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Abstract

In this paper, we investigate the Cauchy problem for the generalized IBq equation with damping in
one dimensional space. When σ = 1, the nonlinear approximation of the global solutions is established
under small condition on the initial value. Moreover, we show that as time tends to infinity, the solution is
asymptotic to the superposition of nonlinear diffusion waves which are given explicitly in terms of the self-
similar solution of the viscous Burgers equation. When σ ≥ 2, we prove that our global solution converges
to the superposition of diffusion waves which are given explicitly in terms of the solution of linear parabolic
equation. c©2016 all rights reserved.
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1. Introduction

We investigate the Cauchy problem for the following generalized improved modified Boussinesq (IBq)
equation with damping in one space dimension

utt − uxxtt − uxx − νuxxt = φ(u)xx (1.1)

with the initial value
t = 0 : u = f(x), ut = ∂xg(x). (1.2)
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Here u = u(x, t) is the unknown function of x ∈ R and t > 0, ν > 0 is a constant. The nonlinear term is as
form of φ(u) = O(|u|1+σ) (σ ≥ 1).

Boussinesq [2, 3] deduced an important model

utt −∆u−∆utt = ∆(u2), (1.3)

which approximately describes the propagation of long waves on shallow water. Equation (1.3) is called
improved Boussinesq (IBq) equation by [11]. Equation (1.3) and its generalized form in n space dimensions

utt −∆u−∆utt = ∆φ(u) (1.4)

can also describe the dynamical and thermodynamical properties of an harmonic monatomic and diatomic
chains (see [14, 15]). Existence and nonexistence of global solutions, the global existence of small amplitude
solutions for the Cauchy problem for (1.4) were obtained by Wang et al. [13, 19, 20]. Cho and Ozawa [4]
studied the existence and scattering of global small amplitude solutions to (1.4).

To take into account internal friction (it is called this type of friction hydrodynamical), which is due to
irreversible processes taking place within the system, the dissipation function depends on the time derivatives
of the relative displacements, in [1] the authors obtained the following IBq equation with damping

utt −∆u−∆utt − ν∆ut = ∆(u2).

Equation (1.4) has the following generalized form

utt −∆u−∆utt − ν∆ut = ∆φ(u). (1.5)

Polat [13] established the global existence and blow-up of solutions to (1.5) with the initial data.

(u, ut)(x, 0) = (u0, u1)(x). (1.6)

Under smallness condition on the initial data, Wang and Xu [23] obtained asymptotic behavior of global
solutions to (1.5) and (1.6) by the contraction mapping principle. Later, global existence and asymptotic
behavior of solutions were refined in [24]. More precisely, the decay estimate

‖∂kxu(t)‖L2 ≤ CE1(1 + t)−
n
4
− k

2 (1.7)

is obtained, where nσ ≥ 1 and s ≥ [n/2] + 1, E1 = ‖u0‖Hs∩L1 + ‖u1‖Hs∩Ẇ−1,1 and 0 ≤ k ≤ s. Moreover,
when nσ ≥ 2, the proof in [24] also implies

‖∂kx(u− uL)(t)‖L2 ≤ CE 1+σ
1 (1 + t)−

n
4
− k

2 η(t) (1.8)

for 0 ≤ k ≤ s, where uL(t) is the solution to (1.5) and (1.6) with φ(u) ≡ 0 and η(t) is defined by

η(t) =


1, n = 1,

(1 + t)−
1
2 log(2 + t), nσ = 2,

(1 + t)−
1
2 , nσ ≥ 3.

However, such a linear approximation does not hold for (1.1) with σ = 1. This comes from the slower
decay of the solution for n = 1 and σ = 1. We note that, when n = 1, the decay estimate (1.7) for the
problem (1.1), (1.2) is given by

‖∂kxu(t)‖L2 ≤ CE1(1 + t)−
1
4
− k

2 , (1.9)

where s ≥ 0, 0 ≤ k ≤ s, and E1 = ‖f‖Hs∩L1 + ‖g‖Hs+1∩L1 .
The first main purpose of this paper is to establish nonlinear approximation to global solutions to the

problem (1.1), (1.2) with σ = 1. We state the result as follows.
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Theorem 1.1. Let σ = 1 and s ≥ 1. Assume that f ∈ Hs
⋂
L1 and g ∈ Hs+1

⋂
L1, and put E1 =

‖f‖Hs
⋂
L1 + ‖g‖Hs+1

⋂
L1. Let u(x, t) be the global solution to the problem (1.1), (1.2), and let $ be the

approximation function defined by (3.10). Then for any ε > 0 and 0 ≤ k ≤ s, there is a small positive
constant δ2 such that if E1 ≤ δ2, we have

‖∂kx(u−$)(t)‖L2 ≤ CE1(1 + t)−
3
4
− k

2
+ε.

Theorem 1.1 implies that the global solution u to the problem (1.1), (1.2) is well approximated by the
solution $ to the simpler problem (3.10). In the following result, we give the further approximation, i.e.,
we show that as time tends to infinity, the solution is asymptotic to the superposition of nonlinear diffusion
waves which are given explicitly in terms of the self-similar solution of the viscous Burgers equation. The
result is as follows:

Theorem 1.2. Let σ = 1 and s ≥ 1. Assume that f, g ∈ Hs+1 ∩ L1
1/2 and put Ẽ1 = ‖(f, g)‖Hs+1∩L1 and

E2 = ‖(f, g)‖Hs+1∩L1
1/2

. Let u be the global solution to the problem (1.1), (1.2), and let v± be the nonlinear

diffusion waves defined by (4.9) with the parameters in (4.11). Then there is a small positive constant δ3
such that if Ẽ1 ≤ δ3, then we have

‖∂kx(u− v+ − v−)(t)‖L2 ≤ CE2(1 + t)−
1
2
− k

2 , (1.10)

where 0 ≤ k ≤ s.
When σ ≥ 2, our global solution is approximated by the superposition of diffusion waves which are given

explicitly in terms of the solution of linear parabolic equation. We state the results as follows:

Theorem 1.3. Let s ≥ 1 and σ = 2. Assume that f, g ∈ Hs+1
⋂
L1
1. Put E1 = ‖(f, g)‖Hs+1

⋂
L1 and

E3 = ‖(f, g)‖Hs+1
⋂
L1
1
. Let u be the global solution to the problem (1.1), (1.2), and let v± be the diffusion

waves defined by (5.2). There exists a small positive constant δ3 such that if E1 ≤ δ3, we have

‖∂kx(u− v+ − v−)(t)‖L2 ≤ CE3(1 + t)−
3
4
− k

2 log(2 + t)

for 0 ≤ k ≤ s.

Theorem 1.4. Let s ≥ 1 and σ ≥ 3. Assume that f, g ∈ Hs+1
⋂
L1
1. Put E1 = ‖(f, g)‖Hs+1

⋂
L1 and

E3 = ‖(f, g)‖Hs+1
⋂
L1
1
. Let u be the global solution to the problem (1.1), (1.2), and let v± be the diffusion

waves defined by (5.2). There exists a small positive constant δ3 such that if E1 ≤ δ3, we have

‖∂kx(u− v+ − v−)(t)‖L2 ≤ CE3(1 + t)−
3
4
− k

2

for 0 ≤ k ≤ s.
The global existence and asymptotic behavior of solutions to high order wave equation have been inves-

tigated by many authors. We may refer to [6, 8, 16–18, 21–24]. For quantum stochastic evolution inclusions
and variational inclusions, some related results have been established in [12].

The paper is organized as follows. In Section 2 we review the previous results on the problem (1.1),
(1.2). A nonlinear approximation of global solutions to (1.1), (1.2) with σ = 1 is established in Section 3. In
Section 4, when σ = 1, we prove that global solution is asymptotic to the superposition of nonlinear diffusion
waves which are given explicitly in terms of the self-similar solution of the viscous Burgers equation. Finally,
large time behavior of global solutions is obtained for σ ≥ 2 in Section 5.

2. Decay property of solution operator

To prove our main results, we need to deduce the solution formula for the problem (1.1), (1.2), which
will be used in the present paper (see also [24]). For this purpose, we first investigate the linear equation of
(1.1):

utt − uxxtt − uxx − νuxxt = 0. (2.1)
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Taking the Fourier transform, we have

(1 + ξ2)ûtt + νξ2ût + ξ2û = 0. (2.2)

The corresponding initial values are given as

t = 0 : û = f̂(ξ), ût = iξĝ(ξ). (2.3)

The characteristic equation of (2.2) is

(1 + ξ2)λ2 + νξ2λ+ ξ2 = 0. (2.4)

Let λ = λ±(ξ) be the corresponding eigenvalues of (2.4), we obtain

λ±(ξ) =
−µξ2 ± iξ

√
(4− ν2)ξ2 − 4

2(1 + ξ2)
.

The solution to the problem (2.2)-(2.3) is given in the form

û(ξ, t) = iξĜ(ξ, t)ĝ(ξ) + Ĥ(ξ, t)f̂(ξ), (2.5)

where

Ĝ(ξ, t) =
1

λ+(ξ)− λ−(ξ)
(eλ+(ξ)t − eλ−(ξ)t) (2.6)

and

Ĥ(ξ, t) =
1

λ+(ξ)− λ−(ξ)
(λ+(ξ)eλ−(ξ)t − λ−(ξ)eλ+(ξ)t). (2.7)

We define G(x, t) andH(x, t) by G(x, t) = F−1[Ĝ(ξ, t)](x) andH(x, t) = F−1[Ĥ(ξ, t)](x), respectively, where
F−1 denotes the inverse Fourier transform. Then, applying F−1 to (2.5), we obtain

u(t) = G(t) ∗ ∂xg +H(t) ∗ f. (2.8)

By the Duhamel principle, we obtain the solution formula to (1.1), (1.2)

u(t) = G(t) ∗ ∂xg +H(t) ∗ f +

∫ t

0
G(t− τ) ∗ (I − ∂2x)−1∂2xφ(u)(τ)dτ. (2.9)

Next, we state the decay estimates of the solution operators G(t) and H(t) appearing in the solution formula
(2.8), which was established in [23] and [24].

Lemma 2.1. The solution of the problem (2.2), (2.3) satisfies

(1 + ξ2)|ût(ξ, t)|2 + ξ2|û(ξ, t)|2 ≤ Ce−cω(ξ)t((1 + ξ2)ξ2|ĝ(ξ)|2 + ξ2|f̂(ξ)|2)

for ξ ∈ R and t ≥ 0, where ω(ξ) = ξ2

1+ξ2
.

Lemma 2.2. Let Ĝ(ξ, t) and Ĥ(ξ, t) be the fundamental solution of (2.1) in the Fourier space, which are
given in (2.6) and (2.7), respectively. Then we have the estimates

|Ĝ(ξ, t)| ≤ C|ξ|−1(1 + ξ2)
1
2 e−cω(ξ)t

and
|Ĥ(ξ, t)| ≤ Ce−cω(ξ)t

for ξ ∈ R and t ≥ 0, where ω(ξ) = ξ2

1+ξ2
.

Lemma 2.3. Let k ≥ 0 and 1 ≤ p ≤ 2. Then we have

‖∂kxG(t) ∗ ∂xϕ‖L2 ≤ C(1 + t)
− 1

2
( 1
p
− 1

2
)− k

2 ‖ϕ‖Lp + Ce−ct‖∂kxϕ‖L2 ,

‖∂kxH(t) ∗ ϕ‖L2 ≤ C(1 + t)
− 1

2
( 1
p
− 1

2
)− k

2 ‖ϕ‖Lp + Ce−ct‖∂kxϕ‖L2 ,

and
‖∂kxG(t) ∗ (I − ∂2x)−1∂2xϕ‖L2 ≤ C(1 + t)

− 1
2
( 1
p
− 1

2
)− k

2
− 1

2 ‖ϕ‖Lp + Ce−ct‖∂kxϕ‖L2 . (2.10)
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3. Approximate to solution to (1.1), (1.2) with σ = 1

In this section, our main aim is to obtain the nonlinear approximation to the global solutions. It follows
from mean value theorem that 

e
− ν|ξ|2t

2(1+|ξ|2) = e−
ν
2
|ξ|2t + K̄1,

sin
|ξ|
√

1− 4−ν2
|ξ|2 |ξ|2t

1 + |ξ|2
= sin(|ξ|t) + K̄2,

cos
|ξ|
√

1− 4−ν2
|ξ|2 |ξ|2t

1 + |ξ|2
= cos(|ξ|t) + K̄3,

1√
1− 4−ν2

4 |ξ|2
= 1 + K̄4,

where 

K̄1 =
ν|ξ|4t

2(1 + |ξ|2)
e
− ν

2
|ξ|2[ θ1

1+|ξ|2
+(1−θ1)]t

,

K̄2 = −
|ξ|3(|ξ|2 + 12−ν2

4 )t

(1 + |ξ|2)(
√

1− 4−ν2
4 |ξ|2 + 1 + |ξ|2)

cos
[ |ξ|√1− 4−ν2

4 |ξ|2t
1 + |ξ|2

θ2 + (1− θ2)|ξ|t
]
,

K̄3 =
|ξ|3(|ξ|2 + 12−ν2

4 )t

(1 + |ξ|2)(
√

1− 4−ν2
4 |ξ|2 + 1 + |ξ|2)

sin
[ |ξ|√1− 4−ν2

4 |ξ|2t
1 + |ξ|2

θ3 + (1− θ3)|ξ|t
]
,

K̄4 =
(4− ν2)|ξ|2

8(1− 4−ν2
4 |ξ|2θ4)

3
2

with θi(i = 1, 2, 3, 4) ∈ (0, 1).
When |ξ| ≤ δ, where δ is a small positive constant, we obtain from the above four equalities

Ĝ(ξ, t) =
eλ+t − eλ−t

λ+ − λ−
=

1 + |ξ|2

|ξ|
√

1− 4−ν2
4 |ξ|2

e
− ν|ξ|2t

2(1+|ξ|2) sin
|ξ|
√

1− 4−ν2
|ξ|2 |ξ|2t

1 + |ξ|2

=
1

|ξ|
e−

ν
2
ξ2t sin |ξ|t+ J̄1

and

Ĥ(ξ, t) =
λ+e

λ−t − λ−eλ+t

λ+ − λ−

=
v|ξ|

2
√

1− 4−ν2
4 |ξ|2

e
− ν|ξ|2t

2(1+|ξ|2) sin
|ξ|
√

1− 4−ν2
|ξ|2 |ξ|2t

1 + |ξ|2
+ e
− ν|ξ|2t

2(1+|ξ|2) cos
|ξ|
√

1− 4−ν2
|ξ|2 |ξ|2t

1 + |ξ|2

= e−
ν
2
ξ2t cos |ξ|t+ J̄2.

(3.1)

When |ξ| ≤ δ, J̄1 and J̄2 satisfy

|J̄1| ≤ C(1 + |ξ|2t)e−c|ξ|2t

and
|J̄2| ≤ C(|ξ|+ |ξ|3t)e−c|ξ|2t.
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Taking

Ĝ0(ξ, t) =
1

|ξ|
e−

ν
2
|ξ|2t sin |ξ|t, Ĥ0(ξ, t) = e−

ν
2
|ξ|2t cos |ξ|t.

Then
|(Ĝ − Ĝ0)(ξ, t)| ≤ Ce−c|ξ|

2t, |(Ĥ − Ĥ0)(ξ, t)| ≤ C|ξ|e−c|ξ|
2t (3.2)

for |ξ| ≤ δ.

Lemma 3.1. Let k ≥ 0 and 1 ≤ p ≤ 2. Then we have

‖∂kxG0(t) ∗ ∂xϕ‖L2 ≤ C(1 + t)
− 1

2
( 1
p
− 1

2
)− k

2 ‖ϕ‖Lp + Ce−ct‖∂kxϕ‖L2 , (3.3)

‖∂kxH0(t) ∗ ϕ‖L2 ≤ C(1 + t)
− 1

2
( 1
p
− 1

2
)− k

2 ‖ϕ‖Lp + Ce−ct‖∂kxϕ‖L2 , (3.4)

‖∂kxG0(t) ∗ ∂xϕ‖L2 ≤ C(1 + t)
− 1

2
( 1
p
− 1

2
)− k

2 ‖ϕ‖Lp + Ce−ctt−
k−l
2 ‖∂lxϕ‖L2 , (3.5)

and
‖∂kxG0(t) ∗ ∂xϕ‖L2 ≤ Ct−

1
2
( 1
p
− 1

2
)− k

2 ‖ϕ‖Lp . (3.6)

Proof. We only give the proof of (3.5). The Plancherel theorem entails that

‖∂kxG0(t) ∗ ∂xφ‖2L2 =

∫
|ξ|≤1

|ξ|2k+2|Ĝ0(ξ, t)|2|ϕ̂(ξ)|2dξ +

∫
|ξ|≥1

|ξ|2k+2|Ĝ0(ξ, t)|2|ϕ̂(ξ)|2dξ =: I1 + I2. (3.7)

By (3.1), Hölder inequality and Hausdorff inequality, we have

I1 ≤ C(1 + t)
− 1

2
( 2
p
−1)−k‖ϕ‖2Lp . (3.8)

Owing to (3.1), I2 can be estimated as

I2 ≤ Ce−ct sup
|ξ|≥1

(|ξ|2(k−l)e−c|ξ|2t)
∫
|ξ|≥1

|ξ|2l|ϕ̂|2dξ ≤ Ce−ctt−(k−l)‖∂lxϕ‖2L2 . (3.9)

Inserting (3.8) and (3.9) into (3.7) yields (3.5). Thus we have completed the proof.

Let

$(t) = G0(t) ∗ ∂xg +H0(t) ∗ f +
φ′′(0)

2

∫ t

0
G0(t− τ) ∗ ∂2x$2(τ)dτ. (3.10)

In order to obtain nonlinear approximation of global solutions to the Cauchy problem (1.1), (1.2), we
need the following lemma, which comes from [9] (see also [25]).

Lemma 3.2. Assume that φ = φ(v) is a smooth function. Suppose that φ(v) = O(|v|1+θ) (θ ≥ 1 is an
integer) when |v| ≤ ν0. Then for integer m ≥ 0, if v ∈ Wm,q(Rn)

⋂
Lp(Rn)

⋂
L∞(Rn) and ‖v‖L∞ ≤ ν0,

then φ(v) ∈Wm,r(Rn). Furthermore, the following inequality holds:

‖∂mx φ(v)‖Lr ≤ C‖v‖Lp‖∂mx v‖Lq‖v‖θ−1L∞ ,

where 1 ≤ p, q, r ≤ +∞ and 1
r = 1

p + 1
q .

Lemma 3.3. Let s ≥ 1. Assume that f, g ∈ Hs(R)
⋂
L1(R). Put

E0 := ‖f‖Hs
⋂
L1 + ‖g‖Hs

⋂
L1 .

$(t) is defined by (3.10). If E0 is suitably small, then

‖∂kx$(t)‖L2 ≤ CE0(1 + t)−
1
4
− k

2 (3.11)

for 0 ≤ k ≤ s.
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Remark 3.4. If “f, g ∈ Hs(R)
⋂
L1(R)” is replaced by “f ∈ Hs(R)

⋂
L1(R) and g ∈ Hs+1(R)

⋂
L1(R)”, put

E1 := ‖f‖Hs
⋂
L1 + ‖g‖Hs+1

⋂
L1 .

If E1 is suitably small, then

‖∂kx$(t)‖L2 ≤ CE1(1 + t)−
1
4
− k

2 . (3.12)

Proof. We only prove (3.11). Set

M(t) =

s∑
k=0

sup
0≤τ≤t

(1 + τ)
1
4
+ k

2 ‖∂kx$(t)‖L2 .

By applying (3.10) and Minkowski inequality, we arrive at

‖∂kx$(t)‖L2 ≤ ‖∂kxG0(t) ∗ ∂xg‖L2 + ‖∂kxH0(t) ∗ f‖L2 +

∫ t
2

0
‖∂kxG0(t− τ) ∗ ∂2x(

φ′′(0)

2
$2)‖L2(τ)dτ

+

∫ t

t
2

‖∂kxG0(t− τ) ∗ ∂2x(
φ′′(0)

2
$2)‖L2(τ)dτ

, I1 + I2 + I3 + I4.

(3.13)

It follows from (3.3) with p = 1 that

I1 ≤ C(1 + t)−
1
4
− k

2 ‖g‖Hs
⋂
L1 . (3.14)

Due to (3.4) with p = 1 to I2, it holds that

I2 ≤ C(1 + t)−
1
4
− k

2 ‖f‖Hs
⋂
L1 . (3.15)

Equation (3.5), Lemma 3.2, and Gagliardo-Nirenberg inequality entail that

I3 ≤ C
∫ t

2

0
(1 + t− τ)−

3
4
− k

2 ‖$2‖L1dτ + C

∫ t
2

0
e−c(t−τ)(t− τ)−

1
2 ‖∂kx$2‖L2dτ

≤ CM2(t)

∫ t
2

0
(1 + t− τ)−

1
4
− k

2
− 1

2 (1 + τ)−
1
2dτ

+ CM2(t)

∫ t
2

0
e−c(t−τ)(t− τ)−

1
2 (1 + τ)−

1
2 (1 + τ)−

1
4
− k

2 dτ

≤ CM2(t)(1 + t)−
1
4
− k

2 .

(3.16)

By exploiting (3.6), Lemma 3.2, and Gagliardo-Nirenberg inequality, we get

I4 ≤ C
∫ t

t
2

(t− τ)−
1
2 ‖∂kx$2‖L2dτ

≤ CM2(t)

∫ t

t
2

(t− τ)−
1
2 (1 + τ)−

1
2 (1 + τ)−

1
4
− k

2 dτ

≤ CM2(t)(1 + t)−
1
4
− k

2 .

(3.17)

Combining (3.13)-(3.17) yields
M(t) ≤ CE0 + CM2(t),

This inequality can be solved as M(t) ≤ CE0 if E0 is sufficiently small. Thus we have completed the proof
of lemma.
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Lemma 3.5. Let k ≥ 0 and 1 ≤ p ≤ 2. Then we have

‖∂kx(G − G0)(t) ∗ ∂xϕ‖L2 ≤ C(1 + t)
− 1

2
( 1
p
− 1

2
)− k

2
− 1

2 ‖ϕ‖Lp + Ce−ct‖∂k+1
x ϕ‖L2 , (3.18)

‖∂kx(G −H0)(t) ∗ ϕ‖L2 ≤ C(1 + t)
− 1

2
( 1
p
− 1

2
)− k

2
− 1

2 ‖ϕ‖Lp + Ce−ct‖∂kxϕ‖L2 , (3.19)

‖∂kxG0(t) ∗ {(1− ∂2x)−1 − I}∂2xϕ‖L2 ≤ C(1 + t)
− 1

2
( 1
p
− 1

2
)− k

2
− 3

2 ‖ϕ‖Lp + Ce−ctt−
k+1−l

2 ‖∂lxϕ‖L2 , (3.20)

and
‖∂kx(G − G0)(t) ∗ (1− ∂2x)−1∂2xϕ‖L2 ≤ C(1 + t)

− 1
2
( 1
p
− 1

2
)− k

2
−1‖ϕ‖Lp + Ce−ct‖∂k+lx ϕ‖L2 .

Proof. We only give the proof of (3.18). By applying the Plancherel theorem, we deduce that

‖∂kx(G − G0)(t) ∗ ∂xϕ‖2L2 =

∫
|ξ|≤δ
|ξ|2k+2|(Ĝ − Ĝ0)(ξ, t)|2|ϕ̂(ξ)|2dξ

+

∫
|ξ|≥δ
|ξ|2k+2|(Ĝ − Ĝ0)(ξ, t)|2|ϕ̂(ξ)|2dξ

=: I1 + I2.

(3.21)

For the low frequency part I1, using (3.2), Hölder inequality and Hausdorff inequality, we estimate as

I1 ≤ C(

∫
|ξ|≤δ
|ξ|(2k+2)qe−cq|ξ|

2tdξ)
1
q ‖ϕ̂‖2

Lp′
≤ C(1 + t)

− 1
2
( 2
p
−1)−k−1‖ϕ‖2Lp , (3.22)

where 1
q + 2

p′ = 1 and 1
p + 1

q = 1. Also, for the high frequency part I2, we have

I2 ≤ C
∫
|ξ|≥δ
|ξ|2k+2e−ct|ϕ̂|2dξ ≤ Ce−ct‖∂k+1

x ϕ‖2L2 . (3.23)

Combining (3.21), (3.22) and (3.23) yields (3.18). Thus we have completed the proof of lemma.

In what follows, we prove Theorem 1.1.

Proof. We introduce the quantity

X(t) =

s∑
k=0

sup
0≤τ≤t

(1 + τ)
3
4
+ k

2
−ε‖∂kx(u−$)‖L2 ,

where ε > 0 is a fixed small constant. Due to (2.9) and (3.10), we arrive at

(u−$)(t) = (G − G0)(t) ∗ ∂xg + (H−H0)(t) ∗ f

+

∫ t

0
G(t− τ) ∗ (I − ∂2x)−1∂2x(φ(u)− φ′′(0)

2
u2)(τ)dτ

+
φ′′(0)

2

∫ t

0
G(t− τ) ∗ (I − ∂2x)−1∂2x{(u+$)(u−$)}(τ)dτ

+
φ′′(0)

2

∫ t

0
(G − G0)(t− τ) ∗ (I − ∂2x)−1∂2x($2)(τ)dτ

+
φ′′(0)

2

∫ t

0
G0(t− τ) ∗ {(I − ∂2x)−1 − I}∂2x($2)(τ)dτ.

(3.24)
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Owing to (3.24) and Minkowski inequality, we get

‖∂kx(u−$)(t)‖L2 ≤ ‖∂kx(G − G0)(t) ∗ ∂xg‖L2 + ‖∂kx(H −H0)(t) ∗ f‖L2

+

∫ t
2

0
‖∂kxG(t− τ) ∗ (I − ∂2x)−1∂2x(φ(u)− φ′′(0)

2
u2)(τ)‖L2dτ

+

∫ t

t
2

‖∂kxG(t− τ) ∗ (I − ∂2x)−1∂2x(φ(u)− φ′′(0)

2
u2))(τ)‖L2dτ

+
|φ′′(0)|

2

∫ t
2

0
‖∂kxG(t− τ) ∗ (I − ∂2x)−1∂2x{(u+$)(u−$)}(τ)‖L2dτ

+
|φ′′(0)|

2

∫ t

t
2

‖∂kxG(t− τ) ∗ (I − ∂2x)−1∂2x{(u+$)(u−$)}(τ)‖L2dτ

+
|φ′′(0)|

2

∫ t
2

0
‖∂kx(G − G0)(t− τ) ∗ (I − ∂2x)−1∂2x($2)(τ)‖L2dτ

+
|φ′′(0)|

2

∫ t

t
2

‖∂kx(G − G0)(t− τ) ∗ (I − ∂2x)−1∂2x($2)(τ)‖L2dτ

+
|φ′′(0)|

2

∫ t
2

0
‖∂kxG0(t− τ) ∗ {(I − ∂2x)−1 − I}∂2x($2)(τ)‖L2dτ

+
|φ′′(0)|

2

∫ t

t
2

‖∂kxG0(t− τ) ∗ {(I − ∂2x)−1 − I}∂2x($2)(τ)‖L2dτ

, J1 + J2 + J31 + J32 + J41 + J42 + J51 + J52 + J61 + J62.

(3.25)

By (3.18), we have

J1 ≤ C(1 + t)−
3
4
− k

2 (‖g‖L1 + ‖g‖Hs+1). (3.26)

Making use of (3.19), we obtain

J2 ≤ C(1 + t)−
3
4
− k

2 (‖f‖L1 + ‖f‖Hs). (3.27)

Thanks to Lemma 3.2 and (1.9), we obtain

‖φ(u)− φ′′(0)

2
u2(τ)‖L1 ≤ C‖u(τ)‖L∞‖u(τ)‖2L2 ≤ CE 3

1 (1 + τ)−1 (3.28)

and

‖∂kx(φ(u)− φ′′(0)

2
u2)(τ)‖L2 ≤ C‖u(τ)‖2L∞‖∂kxu(τ)‖L2 ≤ CE 3

1 (1 + τ)−
5
4
− k

2 . (3.29)

It follows from (2.10) and (3.28)-(3.29) that

J31 ≤ C
∫ t

2

0
(1 + t− τ)−

3
4
− k

2 ‖(φ(u)− φ′′(0)

2
u2)(τ)‖L1dτ

+

∫ t
2

0
e−c(t−τ)‖∂kx(φ(u)− φ′′(0)

2
u2)(τ)‖L2dτ

≤ CE 3
1

∫ t
2

0
(1 + t− τ)−

3
4
− k

2 (1 + τ)−1dτ + CE 3
1

∫ t
2

0
e−c(t−τ)(1 + τ)−

5
4
− k

2 dτ

≤ CE 3
1 (1 + t)−

3
4
− k

2
+ε.

(3.30)
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By using (2.10) with p = 2 and (3.29), it holds that

J32 ≤ C
∫ t

t
2

(1 + t− τ)−
1
2 ‖∂kx(φ(u)− φ′′(0)

2
u2)(τ)‖L2dτ

≤ CE 3
1

∫ t

t
2

(1 + t− τ)−
1
2 (1 + τ)−

5
4
− k

2 dτ

≤ CE 3
1 (1 + t)−

3
4
− k

2 .

(3.31)

From Lemma 3.2, Gagliardo-Nirenberg inequality and (1.9), (3.12), we arrive at

‖(u2 −$2)(τ)‖L1 ≤ C‖u+$‖L2‖u−$‖L2 ≤ CE1X(t)(1 + τ)−1+ε (3.32)

and
‖∂kx(u2 −$2)(τ)‖L2 ≤ CE1X(t)(1 + τ)−

5
4
− k

2
+ε. (3.33)

For the term J41, applying (2.10) and (3.32), (3.33) yields

J41 ≤ C
∫ t

2

0
(1 + t− τ)−

3
4
− k

2 ‖u2 −$2(τ)‖L1dτ + C

∫ t
2

0
e−c(t−τ)‖∂kx(u2 −$2)(τ)‖L2dτ

≤ CE1X(t)

∫ t
2

0
(1 + t− τ)−

3
4
− k

2 (1 + t)−1+εdτ + CE1X(t)

∫ t
2

0
e−c(t−τ)(1 + t)−

5
4
− k

2
+εdτ

≤ CE1X(t)(1 + t)−
3
4
− k

2
+ε

(3.34)

and

J42 ≤ C
∫ t

t
2

(1 + t− τ)−
1
2 ‖∂kx(u2 −$2)(τ)‖L2dτ + C

∫ t

t
2

e−c(t−τ)‖∂kx(u2 −$2)(τ)‖L2dτ

≤ CE1X(t)

∫ t

t
2

(1 + t− τ)−
1
2 (1 + τ)−

5
4
− k

2
+εdτ + CE1X(t)

∫ t

t
2

e−c(t−τ)(1 + t)−
5
4
− k

2
+εdτ

≤ CE1X(t)(1 + t)−
3
4
− k

2
+ε.

(3.35)

Lemma 3.2, Gagliardo-Nirenberg inequality and (3.12) give the estimates

‖$2(τ)‖L1 ≤ C‖$(τ)‖2L2 ≤ CE 2
1 (1 + τ)−

1
2 (3.36)

and
‖∂kx$2(τ)‖L2 ≤ C‖$(τ)‖L∞‖∂kx$(τ)‖L2 ≤ CE 2

1 (1 + τ)−
3
4
− k

2 . (3.37)

Owing to (3.10) and (3.36), (3.37), we deduce that

J51 ≤ C
∫ t

2

0
(1 + t− τ)−

5
4
− k

2 ‖$2(τ)‖L1dτ + C

∫ t
2

0
e−c(t−τ)‖∂kx$2(τ)‖L2dτ

≤ CE 2
1

∫ t
2

0
(1 + t− τ)−

5
4
− k

2 (1 + τ)−
1
2dτ + CE 2

1

∫ t
2

0
e−c(t−τ)(1 + τ)−

3
4
− k

2 dτ

≤ CE 2
1 (1 + t)−

3
4
− k

2 .

(3.38)

Equations (3.10) and (3.37) give the estimates

J52 ≤ C
∫ t

t
2

(1 + t− τ)−1‖∂kx$2(τ)‖L2dτ + C

∫ t

t
2

e−c(t−τ)‖∂kx$2(τ)‖L2dτ

≤ CE 2
1

∫ t

t
2

(1 + t− τ)−1(1 + τ)−
3
4
− k

2 dτ + CE 2
1

∫ t

t
2

e−c(t−τ)(1 + τ)−
3
4
− k

2 dτ

≤ CE 2
1 (1 + t)−

3
4
− k

2
+ε.

(3.39)
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Using (3.20), (3.36) and (3.37), we have

J61 ≤ C
∫ t

2

0
(1 + t− τ)−

7
4
− k

2 ‖$2(τ)‖L1dτ + C

∫ t
2

0
e−c(t−τ)(t− τ)−

1
2 ‖∂kx$2(τ)‖L2dτ

≤ CE 2
1

∫ t
2

0
(1 + t− τ)−

7
4
− k

2 (1 + τ)−
1
2dτ + CE 2

1

∫ t
2

0
e−c(t−τ)(t− τ)−

1
2 (1 + τ)−

3
4
− k

2 dτ

≤ CE 2
1 (1 + t)−

5
4
− k

2 .

(3.40)

By (3.20) and (3.37), we may obtain

J62 ≤ C
∫ t

t
2

(1 + t− τ)−
3
2 ‖∂kx$2‖L2dτ + C

∫ t

t
2

e−c(t−τ)(t− τ)−
1
2 ‖∂kx$2‖L2dτ

≤ CE 2
1

∫ t

t
2

(1 + t− τ)−
3
2 (1 + τ)−

3
4
− k

2 dτ + CE 2
1

∫ t

t
2

e−c(t−τ)(t− τ)−
1
2 (1 + τ)−

3
4
− k

2 dτ

≤ CE 2
1 (1 + t)−

3
4
− k

2 .

(3.41)

Combining (3.25)-(3.41) yields

X(t) ≤ CE1 + CE1X(t) + CE 2
1 + CE 3

1 .

This inequality can be solved as X(t) ≤ CE1 if E1 is sufficiently small. This completes the proof of Theorem
1.1.

4. Asymptotic profile of solution to (1.1), (1.2) with σ = 1

We may rewrite (3.10) as

$(t) = G1(t) ∗$+
0 +

φ′′(0)

4

∫ t

0
G1(t− τ) ∗ ∂x$2(τ)dτ+G2(t) ∗$−0 −

φ′′(0)

4

∫ t

0
G2(t− τ) ∗ ∂x$2(τ)dτ, (4.1)

where 
G1(t) = F−1{e(−

ν
2
ξ2+iξ)t} =

1√
2πνt

e−
(x+1)2

2νt ,

G2(t) = F−1{e(−
ν
2
ξ2−iξ)t} =

1√
2πνt

e−
(x−1)2

2νt ,

(4.2)

and

$+
0 =

1

2
f +

1

2
g, $−0 =

1

2
f − 1

2
g. (4.3)

We need the following decay properties for G1(t)∗ and G2(t)∗.

Lemma 4.1 ([7]). Let 1 ≤ q ≤ p ≤ ∞ and 0 ≤ j ≤ k. Then we have

‖∂kxG1(t) ∗ ϕ‖Lp ≤ Ct
− 1

2
( 1
q
− 1
p
)− k−j

2 ‖∂jxϕ‖Lq (4.4)

and
‖∂kxG2(t) ∗ ϕ‖Lp ≤ Ct

− 1
2
( 1
q
− 1
p
)− k−j

2 ‖∂jxϕ‖Lq . (4.5)

Lemma 4.2 ([7]). Let 1 ≤ p ≤ 2, 0 ≤ j ≤ k and 0 ≤ l ≤ k. Then

‖∂kxG1(t) ∗ ϕ‖L2 ≤ C(1 + t)
− 1

2
( 1
p
− 1

2
)− k−j

2 ‖∂jxϕ‖Lp + Ce−ctt−
k−l
2 ‖∂lxϕ‖L2 (4.6)

and
‖∂kxG2(t) ∗ ϕ‖L2 ≤ C(1 + t)

− 1
2
( 1
p
− 1

2
)− k−j

2 ‖∂jxϕ‖Lp + Ce−ctt−
k−l
2 ‖∂lxϕ‖L2 .
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When

∫ ∞
−∞

ϕ(x)dx = 0, the above decay properties may be improved as follows.

Lemma 4.3 ([7]). Let 1 ≤ p ≤ ∞, 0 ≤ β ≤ 1, and k ≥ 0 be an integer. Assume that ϕ ∈ L1
β and∫ ∞

−∞
ϕ(x)dx = 0. Then we have

‖∂kxG1(t) ∗ ϕ‖Lp ≤ Ct
− 1

2
(1− 1

p
)− k+β

2 ‖ϕ‖L1
β

(4.7)

and
‖∂kxG2(t) ∗ ϕ‖Lp ≤ Ct

− 1
2
(1− 1

p
)− k+β

2 ‖ϕ‖L1
β
. (4.8)

In what follows, we consider the self-similar solution of the viscous Burgers equation

yt +
(1

2
y2
)
x

=
ν

2
yxx.

Note that the self-similar solution is a solution of the form y = 1√
t
Φ( x√

t
). Let y = 1√

t
Φ( x√

t
;K) be the

self-similar solution that satisfies

∫ ∞
−∞

Φ(x;K)dx = K. It is well-known that Φ(x;K) is given explicitly as

(see [7])

Φ(x;M) =

√
ν

2

(e
K
ν − 1)e−

x2

2ν

√
π + (e

K
ν − 1)

∫∞
x√
2ν

e−y2dy
.

We define a function v(x, t) by

v(x, t) =
1

2b1

1√
t+ 1

Φ
(x− a1(t+ 1)√

t+ 1
; 2b1K

)
, (4.9)

where a1 and b1 6= 0 be real constant. Then v(x, t) is a nonlinear diffusion wave which travels at the speed
a1 in the x direction and has the mass K. It satisfies

vt + a1vx + b1(v
2)x =

ν

2
vxx, v(x, 0) = v0(x),∫ ∞

−∞
v(x, t)dx =

∫ ∞
−∞

v0(x)dx = K,
(4.10)

where v0(x) = 1
2b1

Θ(x−a1; 2b1K). Then we define the nonlinear diffusion waves v = v±(x, t) corresponding
to (4.1) by the formula (4.9) with the following parameters:

a1 = ∓ 1, b1 = ∓φ
′′(0)

4
, K = K± :=

∫ ∞
−∞

$±0 (x)dx, (4.11)

where $±0 (x) are defined in (4.3). We note that the diffusion waves v = v±(x, t) travel at the different
speeds ∓ 1 in the x direction, respectively, and satisfy (4.10) with the above parameters. In particular, the

corresponding initial data v0(x) = v±0 (x) are given by v±0 (x) = 1
2b1

Θ(x ± 1; 2b1K±) with b1 = ∓φ′′(0)
4 and

satisfy the relations ∫ ∞
−∞

v±0 (x)dx = K± =

∫ ∞
−∞

$±0 (x)dx.

Obviously, the nonlinear diffusion waves satisfy v+(t) = G1(t) ∗ v+0 + φ′′(0)
4

∫ t
0 G1(t− τ) ∗ ∂x(v2+)(τ)dτ,

v−(t) = G2(t) ∗ v−0 −
φ′′(0)

4

∫ t
0 G2(t− τ) ∗ ∂x(v2−)(τ)dτ,

(4.12)

where G1(x, t), G2(x, t) are given by (4.2).
The nonlinear diffusion waves have the following decay estimates, which has been established in [5, 7].
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Lemma 4.4. Let K1 = max{|K±|} be suitably small. Then we have:

‖∂kxv±(t)‖Lp ≤ CK1(1 + t)
− 1

2
(1− 1

p
)− k

2

and
‖∂kx(v+v−)(t)‖Lp ≤ CM2

1 e
−ct, (4.13)

where 1 ≤ p ≤ ∞ and k ≥ 0. Here we note that K1 ≤ C‖(f, g)‖L1 ≤ CE1.

To prove Theorem 1.2, we also need to discuss the interaction between two diffusion waves in the different
fields. Let v(x, t) be the nonlinear diffusion wave defined by (4.9). We consider the problem

ψt + a2ψx + b2(v
2)x =

ν

2
ψxx, ψ(x, 0) = 0, (4.14)

where a2, b2 and ν are real constants with ν > 0. Note that the problem (4.14) is equivalent to the integral
formula

ψ(t) = −b2
∫ t

0
S1(t− τ) ∗ ∂x(v2)(τ)dτ,

where S1(x, t) = 1√
2πνt

e−
(x−a2t)

2

2νt is a modified heat kernel. The solution ψ of (4.14) satisfies the following

decay estimate.

Lemma 4.5 ([6, 10]). Let 1 ≤ p ≤ ∞ and k ≥ 0. Let v(x, t) be the nonlinear diffusion wave defined by (4.9).
Assume that |K| is suitably small and that a1 6= a2. Then the solution ψ of the problem (4.14) satisfies the
decay estimate

‖∂kxψ(t)‖Lp ≤ C|K|2(1 + t)
− 1

2
(1− 1

p
)− 1

4
− k

2 . (4.15)

Based on the preliminaries, we give the proof of Theorem 1.2.

Proof. To prove (1.10), we set ω = $ − v+ − v− and define

N (t) =
s∑

k=0

sup
0≤τ≤t

(1 + τ)
1
2
+ k

2 ‖∂kxω(τ)‖L2 .

It is not difficult to check

$2 = ω2 + 2ω(v+ + v−) + v2+ + v2− + 2v+v− = ω($ + v+ + v−) + v2+ + v2− + 2v+v−.

By the above equality and (4.1), (4.12), it holds that

ω = G1(t) ∗ (v+0 −$
+
0 ) + G2(t) ∗ (v−0 −$

−
0 )

+
φ′′(0)

4

∫ t

0
G1(t− τ) ∗ ∂x (($ + v+ + v−)ω) dτ +

φ′′(0)

2

∫ t

0
G1(t− τ) ∗ ∂x(v+v−)dτ

+
φ′′(0)

4

∫ t

0
G1(t− τ) ∗ ∂x(v2−)dτ − φ′′(0)

4

∫ t

0
G2(t− τ) ∗ ∂x (($ + v+ + v−)ω) dτ

− φ′′(0)

2

∫ t

0
G2(t− τ) ∗ ∂x(v+v−)dτ − φ′′(0)

4

∫ t

0
G2(t− τ) ∗ ∂x(v2+)dτ.

(4.16)

By applying ∂kx to (4.16) and taking the L2 norm, by Minkowski’s inequality, we have

‖∂kxω(t)‖L2 ≤ ‖∂kxG1(t) ∗ (v+0 −$
+
0 )‖L2 + ‖∂kxG2(t) ∗ (v−0 −$

−
0 )‖L2

+ |φ
′′(0)

4
|
∫ t

0
‖∂kxG1(t− τ) ∗ ∂x (($ + v+ + v−)ω) ‖L2dτ
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+ |φ
′′(0)

2
|
∫ t

0
‖∂kxG1(t− τ) ∗ ∂x(v+v−)‖L2dτ + ‖φ

′′(0)

4

∫ t

0
∂kxG1(t− τ) ∗ ∂x(v2−)dτ‖L2

+ |φ
′′(0)

4
|
∫ t

0
‖∂kxG2(t− τ) ∗ ∂x (($ + v+ + v−)ω) ‖L2dτ

+ |φ
′′(0)

2
|
∫ t

0
‖∂kxG2(t− τ) ∗ ∂x(v+v−)dτ‖L2 + ‖φ

′′(0)

4

∫ t

0
∂kxG2(t− τ) ∗ ∂x(v2+)dτ‖L2

= I + J + K + L + P + Q + S + T.

For the term I, noting that
∫
R
(
v+0 −$

+
0

)
dx = 0, it follows from (4.7) with p = 2 and β = 1

2 that

I ≤ C(1 + t)−
1
2
− k

2 (Ẽ1 + E2),

where E2 = ‖(f, g)‖L1
1
2

.

Similarly, we obtain

J ≤ C(1 + t)−
1
2
− k

2 (Ẽ1 + E2).

In what follows, we estimate the nonlinear term K. We divide K into two parts and write K = K1 +K2,
where K1 and K2 are corresponding to the time intervals [0, t2 ] and [ t2 , t], respectively. We estimate the term
K1 by using (4.6) with p = 1, j = 0 and l = k. Then we arrive

K1 ≤ C
∫ t

2

0
(1 + t− τ)−

3
4
− k

2 ‖($ + v+ + v−)ω‖L1dτ

+ C

∫ t
2

0
e−c(t−τ)(t− τ)−

1
2 ‖∂kx(($ + v+ + v−)ω)‖L2dτ

≤ CẼ1N (t)

∫ t
2

0
(1 + t− τ)−

3
4
− k

2 (1 + τ)−
3
4dτ + CẼ1N (t)

∫ t
2

0
e−c(t−τ)(t− τ)−

1
2 (1 + τ)−1−

k
2 dτ

≤ CẼ1N (t))(1 + t)−
1
2
− k

2 .

(4.17)

Owing to (4.6) with p = 2, j = k and l = k. This yields

K2 ≤ C
∫ t

t
2

(1 + t− τ)−
1
2 ‖∂kx(($ + v+ + v−)ω)‖L2dτ

+ C

∫ t

t
2

e−c(t−τ)(t− τ)−
1
2 ‖∂kx(($ + v+ + v−)ω)‖L2dτ

≤ CẼ1N (t)C

∫ t

t
2

(1 + t− τ)−
1
2 (1 + τ)−1−

k
2 dτ + CẼ1N (t)

∫ t

t
2

e−c(t−τ)(t− τ)−
1
2 (1 + τ)−1−

k
2 dτ

≤ CẼ1N (t)(1 + t)−
1
2
− k

2 .

(4.18)

Combining the estimates (4.17) and (4.18) yields

K ≤ CẼ1N (t)(1 + t)−
1
2
− k

2 .

Similarly, we can prove

Q ≤ CẼ1N (t)(1 + t)−
1
2
− k

2 .

It follows from (4.4) that

L ≤ C
∫ t

0
(1 + t− τ)−

3
4
− k

2 (‖v+v−(τ)‖L1 + ‖∂kx(v+v−)(τ)‖L2)dτ
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≤ CẼ 2
1

∫ t

0
(1 + t− τ)−

3
4
− k

2 e−cτdτ

≤ Ẽ 2
1 (1 + t)−

1
2
− k

2 ,

where we used (4.13) with ≤ CẼ1.
Similarly, by (4.5) and (4.13) with ≤ CẼ1, we have

S ≤ CẼ 2
1 (1 + t)−

1
2
− k

2 .

By applying (4.15) to P and T, we deduce that

P ≤ CẼ 2
1 (1 + t)−

1
2
− k

2 ,

and
T ≤ CẼ 2

1 (1 + t)−
1
2
− k

2 .

Therefore, we arrive at
N (t) ≤ CẼ1N (t) + C(Ẽ1 + Ẽ 2

1 + E2).

This inequality can be solved as N (t) ≤ CE2 if Ẽ1 is sufficiently small. This completes the proof of Theorem
1.2.

5. Asymptotic profile of solutions to (1.1), (1.2) with σ ≥ 2

The aim of this section is to derive a simpler asymptotic profile of the solution uL to the problem (2.1),
(1.2). We now define ūL by

ūL(t) = G0(t) ∗ ∂xg +H0(t) ∗ f. (5.1)

In what follows, we shall prove that ūL is a asymptotic profile of the linear solution uL. In fact we have:

Lemma 5.1. Let s ≥ 0. Assume that f ∈ Hs∩L1 and g ∈ Hs+1∩L1, and put E1 = ‖u0‖Hs∩L1 +‖g‖Hs+1∩L1.
Let uL be the linear solution and let ūL be defined by (5.1). Then we have

‖∂kx(uL − ūL)(t)‖L2 ≤ CE1(1 + t)−
3
4
− k

2

for 0 ≤ k ≤ s.

From (5.1), we arrive at

ˆ̄uL = e(−
ν
2
ξ2+iξ)t(

1

2
f̂ +

1

2
ĝ) + e(−

ν
2
ξ2−iξ)t(

1

2
f̂ − 1

2
ĝ).

Let G1(t) and G2(t) be defined by (4.2), then

ūL = G1(t) ∗ (
1

2
f +

1

2
g) + G2(t) ∗ (

1

2
f − 1

2
g).

Let ρ(x, t), %(x, t) be the solutions to the following problems

∂tρ−
ν

2
∂2xxρ− ∂xρ = 0, ρ(x, 0) =

1

2
(f + g)(x),

and

∂t%−
ν

2
∂2xx%+ ∂x% = 0, %(x, 0) =

1

2
(f − g)(x),
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respectively. Set M± =

∫ ∞
−∞

(
1

2
f ± 1

2
g)(x)dx. We call

(v+ + v−)(x, t) = M+G1(x, t+ 1) +M−G2(x, t+ 1) (5.2)

is the superposition of the diffusion wave with the amounts M+ and M−.
Noting that ūL(x, t) = (ρ+ %)(x, t), therefore

ūL − v+ − v− = ρ− v+ + %− v−.

Then ρ− v+ and %− v− satisfy the following problem
∂t(ρ− v+)− ν

2
∂2xx(ρ− v+)− ∂x(ρ− v+) = 0,

(ρ− v+)(x, 0) =
1

2
(f + g)(x)−M+G1(x, 1),

and 
∂t(%− v−)− ν

2
∂2xx(%− v−)− ∂x(%− v−) = 0,

(%− v−)(x, 0) =
1

2
(f − g)(x)−M−G2(x, 1),

respectively. By (4.4), (4.5) and (4.7), (4.8), it is not difficult to prove the following lemma.

Lemma 5.2. Let s ≥ 0. Assume that f, g ∈ Hs+1
⋂
L1
1. Put E1=‖(f, g)‖Hs+1

⋂
L1 and E3 = ‖(f, g)‖Hs+1

⋂
L1
1
.

Let v± be the diffusion waves defined by (5.2). There exists a small positive constant δ3 such that if E1 ≤ δ3,
then we have

‖∂kx(ρ− v+)(t)‖L2 ≤ CE3(1 + t)−
3
4
− k

2

and
‖∂kx(%− v−)(t)‖L2 ≤ CE3(1 + t)−

3
4
− k

2

for 0 ≤ k ≤ s.

Proof of Theorems 1.3 and 1.4. Combining (1.8) and Lemmas 5.1 and 5.2, we immediately obtain Theorems
1.3 and 1.4. Thus we have completed the proof of Theorems 1.3 and 1.4.
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