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Abstract

A variant form of Korpelevich’s algorithm is presented for solving the generalized variational inequality
in Banach spaces. It is shown that the presented algorithm converges strongly to a special solution of the
generalized variational inequality. c©2016 all rights reserved.
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1. Introduction

Let H be a real Hilbert space and ∅ 6= C ⊂ H a closed convex set. Let A : C → H be a nonlinear
mapping. The variational inequality is to find a point x† ∈ C such that

〈Ax†, x‡ − x†〉 ≥ 0, ∀x‡ ∈ C, (1.1)

which was introduced and studied by Stampacchia [9]. Variational inequalities are being used as mathemat-
ical programming tools and models to study a wide class of unrelated problems arising in mathematical,
physical, regional, engineering, and nonlinear optimization sciences. For example, in [16, 19, 20], the solu-
tions of the variational inequalities are being used as the mathematical programming tools related to some
fixed points problems. For some related works, we refer the reader to [2, 5–7, 13, 18]. Especially, Korpelevich
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[8] introduced the following Korpelevich’s algorithm to solve (1.1). For given x0 ∈ C, define a sequence {xn}
by the following form

yn = PC(xn − τAxn),

xn+1 = PC(xn − τAyn), n ≥ 0,
(1.2)

where PC is the metric projection from Rn onto its subset C, τ ∈ (0, 1/κ) and A : C → Rn is a monotone
operator.

Remark 1.1. Korpelevich’s algorithm (1.2) fails, in general, to converge strongly in the setting of infinite-
dimensional Hilbert spaces.

In order to obtain the strong convergence, Yao et al. [15] presented the following modified Korpelevich’s
algorithm. For given x0 ∈ C, let {xn} be a sequence defined by

yn = PC [xn − τAxn − αnxn],

xn+1 = PC [xn − τAyn + µ(yn − xn)], n ≥ 0.
(1.3)

Consequently, Yao et al. proved that the sequence {xn} generated by (1.3) converges strongly to the solution
of (1.1).

In [14, 17], the authors suggested some iterative algorithms for finding the minimum-norm solution of
the variational inequalities.

On the other hand, in [1], Aoyama et al. extended the variational inequality (1.1) to the generated
variational inequality under the setting of Banach spaces which is to find a point x† ∈ C such that

〈Ax†, J(x‡ − x†)〉 ≥ 0, ∀x‡ ∈ C, (1.4)

where C is a nonempty closed convex subset of a real Banach space E. We use S(C,A) to denote the
solution set of (1.4).

Note that the generalized variational inequality (1.4) is connected with the fixed point problem for
nonlinear mappings. To solve (1.4), Aoyama et al. [12] introduced an iterative algorithm. For given x0 ∈ C,
let {xn} be a sequence defined by

xn+1 = αnxn + (1− αn)QC [xn − λnAxn], n ≥ 0, (1.5)

where QC is a sunny nonexpansive retraction from E onto C, and {αn} ⊂ (0, 1) and {λn} ⊂ (0,∞) are two
real number sequences. We also note that the sequence {xn} generated by (1.5) has only weak convergence
in the setting of infinite-dimensional Banach spaces.

The main purpose of this paper is to solve problem (1.4). Motivated by the above algorithm (1.3),
we suggest a variant form of Korpelevich’s algorithm by replacing the metric projection with the sunny
nonexpansive retraction. It is shown that the presented algorithm converges strongly to a special solution
of the variational inequality (1.4).

2. Preliminaries

Let E be a real Banach space and ∅ 6= C ⊂ E a closed convex set.

Definition 2.1. A mapping A : C → E is said to be accretive if there exists j(x− y) ∈ J(x− y) such that

〈Ax−Ay, j(x− y)〉 ≥ 0

for all x, y ∈ C.

Definition 2.2. A mapping A : C → E is said to be α-strongly accretive if there exists j(x− y) ∈ J(x− y)
such that

〈Ax−Ay, j(x− y)〉 ≥ α‖x− y‖2, ∀x, y ∈ C,
where α > 0 is a positive constant.
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Definition 2.3. A mapping A of C into E is said to be α-inverse-strongly accretive if, for α > 0,

〈Ax−Ay, j(x− y)〉 ≥ α‖Ax−Ay‖2

for all x, y ∈ C.

Let U = {x ∈ E : ‖x‖ = 1}. A Banach space E is said to be uniformly convex if for each ε ∈ (0, 2], there
exists δ > 0 such that for any x, y ∈ U ,

‖x− y‖ ≥ ε implies

∥∥∥∥x+ y

2

∥∥∥∥ ≤ 1− δ.

It is known that a uniformly convex Banach space is reflexive and strictly convex. A Banach space E is said
to be smooth if the limit

lim
t→0

‖x+ ty‖ − ‖x‖
t

(2.1)

exists for all x, y ∈ U . It is also said to be uniformly smooth if the limit (2.1) is attained uniformly for
x, y ∈ U . The norm of E is said to be Fréchet differentiable if for each x ∈ U , the limit (2.1) is attained
uniformly for y ∈ U . And we define a function ρ : [0,∞) → [0,∞) called the modulus of smoothness of E
as follows:

ρ(τ) = sup
{1

2
(‖x+ y‖+ ‖x− y‖)− 1 : x, y ∈ X, ‖x‖ = 1, ‖y‖ = τ

}
.

It is known that E is uniformly smooth if and only if limτ→0 ρ(τ)/τ = 0. Let q be a fixed real number with
1 < q ≤ 2. Then a Banach space E is said to be q-uniformly smooth if there exists a constant c > 0 such
that ρ(τ) ≤ cτ q for all τ > 0.

Lemma 2.4 ([11]). Let q be a given real number with 1 < q ≤ 2 and let E be a q-uniformly smooth Banach
space. Then

‖x+ y‖q ≤ ‖x‖q + q〈y, Jq(x)〉+ 2‖Ky‖q

for all x, y ∈ E, where K is the q-uniformly smoothness constant of E and Jq is the generalized duality
mapping from E into 2E

∗
defined by

Jq(x) = {f ∈ E∗ : 〈x, f〉 = ‖x‖q, ‖f‖ = ‖x‖q−1}, ∀x ∈ E.

Let D be a subset of C and let Q be a mapping of C into D. Then Q is said to be sunny if

Q(Qx+ t(x−Qx)) = Qx,

whenever Qx + t(x − Qx) ∈ C for x ∈ C and t ≥ 0. A mapping Q of C into itself is called a retraction if
Q2 = Q. If a mapping Q of C into itself is a retraction, then Qz = z for every z ∈ R(Q), where R(Q) is the
range of Q. A subset D of C is called a sunny nonexpansive retract of C if there exists a sunny nonexpansive
retraction from C onto D. We know the following lemma concerning with the sunny nonexpansive retraction.

Lemma 2.5 ([4]). Let C be a closed convex subset of a smooth Banach space E, let D be a nonempty subset
of C and Q a retraction from C onto D. Then Q is sunny and nonexpansive if and only if

〈u−Qu, j(y −Qu)〉 ≤ 0

for all u ∈ C and y ∈ D.

Lemma 2.6 ([1]). Let C be a nonempty closed convex subset of a smooth Banach space E. Let QC : E → C
be a sunny nonexpansive retraction and let A : C → E be an accretive operator. Then for all λ > 0,

S(C,A) = F (QC(I − λA)),

where S(C,A) = {x∗ ∈ C : 〈Ax∗, J(x− x∗)〉 ≥ 0, ∀x ∈ C}.
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Lemma 2.7 ([10]). Let C be a nonempty closed convex subset of a real 2-uniformly smooth Banach space
E. Let the mapping A : C → E be α-inverse-strongly accretive. Then,

‖(I − λA)x− (I − λA)y‖2 ≤ ‖x− y‖2 + 2λ(K2λ− α)‖Ax−Ay‖2.

In particular, if 0 ≤ λ ≤ α
K2 , then I − λA is nonexpansive.

Lemma 2.8 ([3]). Let E be a uniformly convex Banach space and ∅ 6= C ⊂ E be a bounded closed convex
set. Let T : C → C be a nonexpansive mapping. If {xn} is a sequence of C such that xn → x weakly and
xn − Txn → 0 strongly, then x is a fixed point of T .

Lemma 2.9 ([12]). Let {an}, {γn}, and {δn} be three real number sequences satisfying

(i) {an} ⊂ [0,∞), {γn} ⊂ (0, 1), and
∑∞

n=0 γn =∞;

(ii) lim supn→∞ δn/γn ≤ 0 or
∑∞

n=0 |δn| <∞;

(iii) an+1 ≤ (1− γn)an + δn, n ≥ 0.

Then limn→∞ an = 0.

3. Main results

In this section, we present our algorithm based on Korpelevich’s algorithm and consequently, we will
show its strong convergence.

In the sequel, we assume that E is a uniformly convex and 2-uniformly smooth Banach space which
admits a weakly sequentially continuous duality mapping. Let ∅ 6= C ⊂ E be a closed convex set. Let
A : C → E be an α-strongly accretive and L-Lipschitz continuous mapping. Let QC : E → C be a sunny
nonexpansive retraction.

Algorithm 3.1. For given x0 ∈ C, define a sequence {xn} iteratively by

yn = QC [xn − λnAxn + αn(un − xn)],

xn+1 = QC [xn − µnAyn + δn(yn − xn)], n ≥ 0,
(3.1)

where {un} ⊂ C is a sequence and {λn} ⊂ (0, 2α), {αn} ⊂ [0, 1], {µn}, and {δn} ⊂ [0, 1] are four real
number sequences.

Theorem 3.2. Suppose that S(C,A) 6= ∅. Assume the following conditions are satisfied:

(C1): limn→∞ un = u ∈ C;

(C2): λn ∈ [a, b] ⊂ (0, α
K2L2 );

(C3): µn
δn
< α

K2L2 (∀n ≥ 0), where K is the smooth constant of E;

(C4): limn→∞ αn = 0,
∑∞

n=1 αn =∞, and limn→∞
αn
αn−1

= 1;

(C5): limn→∞
δn−δn−1

αn
= 0, limn→∞

µn−µn−1

αn
= 0, and limn→∞

λn−λn−1

αn
= 0.

Then the sequence {xn} generated by (3.1) converges strongly to Q′(u), where Q′ is a sunny nonexpansive
retraction of E onto S(C,A).

Proof. Let p ∈ S(C,A). Since limn→∞ un = u ∈ C, we can choose a constant M > 0 such that ‖un−p‖ ≤M
for all n ≥ 0. First, from Lemma 2.6, we have p = QC [p − νAp] for all ν > 0. In particular, p =
QC [p− λnAp] = QC [αnp+ (1− αn)(p− λn

1−αn
Ap)] for all n ≥ 0.

Since A : C → E is α-strongly accretive and L-Lipschitzian, it must be α
L2 -inverse-strongly accretive

mapping. Thus, by Lemma 2.7, we have

‖(I − λnA)x− (I − λnA)y‖2 ≤ ‖x− y‖2 + 2λn

(
K2λn −

α

L2

)
‖Ax−Ay‖2.
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Since αn → 0 and λn ∈ [a, b] ⊂ (0, α
K2L2 ), we get αn < 1 − K2L2λn

α for enough large n. Without loss of

generality, we may assume that, for all n ∈ N, αn < 1 − K2L2λn
α , i.e., λn

1−αn
∈ (0, α

K2L2 ). Hence, I − λn
1−αn

A
is nonexpansive.

From (3.1), we have

‖yn − p‖ = ‖QC [xn − λnAxn + αn(un − xn)]−QC [p]‖

= ‖QC [αnun + (1− αn)(xn −
λn

1− αn
Axn)]−QC [αnp+ (1− αn)(p− λn

1− αn
Ap)]‖

≤ ‖αn(un − p) + (1− αn)[(xn −
λn

1− αn
Axn)− (p− λn

1− αn
Ap)]‖

≤ αn‖un − p‖+ (1− αn)‖(I − λn
1− αn

A)xn − (I − λn
1− αn

A)p‖

≤ αn‖un − p‖+ (1− αn)‖xn − p‖.

(3.2)

By (3.1) and (3.2), we get

‖xn+1 − p‖ = ‖QC [xn − µnAyn + δn(yn − xn)]−QC [p− µnAp]‖

= ‖QC [(1− δn)xn + δn(yn −
µn
δn
Ayn)]−QC [(1− δn)p+ δn(p− µn

δn
Ap)]‖

≤ ‖(1− δn)(xn − p) + δn[(yn −
µn
δn
Ayn)− (p− µn

δn
Ap)]‖

≤ (1− δn)‖xn − p‖+ δn‖(yn −
µn
δn
Ayn)− (p− µn

δn
Ap)‖

≤ (1− δn)‖xn − p‖+ δn‖yn − p‖
≤ (1− δn)‖xn − p‖+ δnαn‖un − p‖+ δn(1− αn)‖xn − p‖
= (1− δnαn)‖xn − p‖+ δnαn‖un − p‖
≤ max{‖xn − p‖, ‖un − p‖}.

(3.3)

By the induction, we obtain ‖xn+1 − p‖ ≤ max{‖x0 − p‖,M}. So, {xn} is bounded. We compute (3.1) to
get

‖yn − yn−1‖ = ‖QC [xn − λnAxn + αn(un − xn)]−QC [xn−1 − λn−1Axn−1 + αn−1(un−1 − xn−1)]‖

≤ ‖(1− αn)(xn −
λn

1− αn
Axn)− (1− αn−1)(xn−1 −

λn−1
1− αn−1

Axn−1) + αnun − αn−1un−1‖

= ‖(1− αn)[(xn −
λn

1− αn
Axn)− (xn−1 −

λn
1− αn

Axn−1)] + (αn−1 − αn)xn−1

+ (λn−1 − λn)Axn−1 + αnun − αn−1un−1‖

≤ (1− αn)‖(xn −
λ

1− αn
Axn)− (xn−1 −

λn
1− αn

Axn−1)‖

+ |αn − αn−1|(‖xn−1‖+ ‖un‖) + |λn − λn−1|‖Axn−1‖+ αn−1‖un − un−1‖
≤ (1− αn)‖xn − xn−1‖+ |αn − αn−1|(‖xn−1‖+ ‖un‖)

+ |λn − λn−1|‖Axn−1‖+ αn−1‖un − un−1‖,

and thus

‖xn+1 − xn‖ = ‖QC [xn − µnAyn + δn(yn − xn)]−QC [xn−1 − µn−1Ayn−1 + δn−1(yn−1 − xn−1)]‖
≤ ‖[xn − µnAyn + δn(yn − xn)]− [xn−1 − µn−1Ayn−1 + δn−1(yn−1 − xn−1)]‖

= ‖[(1− δn)xn + δn(yn −
µn
δn
Ayn)]− [(1− δn−1)xn−1 + δn−1(yn−1 −

µn−1
δn−1

Ayn−1)]‖
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≤ (1− δn)‖xn − xn−1‖+ |δn − δn−1|‖xn−1‖

+ δn‖(yn −
µn
δn
Ayn)− (yn−1 −

µn
δn
Ayn−1)‖+ |µn − µn−1|‖Ayn−1‖+ |δn − δn−1|‖yn−1‖

≤ (1− δn)‖xn − xn−1‖+ |δn − δn−1|(‖xn−1‖+ ‖yn−1‖)
+ δn‖yn − yn−1‖+ |µn − µn−1|‖Ayn−1‖
≤ (1− δnαn)‖xn − xn−1‖+ |δn − δn−1|(‖xn−1‖+ ‖yn−1‖) + |µn − µn−1|‖Ayn−1‖

+ |αn − αn−1|δn(‖xn−1‖+ ‖un‖) + δn|λn − λn−1|‖Axn−1‖+ αn−1δn‖un − un−1‖.

This together with conditions (C1), (C4), (C5), and Lemma 2.9 imply that

lim
n→∞

‖xn+1 − xn‖ = 0.

From (3.2), we have

‖yn − p‖2 ≤ ‖αn(un − p) + (1− αn)[(xn −
λn

1− αn
Axn)− (p− λn

1− αn
Ap)]‖2

≤ αn‖un − p‖2 + (1− αn)‖(xn −
λn

1− αn
Axn)− (p− λn

1− αn
Ap)‖2

≤ αn‖un − p‖2 + (1− αn)‖xn − p‖2 + 2λn

( K2λn
1− αn

− α

L2

)
‖Axn −Ap‖2.

(3.4)

By (3.1), (3.3), and (3.4), we obtain

‖xn+1 − p‖2 ≤ ‖(1− δn)(xn − p) + δn[(yn −
µn
δn
Ayn)− (p− µn

δn
Ap)]‖2

≤ (1− δn)‖xn − p‖2 + δn‖(yn −
µn
δn
Ayn)− (p− µn

δn
Ap)‖2

≤ (1− δn)‖xn − p‖2 + δn[‖yn − p‖2 +
2µn
δn

(
K2µn
δn

− α

L2
)‖Ayn −Ap‖2]

≤ δn[αn‖un − p‖2 + (1− αn)‖xn − p‖2 + 2λn(
K2λn
1− αn

− α

L2
)‖Axn −Ap‖2]

+ (1− δn)‖xn − p‖2 + 2µn(
K2µn
δn

− α

L2
)‖Ayn −Ap‖2

= αnδn‖un − p‖2 + (1− δnαn)‖xn − p‖2 + 2λnδn(
K2λn
1− αn

− α

L2
)‖Axn −Ap‖2

+ 2µn(
K2µn
δn

− α

L2
)‖Ayn −Ap‖2.

Therefore,

0 ≤ −2λnδn(
K2λn
1− αn

− α

L2
)‖Axn −Ap‖2 − 2µn(

K2µn
δn

− α

L2
)‖Ayn −Ap‖2

≤ αnδn‖un − p‖2 + ‖xn − p‖2 − ‖xn+1 − p‖2

= αnδn‖un − p‖2 + (‖xn − p‖+ ‖xn+1 − p‖)(‖xn − p‖ − ‖xn+1 − p‖)
≤ αnδn‖un − p‖2 + (‖xn − p‖+ ‖xn+1 − p‖)‖xn − xn+1‖.

Since αn → 0 and ‖xn − xn+1‖ → 0, we derive

lim
n→∞

‖Axn −Ap‖ = lim
n→∞

‖Ayn −Ap‖ = 0.

It follows that
lim
n→∞

‖Ayn −Axn‖ = 0.
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Noting that A is α-strongly accretive, we deduce

‖Ayn −Axn‖ ≥ α‖yn − xn‖,

which implies that
lim
n→∞

‖yn − xn‖ = 0,

that is,
lim
n→∞

‖QC [xn − λnAxn + αn(un − xn)]− xn‖ = 0.

It follows that
lim
n→∞

‖QC [xn − λnAxn]− xn‖ = 0.

Next, we show that
lim sup
n→∞

〈Q′(u), j(xn −Q′(u))〉 ≥ 0. (3.5)

To prove (3.5), since {xn} is bounded, we can choose a sequence {xni} of {xn} which converges weakly to
z and

lim sup
n→∞

〈Q′(u), j(xn −Q′(u))〉 = lim
i→∞
〈Q′(u), j(xni −Q′(u))〉. (3.6)

Next, we first prove z ∈ S(C,A). Since λni is bounded, there exists a subsequence λnij
such that λnij

→ λ̃.
It follows that

lim
j→∞

‖QC(I − λnij
A)xnij

− xnij
‖ = 0. (3.7)

By Lemma 2.8 and (3.7), we have z ∈ F (QC(I − λ̃A)), it follows from Lemma 2.6 that z ∈ S(C,A).
Now, from (3.6) and Lemma 2.5, we have

lim sup
n→∞

〈u−Q′(u), j(xn −Q′(u))〉 = lim
j→∞
〈u−Q′(u), j(xnij

−Q′(u))〉 = 〈u−Q′(u), j(z −Q′(u))〉 ≤ 0.

Noticing that ‖xn − yn‖ → 0, we deduce

lim sup
n→∞

〈u−Q′(u), j(yn −Q′(u))〉 ≤ 0.

Since un → u, we get
lim sup
n→∞

〈un −Q′(u), j(yn −Q′(u))〉 ≤ 0.

Using Lemma 2.5, we obtain

〈QC [αnun + (1− αn)(xn −
λ

1− αn
Axn)]− [αnun + (1− αn)(xn −

λ

1− αn
Axn)], j(yn −Q′(u))〉 ≤ 0

and

〈[αnQ′(u) + (1− αn)(Q′(u)− λn
1− αn

AQ′(u))]−QC [αnQ
′(u) + (1− αn)(Q′(u)

− λn
1− αn

AQ′(u))], j(yn −Q′(u))〉 ≤ 0.

So,

‖yn −Q′(u)‖2 = ‖QC [αnun + (1− αn)(xn −
λn

1− αn
Axn)]

−QC [αnQ
′(u) + (1− αn)(Q′(u)− λn

1− αn
AQ′(u))]‖2
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≤ 〈αn(un −Q′(u)) + (1− αn)[(xn −
λn

1− αn
Axn)− (Q′(u)− λn

1− αn
AQ′(u))], j(yn −Q′(u))〉

≤ αn〈un −Q′(u), j(yn −Q′(u))〉+ (1− αn)‖(xn −
λn

1− αn
Axn)

− (Q′(u)− λn
1− αn

AQ′(u))‖‖yn −Q′(u)‖

≤ αn〈un −Q′(u), j(yn −Q′(u))〉+ (1− αn)‖xn −Q′(u)‖‖yn −Q′(u)‖

≤ αn〈un −Q′(u), j(yn −Q′(u))〉+
1− αn

2
(‖xn −Q′(u)‖2 + ‖yn −Q′(u)‖2),

which implies that

‖yn −Q′(u)‖2 ≤ (1− αn)‖xn −Q′(u)‖2 + 2αn〈un −Q′(u), j(yn −Q′(u))〉. (3.8)

Finally, we prove that the sequence xn → Q′(u). As a matter of fact, from (3.1) and (3.8), we have

‖xn+1 −Q′(u)‖2 ≤ (1− δn)‖xn −Q′(u)‖2 + δn‖yn −Q′(u)‖2

≤ (1− δnαn)‖xn −Q′(u)‖2 + 2δnαn〈un −Q′(u), j(yn −Q′(u))〉.

Applying Lemma 2.9 to the last inequality, we conclude that xn converges strongly to Q′(u). This completes
the proof.
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