_2, a_3 \in [0, +\infty)$ such that $a_1 + a_2 + a_3 = 1$ and $a_3 \neq 1$, then \mathcal{T} has a fixed point in \mathcal{X} provided $z \rightarrow D(z, \mathcal{T}z)$ is lower semi-continuous.

Corollary 3.18. Let (\mathcal{X}, d) be a complete metric space, $\mathcal{T} : \mathcal{X} \to C(\mathcal{X})$ and $\mathcal{F} \in \mathfrak{F}_*$ satisfy all assertions of Corollary 3.17. Then \mathcal{T} has a fixed point in \mathcal{X} .

Remark 3.19. Corollary 3.13 is a generalization of Theorem 2.3 of [26]. In fact, if τ is a constant, then \mathcal{T} is a multivalued \mathcal{F} -contraction and every multivalued \mathcal{F} -contraction is multivalued nonexpansive and every multivalued nonexpansive map is upper semi-continuous, then \mathcal{T} is upper semi-continuous. Therefore, the function $z \to D(z, \mathcal{T}z)$ is lower semi-continuous. On the other hand for any $z \in \mathcal{X}$ with $D(z, \mathcal{T}z) > 0$ and $y \in \mathcal{F}^{z}_{\sigma}$, we have

$$\tau(d(z,y)) + \mathcal{F}(D(y,\mathcal{T}y)) \le \tau(d(z,y)) + \mathcal{F}(H(\mathcal{T}z,\mathcal{T}y)) \le \mathcal{F}(d(z,y)).$$

Hence \mathcal{T} satisfies all conditions of Corollary 3.13. Similarly, Corollary 3.14 generalizes Theorem 2.5 of [26]. *Remark* 3.20. If we take \mathcal{T} , a single self-mapping on \mathcal{X} , Theorems 3.11 and 3.12 reduce to Theorem 1 of [30].

4. Fixed point results in partially ordered metric space

Let $(\mathcal{X}, d, \preceq)$ be a partially ordered metric space and $\mathcal{T} : \mathcal{X} \to 2^{\mathcal{X}}$ be a multivalued mapping. For $A, B \in 2^{\mathcal{X}}, A \preceq B$ implies that $a \preceq b$ for all $a \in A$ and $b \in B$. We say that \mathcal{T} is monotone increasing, if $\mathcal{T}y \preceq \mathcal{T}z$, for all $y, z \in \mathcal{X}$, for which $y \preceq z$. There are many applications in differential and integral equations of monotone mappings in ordered metric spaces (see [2, 7, 16, 17] and references therein). In this section, from Sections 2 and 3, we derive the following new results in partially ordered metric spaces.

Theorem 4.1. Let $(\mathcal{X}, d, \preceq)$ be a complete partially ordered metric space, $\mathcal{T} : \mathcal{X} \to K(\mathcal{X}), \mathcal{F} \in \mathfrak{F}$ and $\mathcal{G} \in \mathfrak{G}$ fulfill the following assertions:

1. if for any $z \in \mathcal{X}$ with $D(z, \mathcal{T}z) > 0$, there exists $y \in \mathcal{F}_{\sigma}^{z}$ with $z \leq y$ satisfying

$$\mathcal{G}(D(z,\mathcal{T}z),D(y,\mathcal{T}y),D(z,\mathcal{T}y),D(y,\mathcal{T}z)) + \mathcal{F}(D(y,\mathcal{T}y)) \leq \mathcal{F}(d(z,y)) \leq \mathcal{F}(d(z$$

- 2. \mathcal{T} is monotone increasing;
- 3. there exist $z_0 \in \mathcal{X}$ and $y_0 \in \mathcal{T}z_0$ such that $z_0 \leq y_0$;
- 4. for given $z \in X$ and sequence $\{z_n\}$ with $z_n \to z$ as $n \to \infty$ and $z_n \preceq z_{n+1}$ for all $n \in \mathbb{N}$, we have

$$\lim \inf D(z_n, \mathcal{T}z_n) \ge D(z, \mathcal{T}z),$$

then \mathcal{T} has a fixed point in \mathcal{X} provided $\sigma < \tau$.

Proof. Define $\alpha, \eta : \mathcal{X} \times \mathcal{X} \to [0, \infty)$ by

$$\alpha(z,y) = \begin{cases} 2 & z \preceq y, \\ 0 & \text{otherwise,} \end{cases} \qquad \qquad \eta(z,y) = \begin{cases} 1 & z \preceq y, \\ 0 & \text{otherwise,} \end{cases}$$

then for $z, y \in \mathcal{X}$ with $z \leq y$, $\alpha(y, z) \geq \eta(y, z)$ implies $u \leq v$ for all $u \in \mathcal{T}z$ and $v \in \mathcal{T}y$. Hence $\alpha(u, v) = 2 > 1 = \eta(u, v)$, for all $u \in \mathcal{T}z$ and $v \in \mathcal{T}y$ and $\alpha(u, v) = \eta(u, v) = 0$ otherwise. This shows that \mathcal{T} is generalized α_* -admissible mapping with respect to η . Thus, all the conditions of Theorem 2.8 are satisfied and \mathcal{T} has a fixed point.

By similar arguments as in Theorem 4.1, we state the following.

Theorem 4.2. Let $(\mathcal{X}, d, \preceq)$ be a complete partially ordered metric space, $\mathcal{T} : \mathcal{X} \to C(\mathcal{X}), \mathcal{F} \in \mathfrak{F}_*$ and $\mathcal{G} \in \mathfrak{G}$ fulfill all conditions of Theorem 4.1. Then \mathcal{T} has a fixed point in \mathcal{X} provided $\sigma < \tau$.

Theorem 4.3. Let $(\mathcal{X}, d, \preceq)$ be a complete partially ordered metric space, $\mathcal{T} : \mathcal{X} \to K(\mathcal{X}), \mathcal{F} \in \mathfrak{F}$ and $\mathcal{G} \in \mathfrak{G}$ fulfill the conditions (2) and (3) of Theorem 4.1 and the following assertions:

1. If for any $z, y \in \mathcal{X}$ with $z \leq y$ and $H(\mathcal{T}z, \mathcal{T}y) > 0$ satisfying

$$\mathcal{G}(D(z,\mathcal{T}z),D(y,\mathcal{T}y),D(z,\mathcal{T}y),D(y,\mathcal{T}z)) + \mathcal{F}(H(\mathcal{T}z,\mathcal{T}y)) \leq \mathcal{F}(d(z,y));$$

2. for given $z \in X$ and sequence $\{z_n\}$ with $z_n \to z$ as $n \to \infty$ and $z_n \preceq z_{n+1}$ for all $n \in \mathbb{N}$, we have $\mathcal{T}z_n \to \mathcal{T}z$,

then \mathcal{T} has a fixed point in \mathcal{X} .

Theorem 4.4. Let $(\mathcal{X}, d, \preceq)$ be a complete partially ordered metric space, $\mathcal{T} : \mathcal{X} \to C(\mathcal{X}), \mathcal{F} \in \mathfrak{F}_*$ and $\mathcal{G} \in \mathfrak{G}$ fulfill all conditions of Theorem 4.3. Then \mathcal{T} has a fixed point in \mathcal{X} .

By taking $\mathcal{G} = \mathcal{G}_L$, as in Corollary 2.10, Theorems 4.1–4.4 reduce to the following.

Corollary 4.5. Let $(\mathcal{X}, d, \preceq)$ be a complete partially ordered metric space, $\mathcal{T} : \mathcal{X} \to K(\mathcal{X})$ and $\mathcal{F} \in \mathfrak{F}$ satisfy conditions (2)-(4) of Theorem 4.1 and if for any $z \in \mathcal{X}$ with $D(z, \mathcal{T}z) > 0$, there exists $y \in \mathcal{F}_{\sigma}^z$ with $z \preceq y$ satisfying

 $\tau + \mathcal{F}(D(y, \mathcal{T}y)) \le \mathcal{F}(d(z, y)),$

then \mathcal{T} has a fixed point in \mathcal{X} provided $\sigma < \tau$.

Corollary 4.6. Let $(\mathcal{X}, d, \preceq)$ be a complete partially ordered metric space, $\mathcal{T} : \mathcal{X} \to C(\mathcal{X})$ and $\mathcal{F} \in \mathfrak{F}_*$ satisfy all conditions of Corollary 4.5. Then \mathcal{T} has a fixed point in \mathcal{X} provided $\sigma < \tau$.

Corollary 4.7. Let $(\mathcal{X}, d, \preceq)$ be a complete partially ordered metric space, $\mathcal{T} : \mathcal{X} \to K(\mathcal{X})$ and $\mathcal{F} \in \mathfrak{F}$ fulfill conditions (2)-(4) of Theorem 4.1 and if for any $z \in \mathcal{X}$ with $z \preceq y$ and $H(\mathcal{T}z, \mathcal{T}y) > 0$ we have

$$\tau + \mathcal{F}(H(\mathcal{T}z, \mathcal{T}y)) \le \mathcal{F}(d(z, y)),$$

then \mathcal{T} has a fixed point in \mathcal{X} .

Corollary 4.8. Let $(\mathcal{X}, d, \preceq)$ be a complete partially ordered metric space, $\mathcal{T} : \mathcal{X} \to C(\mathcal{X})$ and $\mathcal{F} \in \mathfrak{F}_*$ satisfy all conditions of Corollary 4.7. Then \mathcal{T} has a fixed point in \mathcal{X} provided $\sigma < \tau$.

Theorem 4.9. Let (\mathcal{X}, d) be a complete metric space, $\mathcal{T} : \mathcal{X} \to K(\mathcal{X})$ and $\mathcal{F} \in \mathfrak{F}$ fulfill the following assertions:

- 1. T is monotone increasing;
- 2. there exist $z_0 \in \mathcal{X}$ and $y_0 \in \mathcal{T}z_0$ such that $z_0 \preceq y_0$;
- 3. for given $z \in X$ and sequence $\{z_n\}$ with $z_n \to z$ as $n \to \infty$ and $z_n \preceq z_{n+1}$ for all $n \in \mathbb{N}$ we have

$$\lim_{n \to \infty} \inf D(z_n, \mathcal{T}z_n) \ge D(z, \mathcal{T}z);$$

4. there exist $\sigma > 0$ and a function $\tau : (0, \infty) \to (\sigma, \infty)$ such that

$$\lim_{t \to s^+} \inf \tau(t) > \sigma, \quad for \ all \ s \ge 0,$$

and for any $z \in \mathcal{X}$ with $D(z, \mathcal{T}z) > 0$, there exists $y \in \mathcal{F}_{\sigma}^{z}$ with $z \leq y$ satisfying

$$\tau(d(z,y)) + \mathcal{F}(D(y,\mathcal{T}y)) \le \mathcal{F}(a_1d(z,y) + a_2D(z,\mathcal{T}z) + a_3D(y,\mathcal{T}y) + a_4D(z,\mathcal{T}y) + a_5D(y,\mathcal{T}z)),$$

where $a_1, a_2, a_3, a_4, a_5 \in [0, +\infty)$ such that $a_1 + a_2 + a_3 + 2a_4 = 1$ and $a_3 \neq 1$.

Then \mathcal{T} has a fixed point in \mathcal{X} .

Theorem 4.10. Let $(\mathcal{X}, d, \preceq)$ be a complete partially ordered metric space, $\mathcal{T} : \mathcal{X} \to C(\mathcal{X})$ and $\mathcal{F} \in \mathfrak{F}_*$ fulfill all conditions of Theorem 4.9. Then \mathcal{T} has a fixed point in \mathcal{X} provided $\sigma < \tau$.

Theorem 4.11. Let $(\mathcal{X}, d, \preceq)$ be a complete partially ordered metric space, $\mathcal{T} : \mathcal{X} \to K(\mathcal{X})$ and $\mathcal{F} \in \mathfrak{F}$ fulfill the conditions (1) and (2) of Theorem 4.9 and the following assertions:

- 1. for given $z \in X$ and sequence $\{z_n\}$ with $z_n \to z$ as $n \to \infty$ and $z_n \preceq z_{n+1}$ for all $n \in \mathbb{N}$, we have $\mathcal{T}z_n \to \mathcal{T}z$;
- 2. there exist $\sigma > 0$ and a function $\tau : (0, \infty) \to (\sigma, \infty)$ such that

$$\lim_{t \to s^+} \inf \tau(t) > \sigma, \quad \text{for all } s \ge 0,$$

and for any $z, y \in \mathcal{X}$ with $z \leq y$ and $H(\mathcal{T}z, \mathcal{T}y) > 0$, satisfying

$$\tau(d(z,y)) + \mathcal{F}(H(\mathcal{T}z,\mathcal{T}y)) \le \mathcal{F}(a_1d(z,y) + a_2D(z,\mathcal{T}z) + a_3D(y,\mathcal{T}y) + a_4D(z,\mathcal{T}y) + a_5D(y,\mathcal{T}z)),$$

where $a_1, a_2, a_3, a_4, a_5 \in [0, +\infty)$ such that $a_1 + a_2 + a_3 + 2a_4 = 1$ and $a_3 \neq 1$.

Then \mathcal{T} has a fixed point in \mathcal{X} .

Theorem 4.12. Let $(\mathcal{X}, d, \preceq)$ be a complete partially ordered metric space, $\mathcal{T} : \mathcal{X} \to C(\mathcal{X})$ and $\mathcal{F} \in \mathfrak{F}_*$ fulfill all conditions of Theorem 4.11. Then \mathcal{T} has a fixed point in \mathcal{X} provided $\sigma < \tau$.

5. Suzuki-Wardowski type fixed point results

In this section we establish certain fixed point results for Suzuki-Wardowski type multivalued \mathcal{F} -contractions.

Theorem 5.1. Let (\mathcal{X}, d) be a complete metric space, $\mathcal{T} : \mathcal{X} \to K(\mathcal{X})$ and $\mathcal{F} \in \mathfrak{F}$. If for $z, y \in \mathcal{X}$ with $\frac{1}{2}D(z, \mathcal{T}z) \leq d(z, y)$ and $D(z, \mathcal{T}z) > 0$, we have

$$\tau + \mathcal{F}(D(y, \mathcal{T}y)) \le \mathcal{F}(d(z, y)), \tag{5.1}$$

then \mathcal{T} has a fixed point in \mathcal{X} provided $z \to D(z, \mathcal{T}z)$ is lower semi-continuous.

Proof. Suppose that $\mathcal{G} = \mathcal{G}_L$ as in Corollary 2.10. Let $z \in \mathcal{X}$ with $D(z, \mathcal{T}z) > 0$ and $y \in \mathcal{F}^z_{\sigma}$, $\sigma < \tau$. Then $y \in \mathcal{T}z$, therefore we have $\frac{1}{2}D(z, \mathcal{T}z) \leq D(z, \mathcal{T}z) \leq d(z, y)$. So, by using (5.1), we get

$$\mathcal{G}(D(z,\mathcal{T}z),D(y,\mathcal{T}y),D(z,\mathcal{T}y),D(y,\mathcal{T}z)) + \mathcal{F}(D(y,\mathcal{T}y)) = \tau + \mathcal{F}(D(y,\mathcal{T}y))$$
$$\leq \mathcal{F}(d(z,y)).$$

Thus, all conditions of Theorem 2.18 hold and \mathcal{T} has a fixed point.

Theorem 5.2. Let (\mathcal{X}, d) be a complete metric space, $\mathcal{T} : \mathcal{X} \to C(\mathcal{X})$ and $\mathcal{F} \in \mathfrak{F}_*$. If for $z, y \in \mathcal{X}$ with $\frac{1}{2}D(z, \mathcal{T}z) \leq d(z, y)$ and $D(z, \mathcal{T}z) > 0$, we have

$$\tau + \mathcal{F}(D(y, \mathcal{T}y)) \le \mathcal{F}(d(z, y)),$$

then \mathcal{T} has a fixed point in \mathcal{X} provided $z \to D(z, \mathcal{T}z)$ is lower semi-continuous.

Proof. By taking $\mathcal{G} = \mathcal{G}_L$ as in Corollary 2.10 and by using Theorem 2.19, we get the required result. \Box

Theorem 5.3. Let (\mathcal{X}, d) be a complete metric space, $\mathcal{T} : \mathcal{X} \to K(\mathcal{X})$ and $\mathcal{F} \in \mathfrak{F}$. If for $z, y \in \mathcal{X}$ with $\frac{1}{2}D(z, \mathcal{T}z) \leq d(z, y)$ and $H(\mathcal{T}z, \mathcal{T}y) > 0$, we have

$$\tau + \mathcal{F}(H(\mathcal{T}z, \mathcal{T}y)) \le \mathcal{F}(d(z, y)),$$

then \mathcal{T} has a fixed point in \mathcal{X} .

Proof. Since every multivalued F-contraction is multivalued nonexpansive and every multivalued nonexpansive map is upper semi-continuous, then \mathcal{T} is upper semi-continuous. Therefore, the function $z \to D(z, \mathcal{T}z)$ is lower semi-continuous (see the Proposition 4.2.6 of [3]). Also, for $z, y \in \mathcal{X}$ with $\frac{1}{2}D(z, \mathcal{T}z) \leq d(z, y)$ and $D(z, \mathcal{T}z) > 0$ we have

$$\tau + \mathcal{F}(D(y, \mathcal{T}y)) \le \tau + \mathcal{F}(H(\mathcal{T}z, \mathcal{T}y)) \le \mathcal{F}(d(z, y)).$$

Thus, all conditions of Theorem 5.1 hold and \mathcal{T} has a fixed point.

By similar arguments as in Theorem 5.3, we state the following theorem and omit its proof.

Theorem 5.4. Let (\mathcal{X}, d) be a complete metric space, $\mathcal{T} : \mathcal{X} \to C(\mathcal{X})$ and $\mathcal{F} \in \mathfrak{F}_*$. If for $z, y \in \mathcal{X}$ with $\frac{1}{2}D(z, \mathcal{T}z) \leq d(z, y)$ and $H(\mathcal{T}z, \mathcal{T}y) > 0$, we have

$$\tau + \mathcal{F}(H(\mathcal{T}z, \mathcal{T}y)) \le \mathcal{F}(d(z, y)),$$

then \mathcal{T} has a fixed point in \mathcal{X} .

By considering \mathcal{T} a single-valued mapping in Theorem 5.3, we get the following.

Corollary 5.5. Let (\mathcal{X}, d) be a complete metric space, $\mathcal{T} : \mathcal{X} \to \mathcal{X}$ and $\mathcal{F} \in \mathfrak{F}$. If for $z, y \in \mathcal{X}$ with $\frac{1}{2} d(z, \mathcal{T}z) \leq d(z, y)$ and $d(\mathcal{T}z, \mathcal{T}y) > 0$, we have

$$\tau + \mathcal{F}(d(\mathcal{T}z, \mathcal{T}y)) \le \mathcal{F}(d(z, y)),$$

then \mathcal{T} has a fixed point in \mathcal{X} .

Remark 5.6. Corollary 5.5 is a generalization of the Corollary 3.1 of [18]. In fact, let Corollary 3.1 of [18] holds, then $\frac{1}{2}d(z,\mathcal{T}z) \leq d(z,\mathcal{T}z) \leq d(z,y)$. This implies that $\tau + \mathcal{F}(d(\mathcal{T}z,\mathcal{T}y)) \leq \mathcal{F}(d(z,y))$. Hence \mathcal{T} satisfies all conditions of Corollary 5.5 and \mathcal{T} has a fixed point.

Theorem 5.7. Let (\mathcal{X}, d) be a complete metric space, $\mathcal{T} : \mathcal{X} \to K(\mathcal{X})$ be a continuous mapping and $\mathcal{F} \in \mathfrak{F}$. If there exists a function $\tau : (0, \infty) \to (\sigma, \infty)$ such that

$$\lim_{t \to s^+} \inf \tau(t) > 0, \quad \text{for all } s \ge 0,$$

and for $z, y \in \mathcal{X}$ with $\frac{1}{2}D(z, \mathcal{T}z) \leq d(z, y)$ and $H(\mathcal{T}z, \mathcal{T}y) > 0$, we have

$$\tau(d(z,y)) + \mathcal{F}(H(\mathcal{T}z,\mathcal{T}y)) \le \mathcal{F}(a_1d(z,y) + a_2D(z,\mathcal{T}z) + a_3D(y,\mathcal{T}y) + a_4D(z,\mathcal{T}y) + a_5D(y,\mathcal{T}z)),$$
(5.2)

where $a_1, a_2, a_3, a_4, a_5 \in [0, +\infty)$ such that $a_1 + a_2 + a_3 + 2a_4 = 1$ and $a_3 \neq 1$, then \mathcal{T} has a fixed point in \mathcal{X} .

Proof. Let $\lim_{t\to s^+} \inf \tau(t) > \sigma$ for $\sigma > 0$, and for all $s \ge 0$. Also suppose that $z \in \mathcal{X}$ with $D(z, \mathcal{T}z) > 0$ and $y \in \mathcal{F}^z_{\sigma}$, $\sigma < \tau$. Then $\lim_{t\to s^+} \inf \tau(t) > 0$ and $y \in \mathcal{T}z$, therefore we have $\frac{1}{2}D(z, \mathcal{T}z) \le D(z, \mathcal{T}z) \le d(z, y)$. So, by using (5.2), we get

$$\begin{aligned} \tau(d(z,y)) + \mathcal{F}(D(y,\mathcal{T}y)) &\leq \tau(d(z,y)) + \mathcal{F}(H(\mathcal{T}z,\mathcal{T}y)) \\ &\leq \mathcal{F}(a_1d(z,y) + a_2D(z,\mathcal{T}z) + a_3D(y,\mathcal{T}y) + a_4D(z,\mathcal{T}y) + a_5D(y,\mathcal{T}z)). \end{aligned}$$

Since \mathcal{T} is continuous, then \mathcal{T} is upper semi-continuous. Therefore, the function $z \to D(z, \mathcal{T}z)$ is lower semi-continuous (see the Proposition 4.2.6 of [3]). Thus, all conditions of Theorem 3.11 hold and \mathcal{T} has a fixed point.

Theorem 5.8. Let (\mathcal{X}, d) be a complete metric space, $\mathcal{T} : \mathcal{X} \to C(\mathcal{X})$ be a continuous mapping and $\mathcal{F} \in \mathfrak{F}_*$. If there exists a function $\tau : (0, \infty) \to (\sigma, \infty)$ such that

$$\lim_{t \to s^+} \inf \tau(t) > 0, \quad \text{for all } s \ge 0,$$

and for $z, y \in \mathcal{X}$ with $\frac{1}{2}D(z, \mathcal{T}z) \leq d(z, y)$ and $H(\mathcal{T}z, \mathcal{T}y) > 0$, we have

$$\tau(d(z,y)) + \mathcal{F}(H(\mathcal{T}z,\mathcal{T}y)) \le \mathcal{F}(a_1d(z,y) + a_2D(z,\mathcal{T}z) + a_3D(y,\mathcal{T}y) + a_4D(z,\mathcal{T}y) + a_5D(y,\mathcal{T}z)),$$

where $a_1, a_2, a_3, a_4, a_5 \in [0, +\infty)$ such that $a_1 + a_2 + a_3 + 2a_4 = 1$ and $a_3 \neq 1$. Then \mathcal{T} has a fixed point in \mathcal{X} .

Proof. By using the same arguments as in Theorem 5.7 and by using Theorem 3.12, we get the required result. \Box

6. Applications to orbitally lower semi-continuous mappings

Let $z_0 \in \mathcal{X}$ be any point. Then an orbit $O(z_0)$ of a mapping $\mathcal{T}: \mathcal{X} \to 2^{\mathcal{X}}$ at a point z_0 is a set

$$O(z_0) = \{ z_{n+1} : z_{n+1} \in \mathcal{T} z_n, \quad n = 0, 1, 2, \dots \}.$$

Recall that a function $g: \mathcal{X} \to \mathbb{R}$ is called \mathcal{T} -orbitally lower semi-continuous, if for any sequence $\{z_n\}$ in \mathcal{X} with $z_{n+1} \in \mathcal{T}z_n$ for all $n = 0, 1, 2, \dots, g(z) \leq \lim_{n \to \infty} \inf g(z_n)$, whenever $\lim_{n \to \infty} z_n = z$ [9]. Many authors extended Nadler's fixed point theorem for lower semi-continuous mappings (see [13, 22, 23] and references therein). In this section, as an application of our results proved in Sections 1 and 2, we deduce certain fixed point theorems.

Theorem 6.1. Let (\mathcal{X},d) be a complete metric space, $\mathcal{T} : \mathcal{X} \to K(\mathcal{X}), \ \mathcal{F} \in \mathfrak{F}$ and $\mathcal{G} \in \mathfrak{G}$. If for $z \in O(w), w \in \mathcal{X}$ with $D(z, \mathcal{T}z) > 0$, there exists $y \in \mathcal{F}^{z}_{\sigma}$ satisfying

$$\mathcal{G}(D(z,\mathcal{T}z),D(y,\mathcal{T}y),D(z,\mathcal{T}y),D(y,\mathcal{T}z)) + \mathcal{F}(D(y,\mathcal{T}y)) \le \mathcal{F}(d(z,y)),$$
(6.1)

then \mathcal{T} has a fixed point in \mathcal{X} provided $\sigma < \tau$ and $z \to D(z, \mathcal{T}z)$ is \mathcal{T} -orbitally lower semi-continuous.

Proof. Define $\alpha, \eta : \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+$ by

$$\alpha(z,y) = \begin{cases} 2 & \text{if } z, y \in O(w), \\ 0 & \text{otherwise,} \end{cases} \quad and \quad \eta(z,y) = 1, \quad \forall z, y \in \mathcal{X}.$$

Then $\alpha(z, y) \ge \eta(z, y)$, when $z, y \in O(w)$. Since $z \to D(z, \mathcal{T}z)$ is \mathcal{T} -orbitally lower semi-continuous, so for any sequence $\{z_n\}$ in \mathcal{X} with $z_{n+1} \in \mathcal{T}z_n$ and $\lim_{n\to\infty} d(z_n, z) = 0$, we have

$$D(z, \mathcal{T}z) \leq \lim_{n \to \infty} \inf D(z_n, \mathcal{T}z_n).$$

This implies that \mathcal{T} is α - η -lower semi-continuous mapping. Now let $\alpha(z, y) \geq \eta(z, y)$, then $z, y \in O(w)$. So, for all $u \in \mathcal{T}z$ and $v \in \mathcal{T}y$ we have $u, v \in O(w)$. Therefore, $\alpha(u, v) = 2 > 1 = \eta(u, v)$. This shows that \mathcal{T} is generalized α_* -admissible mapping with respect to η . Also, from equation (6.1), for any $z \in \mathcal{X}$ with $D(z, \mathcal{T}z) > 0$, there exists $y \in \mathcal{F}^z_{\sigma}$ with $\alpha(z, y) \geq \eta(z, y)$, we have

$$\mathcal{G}(D(z,\mathcal{T}z),D(y,\mathcal{T}y),D(z,\mathcal{T}y),D(y,\mathcal{T}z))+\mathcal{F}(D(y,\mathcal{T}y))\leq \mathcal{F}(d(z,y)).$$

Thus, all the conditions of Theorem 2.8 are satisfied and so \mathcal{T} has a fixed point.

By similar arguments as in Theorem 6.1, we state the following theorem and omit its proof.

Theorem 6.2. Let (\mathcal{X},d) be a complete metric space, $\mathcal{T} : \mathcal{X} \to C(\mathcal{X})$, $\mathcal{F} \in \mathfrak{F}_*$ and $\mathcal{G} \in \mathfrak{G}$. If for $z \in O(w), w \in \mathcal{X}$ with $D(z, \mathcal{T}z) > 0$, there exists $y \in \mathcal{F}_{\sigma}^z$ satisfying

$$\mathcal{G}(D(z,\mathcal{T}z),D(y,\mathcal{T}y),D(z,\mathcal{T}y),D(y,\mathcal{T}z)) + \mathcal{F}(D(y,\mathcal{T}y)) \le \mathcal{F}(d(z,y))$$

then \mathcal{T} has a fixed point in \mathcal{X} provided $\sigma < \tau$ and $z \to D(z, \mathcal{T}z)$ is \mathcal{T} -orbitally lower semi-continuous.

Theorem 6.3. Let (\mathcal{X}, d) be a complete metric space, $\mathcal{T} : \mathcal{X} \to K(\mathcal{X})$, $\mathcal{F} \in \mathfrak{F}$ and $\mathcal{G} \in \mathfrak{G}$. If for $z, y \in O(w)$ with $H(\mathcal{T}z, \mathcal{T}y) > 0$ we have

$$\mathcal{G}(D(z,\mathcal{T}z),D(y,\mathcal{T}y),D(z,\mathcal{T}y),D(y,\mathcal{T}z)) + \mathcal{F}(H(\mathcal{T}z,\mathcal{T}y)) \le \mathcal{F}(d(z,y)),$$

then \mathcal{T} has a fixed point in \mathcal{X} provided \mathcal{T} is orbitally continuous.

Proof. By defining $\alpha(z, y)$, $\eta(z, y)$ the same as in the proof of Theorem 6.1 and applying Theorem 2.14, we get the required result.

Theorem 6.4. Let (\mathcal{X}, d) be a complete metric space, $\mathcal{T} : \mathcal{X} \to C(\mathcal{X})$, $\mathcal{F} \in \mathfrak{F}_*$ and $\mathcal{G} \in \mathfrak{G}$. If for $z, y \in O(w)$ with $H(\mathcal{T}z, \mathcal{T}y) > 0$ satisfying

$$\mathcal{G}(D(z,\mathcal{T}z),D(y,\mathcal{T}y),D(z,\mathcal{T}y),D(y,\mathcal{T}z)) + \mathcal{F}(H(\mathcal{T}z,\mathcal{T}y)) \le \mathcal{F}(d(z,y)),$$

then \mathcal{T} has a fixed point in \mathcal{X} provided \mathcal{T} is orbitally continuous.

Proof. By defining $\alpha(z, y)$, $\eta(z, y)$ the same as in the proof of Theorem 6.1 and applying Theorem 2.15 we get the required result.

By taking $\mathcal{G} = \mathcal{G}_L$, as in Corollary 2.11, Theorems 6.1, 6.2, 6.3 and 6.4 reduce to the following.

Corollary 6.5. Let (\mathcal{X}, d) be a complete metric space, $\mathcal{T} : \mathcal{X} \to K(\mathcal{X})$ and $\mathcal{F} \in \mathfrak{F}$. If for $z \in O(w), w \in \mathcal{X}$ with $D(z, \mathcal{T}z) > 0$, there exists $y \in \mathcal{F}_{\sigma}^z$ satisfying

$$\tau + \mathcal{F}(D(y, \mathcal{T}y)) \le \mathcal{F}(d(z, y)),$$

then \mathcal{T} has a fixed point in \mathcal{X} provided $\sigma < \tau$ and $z \to D(z, \mathcal{T}z)$ is \mathcal{T} -orbitally lower semi-continuous.

Corollary 6.6. Let (\mathcal{X}, d) be a complete metric space, $\mathcal{T} : \mathcal{X} \to C(\mathcal{X})$ and $\mathcal{F} \in \mathfrak{F}_*$. If for $z \in O(w), w \in \mathcal{X}$ with $D(z, \mathcal{T}z) > 0$, there exists $y \in \mathcal{F}_{\sigma}^z$ satisfying

$$\tau + \mathcal{F}(D(y, \mathcal{T}y)) \le \mathcal{F}(d(z, y)),$$

then \mathcal{T} has a fixed point in \mathcal{X} provided $\sigma < \tau$ and $z \to D(z, \mathcal{T}z)$ is \mathcal{T} -orbitally lower semi-continuous.

Corollary 6.7. Let (\mathcal{X}, d) be a complete metric space, $\mathcal{T} : \mathcal{X} \to K(\mathcal{X})$ and $\mathcal{F} \in \mathfrak{F}$. If for $z, y \in O(w)$ with $H(\mathcal{T}z, \mathcal{T}y) > 0$ satisfying

$$\tau + \mathcal{F}(H(\mathcal{T}z, \mathcal{T}y)) \le \mathcal{F}(d(z, y)),$$

then \mathcal{T} has a fixed point in \mathcal{X} provided T is orbitally continuous.

Corollary 6.8. Let (\mathcal{X}, d) be a complete metric space, $\mathcal{T} : \mathcal{X} \to C(\mathcal{X})$ and $\mathcal{F} \in \mathfrak{F}_*$. If for $z, y \in O(w)$ with $H(\mathcal{T}z, \mathcal{T}y) > 0$ satisfying

$$\tau + \mathcal{F}(H(\mathcal{T}z, \mathcal{T}y)) \le \mathcal{F}(d(z, y)),$$

then \mathcal{T} has a fixed point in \mathcal{X} provided T is orbitally continuous.

Remark 6.9. If we take \mathcal{T} , a single mapping from \mathcal{X} to \mathcal{X} , Theorems 6.3 and 6.4 reduce to the Theorem 4.1 of [18] and Corollaries 6.7 and 6.8 reduce to Corollary 4.1 of [18].

Theorem 6.10. Let (\mathcal{X}, d) be a complete metric space, $\mathcal{T} : \mathcal{X} \to K(\mathcal{X})$ and $\mathcal{F} \in \mathfrak{F}$. If there exist $\sigma > 0$ and a function $\tau : (0, \infty) \to (\sigma, \infty)$ such that

$$\lim_{t \to s^+} \inf \tau(t) > \sigma, \quad \text{for all } s \ge 0,$$

and for any $z \in O(w), w \in \mathcal{X}$ with $D(z, \mathcal{T}z) > 0$, there exists $y \in \mathcal{F}_{\sigma}^{z}$ satisfying

$$\tau(d(z,y)) + \mathcal{F}(D(y,\mathcal{T}y)) \le \mathcal{F}(a_1d(z,y) + a_2D(z,\mathcal{T}z) + a_3D(y,\mathcal{T}y) + a_4D(z,\mathcal{T}y) + a_5D(y,\mathcal{T}z)),$$

where $a_1, a_2, a_3, a_4, a_5 \in [0, +\infty)$ such that $a_1 + a_2 + a_3 + 2a_4 = 1$ and $a_3 \neq 1$, then \mathcal{T} has a fixed point in \mathcal{X} provided $z \to D(z, \mathcal{T}z)$ is \mathcal{T} -orbitally lower semi-continuous.

Proof. By defining $\alpha(z, y)$, $\eta(z, y)$ the same as in the proof of Theorem 6.1 and applying Theorem 3.11 we get the required result.

Theorem 6.11. Let (\mathcal{X}, d) be a complete metric space, $\mathcal{T} : \mathcal{X} \to C(\mathcal{X})$ and $\mathcal{F} \in \mathfrak{F}_*$ satisfying all conditions of Theorem 6.10. Then \mathcal{T} has a fixed point in \mathcal{X} .

References

- M. Abbas, T. Nazir, T. A. Lampert, S. Radenović, Common fixed points of set-valued F-contraction mappings on domain of sets endowed with directed graph, Comput. Appl. Math., (2016), 1–16.
- [2] R. P. Agarwal, N. Hussain, M. A. Taoudi, Fixed point theorems in ordered Banach spaces and applications to nonlinear integral equations, Abstr. Appl. Anal., 2012 (2012), 15 pages. 4
- [3] R. P. Agarwal, D. O'Regan, D. R. Sahu, Fixed point theory for Lipschitzian-type mappings with applications, Topological Fixed Point Theory and Its Applications, Springer, New York, (2009). 1, 1.8, 1.9, 5, 5
- [4] M. U. Ali, T. Kamram, W. Sintunavarat, P. Katchang, *Mizoguchi-Takahashi's fixed point theorem with* α, η functions, Abstr. Appl. Anal., **2013** (2013), 4 pages. 1, 1.3
- [5] I. Altun, G. Mınak, H. Dağ, Multivalued F-contractions on complete metric spaces, J. Nonlinear Convex Anal., 16 (2015), 659–666.
- [6] I. Altun, G. Mınak, M. Olgun, Fixed points of multivalued nonlinear F-contractions on complete metric spaces, Nonlinear Anal. Model. Control, 21 (2016), 201–210. 1, 3.13, 3.14
- [7] Q. H. Ansari, A. Idzik, C.-J. Yao, Coincidence and fixed point theorems with applications, Dedicated to Juliusz Schauder, 1899–1943, Topol. Methods Nonlinear Anal., 15 (2000), 191–202. 4
- [8] H. J. Asl, S. Rezapour, N. Shahzad, On fixed points of α-ψ- contractive multifunctions, Fixed Point Theory Appl., 2012 (2012), 6 pages. 1, 1.1
- [9] J.-S. Bae, S.-H. Cho, Fixed point theorems for multivalued maps in metric spaces, Appl. Math. Sci., 9 (2015), 1583–1592. 6
- [10] M. Berinde, V. Berinde, On a general class of multi-valued weakly Picard mappings, J. Math. Anal. Appl., 326 (2007), 772–782. 1
- [11] V. Berinde, M. Păcurar, The role of the Pompeiu-Hausdorff metric in fixed point theory, Creat. Math. Inform., 22 (2013), 143–150.
- [12] L. Čirić, Multi-valued nonlinear contraction mappings, Nonlinear Anal., 71 (2009), 2716–2723. 1
- [13] Y. Q. Feng, S. Y. Liu, Fixed point theorems for multi-valued contractive mappings and multi-valued Caristi type mappings, J. Math. Anal. Appl., 317 (2006), 103–112. 6
- [14] D. Gopal, M. Abbas, D. K. Patel, C. Vetro, Fixed points of α-type F-contractive mappings with an application to nonlinear fractional differential equation, Acta Math. Sci. Ser. B Engl. Ed., 36 (2016), 957–970. 1
- [15] A. Hussain, M. Arshad, S. U. Khan, τ-Generalization of fixed point results for F-contractions, Bangmod Int. J. Math. Comp. Sci., 1 (2015), 127–137. 1, 1.5
- [16] N. Hussain, M. A. Kutbi, P. Salimi, Fixed point theory in α-complete metric spaces with applications, Abstr. Appl. Anal., 2014 (2014), 11 pages. 1, 1.4, 4
- [17] N. Hussain, A. Latif, I. Iqbal, Fixed point results for generalized F-contractions in modular metric and fuzzy metric spaces, Fixed Point Theory Appl., 2015 (2015), 20 pages. 1, 4

- [18] N. Hussain, P. Salimi, Suzuki-Wardowski type fixed point theorems for α -GF-contractions, Taiwanese J. Math., 18 (2014), 1879–1895. 1, 1, 2, 5.6, 6.9
- [19] N. Hussain, P. Salimi, A. Latif, Fixed point results for single and set-valued α-η-ψ-contractive mappings, Fixed Point Theory Appl., 2013 (2013), 23 pages. 1, 1.2
- [20] H. Isik, B. Samet, C. Vetro, Cyclic admissible contraction and applications to functional equations in dynamic programming, Fixed Point Theory Appl., 2015 (2015), 19 pages. 1
- [21] H. Isik, D. Turkoglu, Generalized weakly α-contractive mappings and applications to ordinary differential equations, Miskolc Math. Notes, 17 (2016), 365–379. 1
- [22] D. Klim, D. Wardowski, Fixed point theorems for set-valued contractions in complete metric spaces, J. Math. Anal. Appl., 334 (2007), 132–139. 6
- [23] G. Minak, M. Olgun, I. Altun, A new approach to fixed point theorems for multivalued contractive maps, Carpathian J. Math., 31 (2015), 241–248. 1, 1.6, 1.7, 1, 6
- [24] N. Mizoguchi, W. Takahashi, Fixed point theorems for multivalued mappings on complete metric spaces, J. Math. Anal. Appl., 141 (1989), 177–188. 1
- [25] S. B. Nadler, Multi-valued contraction mappings, Pacific J. Math., 30 (1969), 475–488. 1
- [26] M. Olgun, G. Minak, I. Altun, A new approach to Mizoguchi-Takahashi type fixed point theorems, J. Nonlinear Convex Anal., 17 (2016), 579–587. 1, 3.19
- [27] P. Salimi, A. Latif, N. Hussain, Modified α-ψ-contractive mappings with applications, Fixed Point Theory Appl., 2013 (2013), 19 pages. 1
- [28] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for $\alpha\psi$ -contractive type mappings, Nonlinear Anal., **75** (2012), 2154–2165. 1
- [29] T. Suzuki, Mizoguchi-Takahashi's fixed point theorem is a real generalization of Nadler's, J. Math. Anal. Appl., 340 (2008), 752–755. 1
- [30] F. Vetro, F-contractions of Hardy-Rogers type and application to multistage decision processes, Nonlinear Anal. Model. Control, 21 (2016), 531–546. 3.20
- [31] D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., **2012** (2012), 6 pages. 1