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1. Introduction and preliminaries

The Brunn-Minkowski inequality is one of the most important geometric inequalities. There is a huge
amount of work on its generalizations and on its connections with other areas (see [1, 5–7, 16, 18]). The
excellent survey article of Gardner [5] gives a comprehensive account of various aspects and consequences
of the Brunn-Minkowski inequality.

Projection bodies and intersection bodies played a critical role in the solution of the Shephard problem
and the Busemann-Petty problem, respectively (see [14]). Through the work of Ludwig [12, 13], projection
bodies and intersection bodies were characterized as continuous and GL(n) contravariant valuations. Re-
cently, Schuster [19, 20] introduced the Blaschke-Minkowski homomorphisms and radial Blaschke-Minkowski
homomorphisms which are more general than the well-known projection body operators and intersection
bodies, respectively. In order to state their definition, let Kn denote the space of all convex bodies in Rn

endowed with the Hausdorff topology.
A map Φ : Kn → Kn is called a Blaschke-Minkowski homomorphism, if it satisfies the following condi-

tions:
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(a) Φ is continuous with respect to the Hausdorff metric.

(b) For all K1,K2 ∈ Kn,
Φ(K1#K2) = ΦK1 + ΦK2,

where K1#K2 denotes Blaschke addition (see [9]) of K1 and K2, and ΦK1 + ΦK2 is the Minkowski
addition of ΦK1 and ΦK2.

(c) For all K ∈ Kn and every υ ∈ SO(n),
Φ(υK) = υΦK,

where SO(n) is the group of rotations of Rn.

Let Sn denote the space of all star bodies in Rn endowed with the radial metric. A map Ψ : Sn → Sn
is called a radial Blaschke-Minkowski homomorphism if it satisfies the following conditions:

(a?) Ψ is continuous with respect to the radial metric.

(b?) For all L1, L2 ∈ Sn,
Ψ(L1#̃L2) = ΨL1+̃ΨL2,

where L1#̃L2 denotes the radial Blaschke addition (see [8]) of L1 and L2, and ΨL1+̃ΨL2 is the radial
Minkowski addition of ΨL1 and ΨL2.

(c?) For all L ∈ Sn and every υ ∈ SO(n),
Ψ(υL) = υΨL.

Volume inequalities for convex body and star body valued valuations are an active field of research (see
[2–4, 17, 19–21, 23, 25]).

In the recent paper [22], Wang introduced the following concept of the Lp Blaschke-Minkowski homo-
morphisms:

A map Φp : Kn
s → Kn

s is called an Lp Blaschke-Minkowski homomorphism, if it satisfies the following
conditions:

(1) Φp is continuous with respect to the Hausdorff metric.

(2) For all K1,K2 ∈ Kn
s ,

Φp(K1#pK2) = ΦpK1 +p ΦpK2,

where K1#pK2 denotes Lp Blaschke addition of K1 and K2, and ΦpK1 +p ΦpK2 is the Lp Minkowski
addition of ΦpK1 and ΦpK2.

(3) For all K ∈ Kn
s and every υ ∈ SO(n),

Φp(υK) = υΦpK,

where SO(n) is the group of rotations of Rn.

In the paper [24], Wang et al. defined Lp radial Minkowski homomorphisms as follows:
A map Ψp : Sn → Sn is called an Lp radial Minkowski homomorphism, if it satisfies the following

conditions:

(1?) Ψp is continuous with respect to the radial metric.

(2?) For all L1, L2 ∈ Sn,
Ψp(L1+̃n−pL2) = ΨpL1+̃pΨpL2,

where L1+̃n−pL2 denotes the radial addition of L1 and L2, and ΨpL1+̃pΨpL2 is the radial Minkowski
addition (see [8]) of ΨpL1 and ΨpL2.
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(3?) For all L ∈ Sn and every υ ∈ SO(n),
Ψp(υL) = υΨpL.

In [19], Schuster has established the following Brunn-Minkowski type inequalities.

Theorem 1.1 ([19]). Let Φ : Kn → Kn be a Blaschke-Minkowski homomorphism. If K1,K2 ∈ Kn, then

V (Φ(K1 +K2))
1

n(n−1) ≥ V (ΦK1)
1

n(n−1) + V (ΦK2)
1

n(n−1) ,

with equality, if and only if K1 and K2 are homothetic.

The operator Φ is called even, if ΦK = Φ(−K) for all K ∈ Kn.

Theorem 1.2 ([19]). Let Φ : Kn → Kn be an even Blaschke-Minkowski homomorphism. If K1,K2 ∈ Kn,
then

V (Φ∗(K1 +K2))
− 1

n(n−1) ≥ V (Φ∗K1)
− 1

n(n−1) + V (Φ∗K2)
− 1

n(n−1) ,

with equality, if and only if K1 and K2 are homothetic. Here Φ∗K is the polar body of ΦK.

The aim of this paper is to establish Brunn-Minkowski type inequalities for Lp Blaschke-Minkowski
homomorphisms and Lp radial Minkowski homomorphisms.

Theorem 1.3. Let Φp : Kn
s → Kn

s be an Lp Blaschke-Minkowski homomorphism. If K1,K2 ∈ Kn
s and

n 6= p ≥ 1, then
V (Φp(K1#pK2))

p/n ≥ V (ΦpK1)
p/n + V (ΦpK2)

p/n, (1.1)

with equality in (1.1), if and only if ΦpK1 and ΦpK2 are dilates.

Theorem 1.4. Let Φp : Kn
s → Kn

s be an Lp Blaschke-Minkowski homomorphism. If K1,K2 ∈ Kn
s and

n 6= p ≥ 1, then
V (Φ∗p(K1#pK2))

−p/n ≥ V (Φ∗pK1)
−p/n + V (Φ∗pK2)

−p/n, (1.2)

with equality in (1.2), if and only if ΦpK1 and ΦpK2 are dilates.

Theorem 1.5. Let Ψp : Sn → Sn be an Lp radial Minkowski homomorphism. If K1,K2 ∈ Sn0 and 0 < p < n,
then

V (Ψp(K1+̃n−pK2))
p/n ≤ V (ΨpK1)

p/n + V (ΨpK2)
p/n, (1.3)

with equality in (1.3), if and only if ΨpK1 and ΨpK2 are dilates.
If p < 0 or p > n, then we get

V (Ψp(K1+̃n−pK2))
p/n ≥ V (ΨpK1)

p/n + V (ΨpK2)
p/n, (1.4)

with equality (1.4), if and only if ΨpK1 and ΨpK2 are dilates.

2. Notation and background material

Let Kn denote the set of all convex bodies (compact, convex subsets with non-empty interiors) in Rn,
and let Kn

0 denote the set of convex bodies that contain the origin in their interiors. The subset of Kn
0

consisting of the centered convex bodies will be denoted by Kn
s . Sn−1 is the unit sphere. A convex body is

uniquely determined by its support function. The support function of K ∈ Kn, h(K, ·), is defined on Sn−1

by
h(K,u) = max{u · x : x ∈ K}.

Let δ denote the Hausdorff metric on Kn, i.e., for K,L ∈ Kn, δ(K,L) = |hK −hL|∞, where | · |∞ denotes
the sup-norm on the space of continuous functions, C(Sn−1).
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Associated with a compact subset L ∈ Rn, which is star-shaped with respect to the origin, is its radial
function ρ(L, ·) : Sn−1 → R, defined by

ρ(L, u) = max{λ ≥ 0 : λu ∈ L}.

If ρ(L, ·) is positive and continuous, we call L a star body. Let Sn and Sn0 denote the set of star bodies
and the set of star bodies (about the origin) in Rn, respectively. Two star bodies K, L are said to be dilates
(of one another), if ρK(u)�ρL(u) is independent of u ∈ Sn−1.

If K ∈ Kn
0 , then the polar body of K, K∗, is defined by

K∗ := {x ∈ Rn : x · y ≤ 1, ∀y ∈ K}. (2.1)

From (2.1), it follows that (K∗)∗ = K and

hK∗ =
1

ρK
, ρK∗ =

1

hK
.

Let K1,K2 ∈ Kn
0 , p ≥ 1, and λ1, λ2 ≥ 0 (not both 0). The Lp Minkowski sum λ1 ·K1 +p λ2 ·K2 is the

convex body whose support function is given by (see [15])

h(λ1 ·K1 +p λ2 ·K2, ·)p = λ1h(K1, ·)p + λ2h(K2, ·)p.

For p ≥ 1, the Lp-mixed volume Vp(K,L) of K,L ∈ Kn
o , can be defined by

n

p
Vp(K,L) = lim

ε→0+

V (K +p ε · L)− V (K)

ε
.

In [15], Lutwak has shown that for p ≥ 1, and each K ∈ Kn
o , there exists a positive Borel measure

Sp(K, ·) on Sn−1, such that the Lp-mixed volume Vp(K,L) has the following integral representation:

Vp(K,L) =
1

n

∫
Sn−1

hp(L, u)dSp(K,u),

for all L ∈ Kn
o . The Lp-Minkowski inequality states that for K,L ∈ Kn

o and p ≥ 1

Vp(K,L) ≥ V (K)(n−p)/nV (L)p/n,

with equality, if and only if K and L are dilates.
For n 6= p ≥ 1 and K,L ∈ Kn

s , the Lp-Blaschke addition K+̃pL ∈ Kn
s was defined in [15] by

Sp(K#pL, ·) = Sp(K, ·) + Sp(L, ·).

Let K,L ∈ Sn, and p ∈ R and p 6= 0. The Lp radial addition K+̃pε · L is the star body defined by

ρ(K+̃pε · L, ·)p = ρ(K, ·)p + ερ(L, ·)p

The Lp dual mixed volume Vp(K,L) of K,L ∈ Kn
o , can be defined by

n

p
Ṽp(K,L) = lim

ε→0+

V (K+̃pε · L)− V (K)

ε
.

The definition above and the polar coordinate formula for volume give the following integral represen-
tation of the dual mixed volume Ṽp(K,L)

Ṽp(K,L) =
1

n

∫
Sn−1

ρ(K,u)n−pρ(L, u)pdS(u).
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3. Proof of the main results

In this section, we give the proofs of our main results Theorem 1.3–1.5. First, we need the following
lemma.

Lemma 3.1 ([10]). Let K,L ∈ Sn, if 0 < p < n, then

Ṽp(K,L) ≤ V (K)(n−p)/nV (L)p/n,

with equality, if and only if K and L are dilates. If p < 0 or p > n, then

Ṽp(K,L) ≥ V (K)(n−p)/nV (L)p/n,

with equality, if and only if K and L are dilates.

Proof of Theorem 1.3. Let K,L ∈ Kn
s and n 6= p ≥ 1. From the definition of Lp Blaschke-Minkowski

homomorphisms and the Lp-Minkowski inequality, for any M ∈ Kn
0 , it follows that

Vp(M,Φp(K1#pK2)) = Vp(M,ΦpK1 +p ΦpK2)

= Vp(M,ΦpK1) + Vp(M,ΦpK2)

≥ V (M)(n−p)/n(V (ΦpK1)
p/n + V (ΦpK2)

p/n),

with equality, if and only if M , ΦpK1 and ΦpK2 are dilates.
By taking M = Φp(K1#pK2), we get

V (Φp(K1#pK2))
p/n ≥ V (ΦpK1)

p/n + V (ΦpK2)
p/n,

with equality, if and only if ΦpK1 and ΦpK2 are dilates.
Therefore we have proved inequality (1.1).

Proof of Theorem 1.4. Let K,L ∈ Kn
s and n 6= p ≥ 1. From the polar coordinate formula for volume and

the Minkowski integral inequality, it follows that

V (Φ∗p(K1#pK2))
−p/n =

( 1

n

∫
Sn−1

(h(Φp(K1#pK2), u)p)−n/pdS(u)
)−p/n

= np/n‖h(Φp(K1, u))p + h(Φp(K2, u))p‖−n/p
≥ np/n‖h(Φp(K1, u))p‖−n/p + np/n‖h(Φp(K2, u))p‖−n/p
= V (Φ∗pK1)

−p/n + V (Φ∗pK2)
−p/n,

with equality, if and only if ΦpK1 and ΦpK2 are dilates.
Therefore we have proved inequality (1.2).

Proof of Theorem 1.5. Let K1,K2 ∈ Sn0 and 0 < p < n. From Lemma 3.1 and the Lp-Minkowski inequality,
for any M ∈ Sn0 , it follows that

Ṽp(M,Ψp(K1+̃n−pK2)) = Ṽp(M,ΨpK1+̃pΨpK2)

= Ṽp(M,ΨpK1) + Ṽp(M,ΨpK2)

≤ V (M)(n−p)/n(V (ΨpK1)
p/n + V (ΨpK2)

p/n),

with equality, if and only if M , ΨpK1 and ΨpK2 are dilates.
By taking M = Ψp(K1+̃n−pK2), we get

V (Ψp(K1+̃n−pK2))
p/n ≤ V (ΨpK1)

p/n + V (ΨpK2)
p/n,
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with equality, if and only if ΨpK1 and ΨpK2 are dilates.
Therefore we have proved inequality (1.3).
If p < 0 or p > n, then we get

V (Ψp(K1+̃n−pK2))
p/n ≥ V (ΨpK1)

p/n + V (ΨpK2)
p/n,

with equality, if and only if ΨpK1 and ΨpK2 are dilates. The inequality (1.4) is proved.

Since the Lp projection body operator Πp is an Lp Blaschke-Minkowski homomorphism, we get the
following inequalities which were established by Lu and Leng in [11].

Corollary 3.2 ([11]). Let Πp : Kn
s → Kn

s be the Lp projection body operator. If K1,K2 ∈ Kn
s and n 6= p ≥ 1,

then
V (Πp(K1#pK2))

p/n ≥ V (ΠpK1)
p/n + V (ΠpK2)

p/n, (3.1)

V (Π∗p(K1#pK2))
−p/n ≥ V (Π∗pK1)

−p/n + V (Π∗pK2)
−p/n, (3.2)

with equality in (3.1) and (3.2), if and only if ΠpK1 and ΠpK2 are dilates.
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