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Abstract

The aim of this note is to establish the characterization of nonemptiness and boundedness of the solution
set of equilibrium problem with stably pseudomonotone mappings. Our result extends and improves recent
results in the literature for monotone equilibrium problems. c©2016 All rights reserved.
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1. Introduction

Let K be a nonempty, closed and convex subset of a real reflexive Banach space X and let f : K ×K →
R ∪ {+∞} be a bifunction. The equilibrium problem [5] is to find x̄ ∈ K such that

f(x̄, y) ≥ 0, ∀y ∈ K, (1.1)

and its dual problem is to find x̄ ∈ K such that

f(y, x̄) ≤ 0, ∀y ∈ K. (1.2)

The solutions sets to (1.1) and (1.2) are denoted by SP and SD, respectively.
It is well-known that the equilibrium problem provides a unified model of several classes of problems,

including variational inequality problems, complementarity problems, optimization problems. There are
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many papers which have discussed the existence solution to the equilibrium problem (see [2–5] and refer-
ences therein). In order to solve the problem when K is unbounded, many authors studies the coercive
assumption. Strict feasibility condition [9, 10] is one of the most useful tool to characterize the nonempti-
ness and boundedness for the solution set of variational inequality problem. Recently, the concept of strict
feasibility was extended to equilibrium problem by Hu and Fang [11]. They proved that under suitable
conditions, the monotone equilibrium problem has a nonempty and bounded solution set, if and only if it is
strictly feasible.

Motivated and inspired by Hu and Fang [11] and the idea of stable pseudomonotonicity in [8, 12], the
purpose of this paper is to establish the characterization of nonemptiness and boundedness of the solution
set of equilibrium problems with stably pseudomonotone mappings.

2. Preliminaries

Let K be a nonempty, closed and convex subset of a real reflexive Banach space X with dual space X∗.
The dual cone K∗ of K is defined as

K∗ := {ξ ∈ X∗ : 〈ξ, x〉 ≥ 0, ∀x ∈ K}.

The barrier cone, barrK of K is defined as

barrK :=

{
ξ ∈ X∗ : sup

x∈K
〈ξ, x〉 < +∞

}
.

It is well-known that −K∗ ⊂ barrK. The asymptotic cone of K, denoted by K∞, is defined by

K∞ := {d ∈ X : ∃λk → 0,∃xk ∈ K with λkxk ⇀ d} ,

where “⇀”means weak convergence. It is known that, for given x ∈ K,

K∞ := {d ∈ X : x+ td ∈ K, ∀t > 0} .

The following interesting results can be found in [1, 9].

Lemma 2.1. Let K be a nonempty, closed and convex subset of a reflexive Banach space X. Then K
is well-positioned, if and only if int(barr K) 6= ∅. Furthermore, if K is well-positioned, then there is no
sequence {xn} ⊂ K with ‖xn‖ → ∞ such that xn/‖xn‖⇀ 0.

Lemma 2.2. Let K be a well-positioned, closed, convex subset of a real reflexive Banach space X and {An}
be a decreasing sequence of closed convex subsets of K with A := ∩∞n=1An nonempty and bounded. Then An
is bounded for some n.

Lemma 2.3. Let K be a well-positioned, closed, convex subset of a real reflexive Banach space X, h : K →
R ∪ {+∞} be a proper convex lower semicontinuous function, and r1, r2 ∈ R with r1 ≤ r2. If the level set
{x ∈ K : h(x) ≤ r1} is nonempty and bounded, then so is the set {x ∈ K : h(x) ≤ r2}.

The concepts of feasibility and strict feasibility for equilibrium problems can be introduced by means of
asymptotic cone.

We say that (1.1) (or (1.2)) is feasible [7], if the set FK := {x ∈ K : f(x, x+ d) ≥ 0, ∀d ∈ K∞} 6= ∅. We
say that (1.1) (or (1.2)) is strictly feasible [11], if the set FK := {x ∈ K : f(x, x+ d) > 0, ∀d ∈ K∞\{0}}.

A bifunction f : K×K → R∪{+∞} is said to be monotone on K, if for all x, y ∈ K, f(x, y)+f(y, x) ≤ 0,
pseudo-monotone on K, if for all x, y ∈ K, f(x, y) ≥ 0 implies f(y, x) ≤ 0. A pseudomonotone bifunction
f is said to be stably pseudomonotone on K w.r.t. U ⊂ X∗, due to [8, 12], if for all x, y ∈ K and for
all u∗ ∈ U , f(x, y) − 〈ξ, y − x〉 ≥ 0 implies f(y, x) − 〈ξ, x − y〉 ≤ 0. It is well-known that every monotone
mapping is a stably pseudomonotone mapping.

The following example illustrates that the converse inclusion may not be true.
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Example 2.4. Let X = R with X∗ ≡ R and K = [3, 4]. Define f : K ×K → R ∩ {+∞} by

f(x, y) = y(x− y), ∀x, y ∈ K.

Then f is stably pseudomonotone on K w.r.t. [1, 2] but not monotone.

Proof. We first show that f is stably pseudomonotone on K w.r.t. [1, 2]. For any x, y ∈ K and ξ ∈ [1, 2], If

0 ≤ f(x, y)− 〈ξ, y − x〉 = y(y − x)− ξ(y − x)

= (y − ξ)(y − x).

Then y − x ≥ 0, since z − ξ > 0 for all z ∈ K and ξ ∈ [1, 2]. It then follows that

f(y, x)− 〈ξ, x− y〉 = x(x− y)− ξ(x− y)

= (x− ξ)(x− y) ≤ 0.

Hence, f is stably pseudomonotone on K w.r.t. [1, 2].
Finally, it is easily seen that f is not monotone. Indeed, for any x, y ∈ K

f(x, y) + f(y, x) = y(y − x) + x(x− y) = (x− y)2 ≥ 0.

We collect the following well-known KKM-Fan lemma.

Lemma 2.5 ([6]). Let M be a nonempty, closed and convex subset of X and F : M → 2M be a set-valued
map. Suppose that for any finite set {x1, . . . , xm} ⊆M , one has

(i) conv{x1, . . . , xm} ⊂
⋃m
i=1 F (xi) (i.e., F is a KKM map on M);

(ii) F (x) is closed for every x ∈M ; and

(iii) F (x) compact for some x ∈M .

Then
⋂
x∈M F (x) 6= ∅.

3. Main results

In this section, we present the characterization of the solution for (1.1) and (1.2).
Before proving our results, we list the following assumptions hold.

(f1) For any x ∈ K, f(x, x) ≥ 0.

(f2) For any x, y ∈ K and α ∈ [0, 1], limα→+0
f(x+ t(y − x), x)

t
= −f(x, y).

(f3) For any x ∈ K, the map y 7→ f(x, y) is convex and lower semicontinuous.

(f4) f is stably pseudomonotone on K w.r.t. K∗.

The following lemma shows that under suitable conditions, the solution set of (1.1) and (1.2) are the
same.

Lemma 3.1. Let K be a nonempty, closed, and convex subset of a real reflexive Banach space X. Suppose
that f satisfies the conditions (f1)–(f4). Then for any given ξ ∈ K∗, the solution of the problem x ∈ K is a
solution of the problem

find x ∈ K such that f(x, y)− 〈ξ, y − x〉 ≥ 0, ∀y ∈ K, (3.1)

if and only if it is a solution of the problem

find x ∈ K such that f(y, x)− 〈ξ, x− y〉 ≤ 0, ∀y ∈ K. (3.2)

In addition, if K is bounded, then SP and SD are nonempty.
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Proof. Let x be a solution of (3.1). Then f(x, y) − 〈ξ, y − x〉 ≥ 0, for all y ∈ K. By condition (f4), x is a
solution of (3.2). Conversely, let x be a solution of (3.2). Then f(y, x)− 〈ξ, x− y〉 ≥ 0, for all y ∈ K. For
any z ∈ K, set zt := x+ t(z − x), for any t ∈ (0, 1). Then zt ∈ K, because of the convexity of K. It follows
from (f1) that

f(zt, z) ≤ 〈ξ, x− zt〉 = t〈ξ, x− z〉.

Condition (f2) gives that −f(z, x) ≤ 〈ξ, x− z〉. Hence, x solves (3.1).
Next, we prove that SP and SD are nonempty provided that K is bounded. Define F,G : K → 2K by

F (y) = {x ∈ K : f(x, y) ≥ 0}, ∀y ∈ K and G(y) = {x ∈ K : f(y, x) ≤ 0}, ∀y ∈ K.

Then, G(y) is closed, convex and compact for all x ∈ K. It follows from Lemma 2.5 that⋂
y∈K

F (y) =
⋂
y∈K

G(y) 6= ∅.

Then there exists x̄ ∈ K which solves (1.1) and (1.2).

Theorem 3.2. Let K be a nonempty, closed, and convex subset of a real reflexive Banach space X with
intK∗ 6= ∅. Suppose that f satisfies the conditions (f1)–(f4). Then the following statements are equivalent:

(i) SP is a nonempty and bounded.

(ii) SD is a nonempty and bounded.

(iii) F+
K 6= ∅.

Proof. It follows from Lemma 3.1,
(i) ⇔ (ii): in the case where ξ = 0. Define a function g : K ×K∗ → R by

g(x, ξ) := sup
y∈K

f(y, x)− 〈ξ, x− y〉
max{1, ‖y‖}

, ∀x ∈ K, ξ ∈ K∗.

It follows from (f3) that g(·, ξ) is convex and lower semicontinuous function and g(x) ≥ 0, for all x ∈ K
and ξ ∈ K∗. Define the set A := {x ∈ K : g(x) ≤ 0}. Then by Lemma 2.5, A is nonempty, closed and
convex set. Clearly, A is the solution set of (1.2). By Lemma 3.1, A is also the solution set of (1.1). Let
ξ′ ∈ intK∗. For every positive integer n, define

An :=

{
x ∈ K : g(x, 0) ≤ 1

n
〈ξ′, x〉

}
.

Then {An} is a decreasing sequence as n → +∞ of closed and convex subsets of K and A =
⋂∞
i=1Ai.

Notice that barrK has a nonempty interior, then K is well-positioned.

(ii) ⇒ (iii): Suppose that A is nonempty and bounded. It follows from Lemma 2.2 that there exists n0 such

that An0 is nonempty and bounded. Set r := g

(
z0,

1

n
ξ′
)

for some z0 ∈ An0 . We then have r ≥ 0. We now

consider the following set C0 :=

{
x ∈ K : g(x, 0) ≤ 1

n0
〈ξ, x〉+ r

}
. Then by Lemma 2.3, C0 is nonempty

and bounded. After calculating we have, for any y ∈ K,

f(y, x)

max{1, ‖y‖}
−
f(y, x)−

〈
1

n0
ξ, x− y

〉
max{1, ‖y‖}

=
1

n0

〈ξ, x− y〉
max{1, ‖y‖}

≤ 1

n0
〈ξ, x〉,
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because of ξ′ ∈ int K∗. Thus g(x, 0)− g
(
x,

1

n0
ξ′
)
≤ 1

n0
〈ξ′, x〉, and so the set

C := {x ∈ K : g

(
x,

1

n0
ξ′
)
≤ r} ⊂ C0,

is nonempty, closed, convex and bounded. Set

Ki = {x ∈ K : ‖x‖ ≤ i}, i = 1, 2, · · · ,

and

ĝi(x) := sup
y∈Ki

f(y, x)− 1

n0
〈ξ′, x− y〉

max{1, ‖y‖}
, ∀x ∈ X.

Then ĝi(x) is convex and lower semicontinuous on bounded subset Ki for all i ∈ N and ĝi(x) ≥ 0 for
all x ∈ Ki. For every i ∈ N, it follows from the proof in Lemma 3.1 that there are xi ∈ Ki such that

f(y, xi)−
1

n0
〈ξ′, xi − y〉 ≤ 0, ∀y ∈ Ki. This implies that ĝi(xi) = 0. Define Di := {x ∈ K : ĝi(x) ≤ r}. It is

not hard to check that {Di}∞i=1 is a decreasing sequence of nonempty, closed and convex subsets of K and
C =

⋂∞
i=1Di. Since C is nonempty and bounded, it follows from Lemma 2.2 that there exists i0 ∈ N such

that Di0 is nonempty and bounded. Then there exists a positive integer L such that supx∈Di0
‖x‖ < L and

i0 ≤ L. Since ĝL(xL) = 0, xL ∈ DL ⊂ Di0 , and so xL ∈ KL.
For any y ∈ K and t ∈ (0, 1), by setting yt := (1 − t)xL + ty ∈ KL, we have yt → xL as t → +0. It

follows from linearity that, for all y ∈ K

f(yt, xL)− 1

n0
〈ξ′, xL − yt〉 ≤ 0⇒ f(yt, xL)

t
− 1

n0
〈ξ′, xL − y〉 ≤ 0.

By (f3), we have f(xL, y) ≥ 1

n0
〈ξ′, y − xL〉 for all y ∈ K.

For any d ∈ K∞\{0}, we known that xL+d ∈ K, and so f(xL, xL+d) ≥ 1

n0
〈ξ′, d〉 > 0, since ξ′ ∈ intK∗.

Therefore, xL ∈ F+
K .

(iii)⇒ (i): Suppose that F+
K 6= ∅. Then there exists x0 ∈ K such that f(x0, x0 +d) > 0, for all d ∈ K∞\{0}.

Set D := {x ∈ K : f(x0, x) ≤ 0}. It is not hard to check that D is nonempty, closed and convex. We
claim that D is bounded. If not, there exists xn ∈ D with ‖xn‖ → +∞. Without loss of generality, we can
suppose that xn/‖xn‖ ⇀ d ∈ K∞. Since K is well-positioned, from Lemma 2.1 we have d 6= 0. It follows
from xn ∈ D that f(x0, xn) ≤ 0. Since f is convex and lower semicontinuous at second variable, it follows
that

f(x0, x0 + d) ≤ lim inf
n→∞

f

(
x0, x0 +

1

‖xn‖
(xn − x0)

)
≤ 0,

which contradicts x0 ∈ F+
K . Thus D is nonempty, convex and weak compact. Define

Dz := {x ∈ D : f(x, z) ≥ 0}, ∀z ∈ K.

Thus
x̄ ∈ SP ⇔ x̄ ∈ ∩z∈KDz.

Define
D′z = {x ∈ D : f(z, x) ≤ 0, ∀z ∈ K}.

Then D′z is nonempty, closed and convex. By a similar argument as in the proof of Lemma 3.1, we can
show that

∩z∈KD′z = ∩z∈KDz.
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For any finite set {zi : i = 1, 2, . . . , n} ⊂ K, let M = conv{D ∪ {z1, z2, . . . , zn}}. It is known that M is
weakly compact. By Lemma 3.1, there exists x̂ ∈M such that

f(y, x̂) ≤ 0, ∀y ∈M.

From x0 ∈ D ⊂M , we have f(x0, x̂) ≤ 0 and so x̂ ∈ D. Furthermore, we have

f(zi, x̂) ≤ 0, i = 1, 2, · · · , n,

because zi ∈ M . Therefore x̂ ∈ ∩ni=1D
′
zi , and so {D′z : z ∈ K} has the finite intersection property. Since D

is weakly compact, we get SP = ∩z∈KDz = ∩z∈KD′z 6= ∅. Then SP is nonempty. Since D is bounded and
SP = ∩z∈KDz ⊂ D, we have SP is bounded. The proof is complete.

Remark 3.3. Theorem 3.2 discusses the characterization of nonemptiness and boundedness for SP and SD,
which is more general than the result in [11, Theorem 3.1] in the case that f is relaxed to the stably
pseudomonotone mapping.
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