A variant form of Korpelevich's algorithm and its convergence analysis

Li-Jun Zhu ${ }^{\text {a,b }}$, Minglun Ren ${ }^{\text {a,* }}$, Weimin Han ${ }^{\text {c }}$
${ }^{a}$ School of Management, Hefei University of Technology, Hefei 230009, China.
${ }^{b}$ School of Mathematics and Information Science, Beifang University of Nationalities, Yinchuan 750021, China.
${ }^{c}$ Department of Mathematics, University of lowa, Iowa City, IA, 52240-1410, USA.

Communicated by F. Vetro

Abstract

A variant form of Korpelevich's algorithm is presented for solving the generalized variational inequality in Banach spaces. It is shown that the presented algorithm converges strongly to a special solution of the generalized variational inequality. © 2016 all rights reserved.

Keywords: Korpelevich's algorithm, variational inequalities, accretive mappings, Banach spaces. 2010 MSC: 47H05, 47J25.

1. Introduction

Let H be a real Hilbert space and $\emptyset \neq C \subset H$ a closed convex set. Let $A: C \rightarrow H$ be a nonlinear mapping. The variational inequality is to find a point $x^{\dagger} \in C$ such that

$$
\begin{equation*}
\left\langle A x^{\dagger}, x^{\ddagger}-x^{\dagger}\right\rangle \geq 0, \forall x^{\ddagger} \in C, \tag{1.1}
\end{equation*}
$$

which was introduced and studied by Stampacchia [9. Variational inequalities are being used as mathematical programming tools and models to study a wide class of unrelated problems arising in mathematical, physical, regional, engineering, and nonlinear optimization sciences. For example, in [16, 19, 20, the solutions of the variational inequalities are being used as the mathematical programming tools related to some fixed points problems. For some related works, we refer the reader to [2, 54, 7, 13, 18]. Especially, Korpelevich

[^0][8] introduced the following Korpelevich's algorithm to solve 1.1). For given $x_{0} \in C$, define a sequence $\left\{x_{n}\right\}$ by the following form
\[

$$
\begin{align*}
y_{n} & =P_{C}\left(x_{n}-\tau A x_{n}\right) \\
x_{n+1} & =P_{C}\left(x_{n}-\tau A y_{n}\right), \quad n \geq 0 \tag{1.2}
\end{align*}
$$
\]

where P_{C} is the metric projection from \mathbb{R}^{n} onto its subset $C, \tau \in(0,1 / \kappa)$ and $A: C \rightarrow \mathbb{R}^{n}$ is a monotone operator.
Remark 1.1. Korpelevich's algorithm (1.2) fails, in general, to converge strongly in the setting of infinitedimensional Hilbert spaces.

In order to obtain the strong convergence, Yao et al. [15] presented the following modified Korpelevich's algorithm. For given $x_{0} \in C$, let $\left\{x_{n}\right\}$ be a sequence defined by

$$
\begin{align*}
y_{n} & =P_{C}\left[x_{n}-\tau A x_{n}-\alpha_{n} x_{n}\right], \tag{1.3}\\
x_{n+1} & =P_{C}\left[x_{n}-\tau A y_{n}+\mu\left(y_{n}-x_{n}\right)\right], \quad n \geq 0
\end{align*}
$$

Consequently, Yao et al. proved that the sequence $\left\{x_{n}\right\}$ generated by (1.3) converges strongly to the solution of (1.1).

In [14, 17], the authors suggested some iterative algorithms for finding the minimum-norm solution of the variational inequalities.

On the other hand, in [1], Aoyama et al. extended the variational inequality (1.1) to the generated variational inequality under the setting of Banach spaces which is to find a point $x^{\dagger} \in C$ such that

$$
\begin{equation*}
\left\langle A x^{\dagger}, J\left(x^{\ddagger}-x^{\dagger}\right)\right\rangle \geq 0, \quad \forall x^{\ddagger} \in C \tag{1.4}
\end{equation*}
$$

where C is a nonempty closed convex subset of a real Banach space E. We use $S(C, A)$ to denote the solution set of 1.4 .

Note that the generalized variational inequality 1.4 is connected with the fixed point problem for nonlinear mappings. To solve (1.4), Aoyama et al. [12] introduced an iterative algorithm. For given $x_{0} \in C$, let $\left\{x_{n}\right\}$ be a sequence defined by

$$
\begin{equation*}
x_{n+1}=\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) Q_{C}\left[x_{n}-\lambda_{n} A x_{n}\right], \quad n \geq 0 \tag{1.5}
\end{equation*}
$$

where Q_{C} is a sunny nonexpansive retraction from E onto C, and $\left\{\alpha_{n}\right\} \subset(0,1)$ and $\left\{\lambda_{n}\right\} \subset(0, \infty)$ are two real number sequences. We also note that the sequence $\left\{x_{n}\right\}$ generated by 1.5 has only weak convergence in the setting of infinite-dimensional Banach spaces.

The main purpose of this paper is to solve problem (1.4). Motivated by the above algorithm (1.3), we suggest a variant form of Korpelevich's algorithm by replacing the metric projection with the sunny nonexpansive retraction. It is shown that the presented algorithm converges strongly to a special solution of the variational inequality (1.4).

2. Preliminaries

Let E be a real Banach space and $\emptyset \neq C \subset E$ a closed convex set.
Definition 2.1. A mapping $A: C \rightarrow E$ is said to be accretive if there exists $j(x-y) \in J(x-y)$ such that

$$
\langle A x-A y, j(x-y)\rangle \geq 0
$$

for all $x, y \in C$.
Definition 2.2. A mapping $A: C \rightarrow E$ is said to be α-strongly accretive if there exists $j(x-y) \in J(x-y)$ such that

$$
\langle A x-A y, j(x-y)\rangle \geq \alpha\|x-y\|^{2}, \quad \forall x, y \in C
$$

where $\alpha>0$ is a positive constant.

Definition 2.3. A mapping A of C into E is said to be α-inverse-strongly accretive if, for $\alpha>0$,

$$
\langle A x-A y, j(x-y)\rangle \geq \alpha\|A x-A y\|^{2}
$$

for all $x, y \in C$.
Let $U=\{x \in E:\|x\|=1\}$. A Banach space E is said to be uniformly convex if for each $\epsilon \in(0,2]$, there exists $\delta>0$ such that for any $x, y \in U$,

$$
\|x-y\| \geq \epsilon \quad \text { implies } \quad\left\|\frac{x+y}{2}\right\| \leq 1-\delta
$$

It is known that a uniformly convex Banach space is reflexive and strictly convex. A Banach space E is said to be smooth if the limit

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{\|x+t y\|-\|x\|}{t} \tag{2.1}
\end{equation*}
$$

exists for all $x, y \in U$. It is also said to be uniformly smooth if the limit 2.1 is attained uniformly for $x, y \in U$. The norm of E is said to be Fréchet differentiable if for each $x \in U$, the limit (2.1) is attained uniformly for $y \in U$. And we define a function $\rho:[0, \infty) \rightarrow[0, \infty)$ called the modulus of smoothness of E as follows:

$$
\rho(\tau)=\sup \left\{\frac{1}{2}(\|x+y\|+\|x-y\|)-1: x, y \in X,\|x\|=1,\|y\|=\tau\right\}
$$

It is known that E is uniformly smooth if and only if $\lim _{\tau \rightarrow 0} \rho(\tau) / \tau=0$. Let q be a fixed real number with $1<q \leq 2$. Then a Banach space E is said to be q-uniformly smooth if there exists a constant $c>0$ such that $\rho(\tau) \leq c \tau^{q}$ for all $\tau>0$.

Lemma 2.4 ([11]). Let q be a given real number with $1<q \leq 2$ and let E be a q-uniformly smooth Banach space. Then

$$
\|x+y\|^{q} \leq\|x\|^{q}+q\left\langle y, J_{q}(x)\right\rangle+2\|K y\|^{q}
$$

for all $x, y \in E$, where K is the q-uniformly smoothness constant of E and J_{q} is the generalized duality mapping from E into $2^{E^{*}}$ defined by

$$
J_{q}(x)=\left\{f \in E^{*}:\langle x, f\rangle=\|x\|^{q},\|f\|=\|x\|^{q-1}\right\}, \quad \forall x \in E .
$$

Let D be a subset of C and let Q be a mapping of C into D. Then Q is said to be sunny if

$$
Q(Q x+t(x-Q x))=Q x
$$

whenever $Q x+t(x-Q x) \in C$ for $x \in C$ and $t \geq 0$. A mapping Q of C into itself is called a retraction if $Q^{2}=Q$. If a mapping Q of C into itself is a retraction, then $Q z=z$ for every $z \in R(Q)$, where $R(Q)$ is the range of Q. A subset D of C is called a sunny nonexpansive retract of C if there exists a sunny nonexpansive retraction from C onto D. We know the following lemma concerning with the sunny nonexpansive retraction.

Lemma 2.5 (4]). Let C be a closed convex subset of a smooth Banach space E, let D be a nonempty subset of C and Q a retraction from C onto D. Then Q is sunny and nonexpansive if and only if

$$
\langle u-Q u, j(y-Q u)\rangle \leq 0
$$

for all $u \in C$ and $y \in D$.
Lemma 2.6 ([1]). Let C be a nonempty closed convex subset of a smooth Banach space E. Let $Q_{C}: E \rightarrow C$ be a sunny nonexpansive retraction and let $A: C \rightarrow E$ be an accretive operator. Then for all $\lambda>0$,

$$
S(C, A)=F\left(Q_{C}(I-\lambda A)\right)
$$

where $S(C, A)=\left\{x^{*} \in C:\left\langle A x^{*}, J\left(x-x^{*}\right)\right\rangle \geq 0, \quad \forall x \in C\right\}$.

Lemma $2.7([10])$. Let C be a nonempty closed convex subset of a real 2-uniformly smooth Banach space E. Let the mapping $A: C \rightarrow E$ be α-inverse-strongly accretive. Then,

$$
\|(I-\lambda A) x-(I-\lambda A) y\|^{2} \leq\|x-y\|^{2}+2 \lambda\left(K^{2} \lambda-\alpha\right)\|A x-A y\|^{2}
$$

In particular, if $0 \leq \lambda \leq \frac{\alpha}{K^{2}}$, then $I-\lambda A$ is nonexpansive.
Lemma 2.8 ([3]). Let E be a uniformly convex Banach space and $\emptyset \neq C \subset E$ be a bounded closed convex set. Let $T: C \rightarrow C$ be a nonexpansive mapping. If $\left\{x_{n}\right\}$ is a sequence of C such that $x_{n} \rightarrow x$ weakly and $x_{n}-T x_{n} \rightarrow 0$ strongly, then x is a fixed point of T.

Lemma $2.9([12])$. Let $\left\{a_{n}\right\},\left\{\gamma_{n}\right\}$, and $\left\{\delta_{n}\right\}$ be three real number sequences satisfying
(i) $\left\{a_{n}\right\} \subset[0, \infty),\left\{\gamma_{n}\right\} \subset(0,1)$, and $\sum_{n=0}^{\infty} \gamma_{n}=\infty$;
(ii) $\lim \sup _{n \rightarrow \infty} \delta_{n} / \gamma_{n} \leq 0$ or $\sum_{n=0}^{\infty}\left|\delta_{n}\right|<\infty$;
(iii) $a_{n+1} \leq\left(1-\gamma_{n}\right) a_{n}+\delta_{n}, n \geq 0$.

Then $\lim _{n \rightarrow \infty} a_{n}=0$.

3. Main results

In this section, we present our algorithm based on Korpelevich's algorithm and consequently, we will show its strong convergence.

In the sequel, we assume that E is a uniformly convex and 2-uniformly smooth Banach space which admits a weakly sequentially continuous duality mapping. Let $\emptyset \neq C \subset E$ be a closed convex set. Let $A: C \rightarrow E$ be an α-strongly accretive and L-Lipschitz continuous mapping. Let $Q_{C}: E \rightarrow C$ be a sunny nonexpansive retraction.

Algorithm 3.1. For given $x_{0} \in C$, define a sequence $\left\{x_{n}\right\}$ iteratively by

$$
\begin{align*}
y_{n} & =Q_{C}\left[x_{n}-\lambda_{n} A x_{n}+\alpha_{n}\left(u_{n}-x_{n}\right)\right] \\
x_{n+1} & =Q_{C}\left[x_{n}-\mu_{n} A y_{n}+\delta_{n}\left(y_{n}-x_{n}\right)\right], n \geq 0 \tag{3.1}
\end{align*}
$$

where $\left\{u_{n}\right\} \subset C$ is a sequence and $\left\{\lambda_{n}\right\} \subset(0,2 \alpha),\left\{\alpha_{n}\right\} \subset[0,1],\left\{\mu_{n}\right\}$, and $\left\{\delta_{n}\right\} \subset[0,1]$ are four real number sequences.

Theorem 3.2. Suppose that $S(C, A) \neq \emptyset$. Assume the following conditions are satisfied:
(C1): $\lim _{n \rightarrow \infty} u_{n}=u \in C$;
$(\mathrm{C} 2): \lambda_{n} \in[a, b] \subset\left(0, \frac{\alpha}{K^{2} L^{2}}\right)$;
(C3): $\frac{\mu_{n}}{\delta_{n}}<\frac{\alpha}{K^{2} L^{2}}(\forall n \geq 0)$, where K is the smooth constant of E;
(C4): $\lim _{n \rightarrow \infty} \alpha_{n}=0, \sum_{n=1}^{\infty} \alpha_{n}=\infty$, and $\lim _{n \rightarrow \infty} \frac{\alpha_{n}}{\alpha_{n-1}}=1$;
(C5): $\lim _{n \rightarrow \infty} \frac{\delta_{n}-\delta_{n-1}}{\alpha_{n}}=0, \lim _{n \rightarrow \infty} \frac{\mu_{n}-\mu_{n-1}}{\alpha_{n}}=0$, and $\lim _{n \rightarrow \infty} \frac{\lambda_{n}-\lambda_{n-1}}{\alpha_{n}}=0$.
Then the sequence $\left\{x_{n}\right\}$ generated by (3.1) converges strongly to $Q^{\prime}(u)$, where Q^{\prime} is a sunny nonexpansive retraction of E onto $S(C, A)$.

Proof. Let $p \in S(C, A)$. Since $\lim _{n \rightarrow \infty} u_{n}=u \in C$, we can choose a constant $M>0$ such that $\left\|u_{n}-p\right\| \leq M$ for all $n \geq 0$. First, from Lemma 2.6 , we have $p=Q_{C}[p-\nu A p]$ for all $\nu>0$. In particular, $p=$ $Q_{C}\left[p-\lambda_{n} A p\right]=Q_{C}\left[\alpha_{n} p+\left(1-\alpha_{n}\right)\left(p-\frac{\lambda_{n}}{1-\alpha_{n}} A p\right)\right]$ for all $n \geq 0$.

Since $A: C \rightarrow E$ is α-strongly accretive and L-Lipschitzian, it must be $\frac{\alpha}{L^{2}}$-inverse-strongly accretive mapping. Thus, by Lemma 2.7, we have

$$
\left\|\left(I-\lambda_{n} A\right) x-\left(I-\lambda_{n} A\right) y\right\|^{2} \leq\|x-y\|^{2}+2 \lambda_{n}\left(K^{2} \lambda_{n}-\frac{\alpha}{L^{2}}\right)\|A x-A y\|^{2}
$$

Since $\alpha_{n} \rightarrow 0$ and $\lambda_{n} \in[a, b] \subset\left(0, \frac{\alpha}{K^{2} L^{2}}\right)$, we get $\alpha_{n}<1-\frac{K^{2} L^{2} \lambda_{n}}{\alpha}$ for enough large n. Without loss of generality, we may assume that, for all $n \in \mathbb{N}, \alpha_{n}<1-\frac{K^{2} L^{2} \lambda_{n}}{\alpha}$, i.e., $\frac{\lambda_{n}}{1-\alpha_{n}} \in\left(0, \frac{\alpha}{K^{2} L^{2}}\right)$. Hence, $I-\frac{\lambda_{n}}{1-\alpha_{n}} A$ is nonexpansive.

From (3.1), we have

$$
\begin{align*}
\left\|y_{n}-p\right\| & =\left\|Q_{C}\left[x_{n}-\lambda_{n} A x_{n}+\alpha_{n}\left(u_{n}-x_{n}\right)\right]-Q_{C}[p]\right\| \\
& =\left\|Q_{C}\left[\alpha_{n} u_{n}+\left(1-\alpha_{n}\right)\left(x_{n}-\frac{\lambda_{n}}{1-\alpha_{n}} A x_{n}\right)\right]-Q_{C}\left[\alpha_{n} p+\left(1-\alpha_{n}\right)\left(p-\frac{\lambda_{n}}{1-\alpha_{n}} A p\right)\right]\right\| \\
& \leq\left\|\alpha_{n}\left(u_{n}-p\right)+\left(1-\alpha_{n}\right)\left[\left(x_{n}-\frac{\lambda_{n}}{1-\alpha_{n}} A x_{n}\right)-\left(p-\frac{\lambda_{n}}{1-\alpha_{n}} A p\right)\right]\right\| \tag{3.2}\\
& \leq \alpha_{n}\left\|u_{n}-p\right\|+\left(1-\alpha_{n}\right)\left\|\left(I-\frac{\lambda_{n}}{1-\alpha_{n}} A\right) x_{n}-\left(I-\frac{\lambda_{n}}{1-\alpha_{n}} A\right) p\right\| \\
& \leq \alpha_{n}\left\|u_{n}-p\right\|+\left(1-\alpha_{n}\right)\left\|x_{n}-p\right\|
\end{align*}
$$

By (3.1) and (3.2), we get

$$
\begin{align*}
\left\|x_{n+1}-p\right\| & =\left\|Q_{C}\left[x_{n}-\mu_{n} A y_{n}+\delta_{n}\left(y_{n}-x_{n}\right)\right]-Q_{C}\left[p-\mu_{n} A p\right]\right\| \\
& =\left\|Q_{C}\left[\left(1-\delta_{n}\right) x_{n}+\delta_{n}\left(y_{n}-\frac{\mu_{n}}{\delta_{n}} A y_{n}\right)\right]-Q_{C}\left[\left(1-\delta_{n}\right) p+\delta_{n}\left(p-\frac{\mu_{n}}{\delta_{n}} A p\right)\right]\right\| \\
& \leq\left\|\left(1-\delta_{n}\right)\left(x_{n}-p\right)+\delta_{n}\left[\left(y_{n}-\frac{\mu_{n}}{\delta_{n}} A y_{n}\right)-\left(p-\frac{\mu_{n}}{\delta_{n}} A p\right)\right]\right\| \\
& \leq\left(1-\delta_{n}\right)\left\|x_{n}-p\right\|+\delta_{n}\left\|\left(y_{n}-\frac{\mu_{n}}{\delta_{n}} A y_{n}\right)-\left(p-\frac{\mu_{n}}{\delta_{n}} A p\right)\right\| \tag{3.3}\\
& \leq\left(1-\delta_{n}\right)\left\|x_{n}-p\right\|+\delta_{n}\left\|y_{n}-p\right\| \\
& \leq\left(1-\delta_{n}\right)\left\|x_{n}-p\right\|+\delta_{n} \alpha_{n}\left\|u_{n}-p\right\|+\delta_{n}\left(1-\alpha_{n}\right)\left\|x_{n}-p\right\| \\
& =\left(1-\delta_{n} \alpha_{n}\right)\left\|x_{n}-p\right\|+\delta_{n} \alpha_{n}\left\|u_{n}-p\right\| \\
& \leq \max \left\{\left\|x_{n}-p\right\|,\left\|u_{n}-p\right\|\right\} .
\end{align*}
$$

By the induction, we obtain $\left\|x_{n+1}-p\right\| \leq \max \left\{\left\|x_{0}-p\right\|, M\right\}$. So, $\left\{x_{n}\right\}$ is bounded. We compute (3.1) to get

$$
\begin{aligned}
\left\|y_{n}-y_{n-1}\right\|= & \left\|Q_{C}\left[x_{n}-\lambda_{n} A x_{n}+\alpha_{n}\left(u_{n}-x_{n}\right)\right]-Q_{C}\left[x_{n-1}-\lambda_{n-1} A x_{n-1}+\alpha_{n-1}\left(u_{n-1}-x_{n-1}\right)\right]\right\| \\
\leq & \left\|\left(1-\alpha_{n}\right)\left(x_{n}-\frac{\lambda_{n}}{1-\alpha_{n}} A x_{n}\right)-\left(1-\alpha_{n-1}\right)\left(x_{n-1}-\frac{\lambda_{n-1}}{1-\alpha_{n-1}} A x_{n-1}\right)+\alpha_{n} u_{n}-\alpha_{n-1} u_{n-1}\right\| \\
= & \|\left(1-\alpha_{n}\right)\left[\left(x_{n}-\frac{\lambda_{n}}{1-\alpha_{n}} A x_{n}\right)-\left(x_{n-1}-\frac{\lambda_{n}}{1-\alpha_{n}} A x_{n-1}\right)\right]+\left(\alpha_{n-1}-\alpha_{n}\right) x_{n-1} \\
& +\left(\lambda_{n-1}-\lambda_{n}\right) A x_{n-1}+\alpha_{n} u_{n}-\alpha_{n-1} u_{n-1} \| \\
\leq & \left(1-\alpha_{n}\right)\left\|\left(x_{n}-\frac{\lambda}{1-\alpha_{n}} A x_{n}\right)-\left(x_{n-1}-\frac{\lambda_{n}}{1-\alpha_{n}} A x_{n-1}\right)\right\| \\
& +\left|\alpha_{n}-\alpha_{n-1}\right|\left(\left\|x_{n-1}\right\|+\left\|u_{n}\right\|\right)+\left|\lambda_{n}-\lambda_{n-1}\right|\left\|A x_{n-1}\right\|+\alpha_{n-1}\left\|u_{n}-u_{n-1}\right\| \\
\leq & \left(1-\alpha_{n}\right)\left\|x_{n}-x_{n-1}\right\|+\left|\alpha_{n}-\alpha_{n-1}\right|\left(\left\|x_{n-1}\right\|+\left\|u_{n}\right\|\right) \\
& +\left|\lambda_{n}-\lambda_{n-1}\right|\left\|A x_{n-1}\right\|+\alpha_{n-1}\left\|u_{n}-u_{n-1}\right\|
\end{aligned}
$$

and thus

$$
\begin{aligned}
\left\|x_{n+1}-x_{n}\right\| & =\left\|Q_{C}\left[x_{n}-\mu_{n} A y_{n}+\delta_{n}\left(y_{n}-x_{n}\right)\right]-Q_{C}\left[x_{n-1}-\mu_{n-1} A y_{n-1}+\delta_{n-1}\left(y_{n-1}-x_{n-1}\right)\right]\right\| \\
& \leq\left\|\left[x_{n}-\mu_{n} A y_{n}+\delta_{n}\left(y_{n}-x_{n}\right)\right]-\left[x_{n-1}-\mu_{n-1} A y_{n-1}+\delta_{n-1}\left(y_{n-1}-x_{n-1}\right)\right]\right\| \\
& =\left\|\left[\left(1-\delta_{n}\right) x_{n}+\delta_{n}\left(y_{n}-\frac{\mu_{n}}{\delta_{n}} A y_{n}\right)\right]-\left[\left(1-\delta_{n-1}\right) x_{n-1}+\delta_{n-1}\left(y_{n-1}-\frac{\mu_{n-1}}{\delta_{n-1}} A y_{n-1}\right)\right]\right\|
\end{aligned}
$$

$$
\begin{aligned}
\leq & \left(1-\delta_{n}\right)\left\|x_{n}-x_{n-1}\right\|+\left|\delta_{n}-\delta_{n-1}\right|| | x_{n-1} \| \\
& +\delta_{n}\left\|\left(y_{n}-\frac{\mu_{n}}{\delta_{n}} A y_{n}\right)-\left(y_{n-1}-\frac{\mu_{n}}{\delta_{n}} A y_{n-1}\right)\right\|+\left|\mu_{n}-\mu_{n-1}\right|\left\|A y_{n-1}\right\|+\left|\delta_{n}-\delta_{n-1}\right|\left\|y_{n-1}\right\| \\
\leq & \left(1-\delta_{n}\right)\left\|x_{n}-x_{n-1}\right\|+\left|\delta_{n}-\delta_{n-1}\right|\left(\left\|x_{n-1}\right\|+\left\|y_{n-1}\right\|\right) \\
& +\delta_{n}\left\|y_{n}-y_{n-1}\right\|+\left|\mu_{n}-\mu_{n-1}\right|\left\|A y_{n-1}\right\| \\
\leq & \left(1-\delta_{n} \alpha_{n}\right)\left\|x_{n}-x_{n-1}\right\|+\left|\delta_{n}-\delta_{n-1}\right|\left(\left\|x_{n-1}\right\|+\left\|y_{n-1}\right\|\right)+\left|\mu_{n}-\mu_{n-1}\right|\left\|A y_{n-1}\right\| \\
& +\left|\alpha_{n}-\alpha_{n-1}\right| \delta_{n}\left(\left\|x_{n-1}\right\|+\left\|u_{n}\right\|\right)+\delta_{n}\left|\lambda_{n}-\lambda_{n-1}\right|\left\|A x_{n-1}\right\|+\alpha_{n-1} \delta_{n}\left\|u_{n}-u_{n-1}\right\| .
\end{aligned}
$$

This together with conditions (C1), (C4), (C5), and Lemma 2.9 imply that

$$
\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0
$$

From (3.2), we have

$$
\begin{align*}
\left\|y_{n}-p\right\|^{2} & \leq\left\|\alpha_{n}\left(u_{n}-p\right)+\left(1-\alpha_{n}\right)\left[\left(x_{n}-\frac{\lambda_{n}}{1-\alpha_{n}} A x_{n}\right)-\left(p-\frac{\lambda_{n}}{1-\alpha_{n}} A p\right)\right]\right\|^{2} \\
& \leq \alpha_{n}\left\|u_{n}-p\right\|^{2}+\left(1-\alpha_{n}\right)\left\|\left(x_{n}-\frac{\lambda_{n}}{1-\alpha_{n}} A x_{n}\right)-\left(p-\frac{\lambda_{n}}{1-\alpha_{n}} A p\right)\right\|^{2} \tag{3.4}\\
& \leq \alpha_{n}\left\|u_{n}-p\right\|^{2}+\left(1-\alpha_{n}\right)\left\|x_{n}-p\right\|^{2}+2 \lambda_{n}\left(\frac{K^{2} \lambda_{n}}{1-\alpha_{n}}-\frac{\alpha}{L^{2}}\right)\left\|A x_{n}-A p\right\|^{2} .
\end{align*}
$$

By (3.1), (3.3), and (3.4), we obtain

$$
\begin{aligned}
\left\|x_{n+1}-p\right\|^{2} \leq & \left\|\left(1-\delta_{n}\right)\left(x_{n}-p\right)+\delta_{n}\left[\left(y_{n}-\frac{\mu_{n}}{\delta_{n}} A y_{n}\right)-\left(p-\frac{\mu_{n}}{\delta_{n}} A p\right)\right]\right\|^{2} \\
\leq & \left(1-\delta_{n}\right)\left\|x_{n}-p\right\|^{2}+\delta_{n}\left\|\left(y_{n}-\frac{\mu_{n}}{\delta_{n}} A y_{n}\right)-\left(p-\frac{\mu_{n}}{\delta_{n}} A p\right)\right\|^{2} \\
\leq & \left(1-\delta_{n}\right)\left\|x_{n}-p\right\|^{2}+\delta_{n}\left[\left\|y_{n}-p\right\|^{2}+\frac{2 \mu_{n}}{\delta_{n}}\left(\frac{K^{2} \mu_{n}}{\delta_{n}}-\frac{\alpha}{L^{2}}\right)\left\|A y_{n}-A p\right\|^{2}\right] \\
\leq & \delta_{n}\left[\alpha_{n}\left\|u_{n}-p\right\|^{2}+\left(1-\alpha_{n}\right)\left\|x_{n}-p\right\|^{2}+2 \lambda_{n}\left(\frac{K^{2} \lambda_{n}}{1-\alpha_{n}}-\frac{\alpha}{L^{2}}\right)\left\|A x_{n}-A p\right\|^{2}\right] \\
& +\left(1-\delta_{n}\right)\left\|x_{n}-p\right\|^{2}+2 \mu_{n}\left(\frac{K^{2} \mu_{n}}{\delta_{n}}-\frac{\alpha}{L^{2}}\right)\left\|A y_{n}-A p\right\|^{2} \\
= & \alpha_{n} \delta_{n}\left\|u_{n}-p\right\|^{2}+\left(1-\delta_{n} \alpha_{n}\right)\left\|x_{n}-p\right\|^{2}+2 \lambda_{n} \delta_{n}\left(\frac{K^{2} \lambda_{n}}{1-\alpha_{n}}-\frac{\alpha}{L^{2}}\right)\left\|A x_{n}-A p\right\|^{2} \\
& +2 \mu_{n}\left(\frac{K^{2} \mu_{n}}{\delta_{n}}-\frac{\alpha}{L^{2}}\right)\left\|A y_{n}-A p\right\|^{2} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
0 & \leq-2 \lambda_{n} \delta_{n}\left(\frac{K^{2} \lambda_{n}}{1-\alpha_{n}}-\frac{\alpha}{L^{2}}\right)\left\|A x_{n}-A p\right\|^{2}-2 \mu_{n}\left(\frac{K^{2} \mu_{n}}{\delta_{n}}-\frac{\alpha}{L^{2}}\right)\left\|A y_{n}-A p\right\|^{2} \\
& \leq \alpha_{n} \delta_{n}\left\|u_{n}-p\right\|^{2}+\left\|x_{n}-p\right\|^{2}-\left\|x_{n+1}-p\right\|^{2} \\
& =\alpha_{n} \delta_{n}\left\|u_{n}-p\right\|^{2}+\left(\left\|x_{n}-p\right\|+\left\|x_{n+1}-p\right\|\right)\left(\left\|x_{n}-p\right\|-\left\|x_{n+1}-p\right\|\right) \\
& \leq \alpha_{n} \delta_{n}\left\|u_{n}-p\right\|^{2}+\left(\left\|x_{n}-p\right\|+\left\|x_{n+1}-p\right\|\right)\left\|x_{n}-x_{n+1}\right\| .
\end{aligned}
$$

Since $\alpha_{n} \rightarrow 0$ and $\left\|x_{n}-x_{n+1}\right\| \rightarrow 0$, we derive

$$
\lim _{n \rightarrow \infty}\left\|A x_{n}-A p\right\|=\lim _{n \rightarrow \infty}\left\|A y_{n}-A p\right\|=0
$$

It follows that

$$
\lim _{n \rightarrow \infty}\left\|A y_{n}-A x_{n}\right\|=0
$$

Noting that A is α-strongly accretive, we deduce

$$
\left\|A y_{n}-A x_{n}\right\| \geq \alpha\left\|y_{n}-x_{n}\right\|
$$

which implies that

$$
\lim _{n \rightarrow \infty}\left\|y_{n}-x_{n}\right\|=0
$$

that is,

$$
\lim _{n \rightarrow \infty}\left\|Q_{C}\left[x_{n}-\lambda_{n} A x_{n}+\alpha_{n}\left(u_{n}-x_{n}\right)\right]-x_{n}\right\|=0
$$

It follows that

$$
\lim _{n \rightarrow \infty}\left\|Q_{C}\left[x_{n}-\lambda_{n} A x_{n}\right]-x_{n}\right\|=0
$$

Next, we show that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle Q^{\prime}(u), j\left(x_{n}-Q^{\prime}(u)\right)\right\rangle \geq 0 \tag{3.5}
\end{equation*}
$$

To prove (3.5), since $\left\{x_{n}\right\}$ is bounded, we can choose a sequence $\left\{x_{n_{i}}\right\}$ of $\left\{x_{n}\right\}$ which converges weakly to z and

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle Q^{\prime}(u), j\left(x_{n}-Q^{\prime}(u)\right)\right\rangle=\lim _{i \rightarrow \infty}\left\langle Q^{\prime}(u), j\left(x_{n_{i}}-Q^{\prime}(u)\right)\right\rangle \tag{3.6}
\end{equation*}
$$

Next, we first prove $z \in S(C, A)$. Since $\lambda_{n_{i}}$ is bounded, there exists a subsequence $\lambda_{n_{i_{j}}}$ such that $\lambda_{n_{i_{j}}} \rightarrow \tilde{\lambda}$. It follows that

$$
\begin{equation*}
\lim _{j \rightarrow \infty}\left\|Q_{C}\left(I-\lambda_{n_{i_{j}}} A\right) x_{n_{i_{j}}}-x_{n_{i_{j}}}\right\|=0 \tag{3.7}
\end{equation*}
$$

By Lemma 2.8 and (3.7), we have $z \in F\left(Q_{C}(I-\tilde{\lambda} A)\right.$), it follows from Lemma 2.6 that $z \in S(C, A)$.
Now, from (3.6) and Lemma 2.5, we have

$$
\limsup _{n \rightarrow \infty}\left\langle u-Q^{\prime}(u), j\left(x_{n}-Q^{\prime}(u)\right)\right\rangle=\lim _{j \rightarrow \infty}\left\langle u-Q^{\prime}(u), j\left(x_{n_{i_{j}}}-Q^{\prime}(u)\right)\right\rangle=\left\langle u-Q^{\prime}(u), j\left(z-Q^{\prime}(u)\right)\right\rangle \leq 0
$$

Noticing that $\left\|x_{n}-y_{n}\right\| \rightarrow 0$, we deduce

$$
\limsup _{n \rightarrow \infty}\left\langle u-Q^{\prime}(u), j\left(y_{n}-Q^{\prime}(u)\right)\right\rangle \leq 0
$$

Since $u_{n} \rightarrow u$, we get

$$
\limsup _{n \rightarrow \infty}\left\langle u_{n}-Q^{\prime}(u), j\left(y_{n}-Q^{\prime}(u)\right)\right\rangle \leq 0
$$

Using Lemma 2.5, we obtain

$$
\left\langle Q_{C}\left[\alpha_{n} u_{n}+\left(1-\alpha_{n}\right)\left(x_{n}-\frac{\lambda}{1-\alpha_{n}} A x_{n}\right)\right]-\left[\alpha_{n} u_{n}+\left(1-\alpha_{n}\right)\left(x_{n}-\frac{\lambda}{1-\alpha_{n}} A x_{n}\right)\right], j\left(y_{n}-Q^{\prime}(u)\right)\right\rangle \leq 0
$$

and

$$
\begin{aligned}
& \left\langle\left[\alpha_{n} Q^{\prime}(u)+\left(1-\alpha_{n}\right)\left(Q^{\prime}(u)-\frac{\lambda_{n}}{1-\alpha_{n}} A Q^{\prime}(u)\right)\right]-Q_{C}\left[\alpha_{n} Q^{\prime}(u)+\left(1-\alpha_{n}\right)\left(Q^{\prime}(u)\right.\right.\right. \\
& \left.\left.\left.\quad-\frac{\lambda_{n}}{1-\alpha_{n}} A Q^{\prime}(u)\right)\right], j\left(y_{n}-Q^{\prime}(u)\right)\right\rangle \leq 0
\end{aligned}
$$

So,

$$
\begin{aligned}
\left\|y_{n}-Q^{\prime}(u)\right\|^{2}= & \| Q_{C}\left[\alpha_{n} u_{n}+\left(1-\alpha_{n}\right)\left(x_{n}-\frac{\lambda_{n}}{1-\alpha_{n}} A x_{n}\right)\right] \\
& -Q_{C}\left[\alpha_{n} Q^{\prime}(u)+\left(1-\alpha_{n}\right)\left(Q^{\prime}(u)-\frac{\lambda_{n}}{1-\alpha_{n}} A Q^{\prime}(u)\right)\right] \|^{2}
\end{aligned}
$$

$$
\begin{aligned}
\leq & \left\langle\alpha_{n}\left(u_{n}-Q^{\prime}(u)\right)+\left(1-\alpha_{n}\right)\left[\left(x_{n}-\frac{\lambda_{n}}{1-\alpha_{n}} A x_{n}\right)-\left(Q^{\prime}(u)-\frac{\lambda_{n}}{1-\alpha_{n}} A Q^{\prime}(u)\right)\right], j\left(y_{n}-Q^{\prime}(u)\right)\right\rangle \\
\leq & \alpha_{n}\left\langle u_{n}-Q^{\prime}(u), j\left(y_{n}-Q^{\prime}(u)\right)\right\rangle+\left(1-\alpha_{n}\right) \|\left(x_{n}-\frac{\lambda_{n}}{1-\alpha_{n}} A x_{n}\right) \\
& -\left(Q^{\prime}(u)-\frac{\lambda_{n}}{1-\alpha_{n}} A Q^{\prime}(u)\right)\| \| y_{n}-Q^{\prime}(u) \| \\
\leq & \alpha_{n}\left\langle u_{n}-Q^{\prime}(u), j\left(y_{n}-Q^{\prime}(u)\right)\right\rangle+\left(1-\alpha_{n}\right)\left\|x_{n}-Q^{\prime}(u)\right\|\left\|y_{n}-Q^{\prime}(u)\right\| \\
\leq & \alpha_{n}\left\langle u_{n}-Q^{\prime}(u), j\left(y_{n}-Q^{\prime}(u)\right)\right\rangle+\frac{1-\alpha_{n}}{2}\left(\left\|x_{n}-Q^{\prime}(u)\right\|^{2}+\left\|y_{n}-Q^{\prime}(u)\right\|^{2}\right)
\end{aligned}
$$

which implies that

$$
\begin{equation*}
\left\|y_{n}-Q^{\prime}(u)\right\|^{2} \leq\left(1-\alpha_{n}\right)\left\|x_{n}-Q^{\prime}(u)\right\|^{2}+2 \alpha_{n}\left\langle u_{n}-Q^{\prime}(u), j\left(y_{n}-Q^{\prime}(u)\right)\right\rangle \tag{3.8}
\end{equation*}
$$

Finally, we prove that the sequence $x_{n} \rightarrow Q^{\prime}(u)$. As a matter of fact, from (3.1) and (3.8), we have

$$
\begin{aligned}
\left\|x_{n+1}-Q^{\prime}(u)\right\|^{2} & \leq\left(1-\delta_{n}\right)\left\|x_{n}-Q^{\prime}(u)\right\|^{2}+\delta_{n}\left\|y_{n}-Q^{\prime}(u)\right\|^{2} \\
& \leq\left(1-\delta_{n} \alpha_{n}\right)\left\|x_{n}-Q^{\prime}(u)\right\|^{2}+2 \delta_{n} \alpha_{n}\left\langle u_{n}-Q^{\prime}(u), j\left(y_{n}-Q^{\prime}(u)\right)\right\rangle
\end{aligned}
$$

Applying Lemma 2.9 to the last inequality, we conclude that x_{n} converges strongly to $Q^{\prime}(u)$. This completes the proof.

Acknowledgment

Li-Jun Zhu was supported in part by NNSF of China (61362033) and Minglun Ren was supported in part bu NNSF of China (71531008, 71271073).

References

[1] K. Aoyama, H. Iiduka, W. Takahashi, Weak convergence of an iterative sequence for accretive operators in Banach spaces, Fixed Point Theory Appl., 2006 (2006), 13 pages. $1,2.6$
[2] J. Y. Bello Cruz, A. N. Iusem, A strongly convergent direct method for monotone variational inequalities in Hilbert spaces, Numer. Funct. Anal. Optim., 30 (2009), 23-36. 1
[3] F. E. Browder, Nonlinear operators and nonlinear equations of evolution in Banach spaces,Nonlinear functional analysis, Proc. Sympos. Pure Math., Chicago, Ill., XVIII (1968), 1-308, Amer. Math. Soc., Providence, R. I., (1976). 2.8
[4] R. E. Bruck, Jr., Nonexpansive retracts of Banach spaces, Bull. Amer. Math. Soc., 76 (1970), 384-386. 2.5
[5] R. Glowinski, Numerical methods for nonlinear variational problems, Springer Series in Computational Physics, Springer-Verlag, New York, (1984). 1
[6] B.-S. He, Z.-H. Yang, X.-M. Yuan, An approximate proximal-extragradient type method for monotone variational inequalities, J. Math. Anal. Appl., 300 (2004), 362-374.
[7] A. N. Iusem, B. F. Svaiter, A variant of Korpelevich's method for variational inequalities with a new search strategy, Optimization, 42 (1997), 309-321. 11
[8] G. M. Korpelevič, An extragradient method for finding saddle points and for other problems, (Russian) Ékonom. i Mat. Metody, 12 (1976), 747-756. 1
[9] G. Stampacchi, Formes bilineaires coercivites surles ensembles convexes, CR Acad. Sci. Paris, 258 (1964), 44134416. 1
[10] W. Takahashi, M. Toyoda, Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl., 118 (2003), 417-428. 2.7
[11] H.-K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal., 16 (1991), 1127-1138. 2.4
[12] H.-K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc., 66 (2002), 240-256. 1 [2.9
[13] H.-K. Xu, T.-H. Kim, Convergence of hybrid steepest-descent methods for variational inequalities, J. Optim. Theory Appl., 119 (2003), 185-201. 1
[14] Y.-H. Yao, R.-D. Chen, H.-K. Xu, Schemes for finding minimum-norm solutions of variational inequalities, Nonlinear Anal., 72 (2010), 3447-3456. 1
[15] Y.-H. Yao, G, Marino, L. Muglia, A modified Korpelevich's method convergent to the minimum-norm solution of a variational inequality, Optimization, 63 (2014), 559-569. 1
[16] Y.-H. Yao, G. Marino, H.-K. Xu, Y.-C. Liou, Construction of minimum-norm fixed points of pseudocontractions in Hilbert spaces, J. Inequal. Appl., 2014 (2014), 14 pages. 1
[17] Y.-H. Yao, M. A. Noor, Y.-C. Liou, Strong convergence of a modified extragradient method to the minimum-norm solution of variational inequalities, Abstr. Appl. Anal., 2012 (2012), 9 pages. 1
[18] Y.-H. Yao, M. A. Noor, Y.-C. Liou, S. M. Kang, Iterative algorithms for general multivalued variational inequalities, Abstr. Appl. Anal., 2012 (2012), 10 pages. 1
[19] Y.-H. Yao, M. Postolache, S. M. Kang, Strong convergence of approximated iterations for asymptotically pseudocontractive mappings, Fixed Point Theory Appl., 2014 (2014), 13 pages. 1
[20] Y.-H. Yao, M. Postolache, Y.-C. Liou, Strong convergence of a self-adaptive method for the split feasibility problem, Fixed Point Theory Appl., 2013 (2013), 12 pages. 1

[^0]: *Corresponding author
 Email addresses: zhulijun1995@yahoo.com (Li-Jun Zhu), hfutren@sina.com.cn (Minglun Ren), weimin-han@uiowa.edu (Weimin Han)

