On certain multivalent functions involving the generalized Srivastava-Attiya operator

Zhi-Gang Wang ${ }^{\text {a,*, }}$, Mohsan Raza ${ }^{\text {b }}$, Muhammad Ayaz ${ }^{\text {c }}$, Muhammad Arif ${ }^{\text {c }}$
${ }^{a}$ School of Mathematics and Computing Science, Hunan First Normal University, Changsha 410205, Hunan, P. R. China.
${ }^{b}$ Department of Mathematics, Government College University, Faisalabad, Pakistan.
${ }^{\text {c Department of Mathematics, Abdul Wali Khan University, Mardan 23200, Pakistan. }}$
Communicated by Sh. Wu

Abstract

In this paper, we introduce certain new classes of multivalent functions involving the generalized Srivastava-Attiya operator. Such results as inclusion relationships, integral representation and arc length problems for these classes of functions are obtained. The behavior of these classes under a certain integral operator is also discussed. © 2016 All rights reserved.

Keywords: Srivastava-Attiya operator, starlike function, subordination.
2010 MSC: 30C45, 30C80.

1. Introduction and preliminaries

Let $\mathcal{A}(p)$ denote the class of all multivalent functions f of the form

$$
f(z)=z^{p}+\sum_{n=1}^{\infty} a_{n+p} z^{n+p},
$$

which are analytic in the open unit disk $\mathbb{D}=\{z:|z|<1\}$. It is easy to see that $\mathcal{A}(1)=\mathcal{A}$, the well-known class of normalized analytic functions.

[^0]If f and g are analytic functions in \mathbb{D}, then we say that f is subordinate to g, denoted by $f \prec g$ or $f(z) \prec g(z)$, if there exists an analytic function w in \mathbb{D} with $|w(z)|<|z|$ such that $f(z)=g(w(z))$. Furthermore, if the function g is univalent in \mathbb{D}, then we have the following equivalence:

$$
f(z) \prec g(z) \Longleftrightarrow f(0)=g(0) \text { and } f(\mathbb{D}) \subset g(\mathbb{D})
$$

For arbitrary fixed numbers A, B, σ and β satisfying $-1 \leq B<A \leq 1,0<\beta \leq 1$ and $0 \leq \sigma<1$, let $\mathcal{P}_{\beta}(A, B, \sigma)$ denote the family of functions

$$
q(z)=1+\sum_{n=1}^{\infty} q_{n} z^{n}
$$

holomorphic in \mathbb{D} and such that q is in the class $\mathcal{P}_{\beta}(A, B, \sigma)$, if and only if

$$
q(z) \prec(1-\sigma)\left(\frac{1+A z}{1+B z}\right)^{\beta}+\sigma .
$$

Therefore, $q \in \mathcal{P}_{\beta}(A, B, \sigma)$, if and only if for some w with $|w(z)|<|z|$, we have

$$
q(z)=\frac{(1-\sigma)(1+A w(z))^{\beta}+\sigma(1+B w(z))^{\beta}}{(1+B w(z))^{\beta}}
$$

We note that the class $\mathcal{P}_{1}(A, B, \sigma) \equiv \mathcal{P}(A, B, \sigma)$ was defined by Polatog̃lu et al. [18], and further by putting $\sigma=0$ in $\mathcal{P}(A, B, \sigma)$, we get the class $\mathcal{P}(A, B)$ introduced by Janowski [8]. Also the class $\mathcal{P}_{\beta}(1,-1, \sigma) \equiv \mathcal{P}_{\beta}(\sigma)$ investigated by Dziok [5] recently, and further by setting $\sigma=0$ and $\beta=1$ in $\mathcal{P}_{\beta}(\sigma)$, we obtain the class \mathcal{P} of functions with positive real part.

The Herglotz representation of the function $q \in \mathcal{P}_{\beta}(A, B, \sigma)$ is given by

$$
q(z)=\sigma+\frac{1-\sigma}{2} \int_{0}^{2 \pi}\left(\frac{1+A z e^{-i \theta}}{1+B z e^{-i \theta}}\right)^{\beta} d \mu(\theta)
$$

where $\mu(\theta)$ is a non-decreasing function in $[0,2 \pi]$ such that $\int_{0}^{2 \pi} d \mu(\theta)=2$.
Now, we define the subclass $\mathcal{P}_{m, \beta}(A, B, \sigma)$ of analytic functions.
Definition 1.1. A function p analytic in \mathbb{D} belongs to the class $\mathcal{P}_{m, \beta}(A, B, \sigma), m \geq 2,-1 \leq B<A \leq 1$, $0<\beta \leq 1,0 \leq \sigma<1$, if and only if

$$
\begin{equation*}
p(z)=\sigma+\frac{1-\sigma}{2} \int_{0}^{2 \pi}\left(\frac{1+A z e^{-i \theta}}{1+B z e^{-i \theta}}\right)^{\beta} d \mu(\theta) \tag{1.1}
\end{equation*}
$$

where $\mu(\theta)$ is a non-decreasing function in $[0,2 \pi]$ with

$$
\int_{0}^{2 \pi} d \mu(\theta)=2 \text { and } \int_{0}^{2 \pi}|d \mu(\theta)| \leq m
$$

By using Horglotz-Stieltjes formula for the functions in the class $\mathcal{P}_{m, \beta}(A, B, \sigma)$, given by 1.1), one can easily obtain that, for $p_{1}, p_{2} \in \mathcal{P}_{\beta}(A, B, \sigma)$,

$$
p(z)=\left(\frac{m}{4}+\frac{1}{2}\right) p_{1}(z)-\left(\frac{m}{4}-\frac{1}{2}\right) p_{2}(z)
$$

For $\beta=1$, the class $\mathcal{P}_{m, \beta}(A, B, \sigma)$ reduces to the class $\mathcal{P}_{m}(A, B, \sigma)$, studied by Noor [13], and for $\sigma=0$, $\beta=1, A=1, B=-1$, the $\mathcal{P}_{m, \beta}(A, B, \sigma)$ coincides with \mathcal{P}_{m} which was introduced by Pinchuk [17]. Also by setting $\beta=1, A=1, B=-1$ in $\mathcal{P}_{m, \beta}(A, B, \sigma)$, we get the class $\mathcal{P}_{m}(\sigma)$, defined in [16].

We consider the function

$$
\phi(z ; s, b)=\sum_{n=0}^{\infty} \frac{z^{n}}{(n+b)^{s}}
$$

where $b \in \mathbb{C} \backslash\left(\overline{\mathbb{Z}_{0}}:=\{0,-1,-2, \ldots\}\right)$ and $s \in \mathbb{C}$. The function $\phi(z ; s, b)$ contains many well-known familiar functions such as Riemann and Hurwitz Zeta functions (for more details, see [19, 21]).

By making use of the technique of convolution and the function $\phi(z ; s, b)$, Liu [9] introduced the generalized Srivastava-Attiya operator $\mathcal{J}_{s, b} f(z): \mathcal{A}(p) \rightarrow \mathcal{A}(p)$ as follows:

$$
\begin{equation*}
\mathcal{J}_{s, b} f(z)=G_{s, b}(z) * f(z) \tag{1.2}
\end{equation*}
$$

where $b \in \mathbb{C} \backslash \overline{\mathbb{Z}_{0}}, p \in \mathbb{N}, s \in \mathbb{C}$ and

$$
\begin{equation*}
G_{s, b}(z)=(1+b)^{s}\left[\phi(z ; s, b)-b^{-s}\right] \tag{1.3}
\end{equation*}
$$

From $(\sqrt{1.2}$ and (1.3), we have

$$
\mathcal{J}_{s, b} f(z)=z^{p}+\sum_{n=1}^{\infty}\left(\frac{b+1}{b+n+1}\right)^{s} a_{n+p} z^{n+p}, \quad(z \in \mathbb{D})
$$

Some special cases of the operator $\mathcal{J}_{s, b} f(z)$ are presented as follows:

1. For $s=0$, the operator $\mathcal{J}_{s, b} f(z)=f(z)$, and for $p=1, s=1, b=0$, we have $\mathcal{J}_{1,0} f(z)=\int_{0}^{z} \frac{f(t)}{t} d t$, introduced by Alexander [1].
2. If $p=1$, then $\mathcal{J}_{s, b} f(z)$ is known as Srivastava-Attiya operator [21].
3. By putting $s=1, b=\mu+p-1$, we get the operator $\mathcal{J}_{1, \mu+p-1} f(z)=F_{\mu, p}(f(z))(\mu>-p, p \in \mathbb{N})$, introduced by Choi et al. 4].
4. For $s=\alpha, b=p$, we have $\mathcal{J}_{s, b} f(z)=\mathcal{I}_{p}^{\alpha} f(z)(\alpha>0, p \in \mathbb{N})$, introduced and studied by Shams et al. [20].
5. $\mathcal{J}_{\gamma, p-1} f(z)=\mathcal{J}_{p}^{\gamma} f(z)\left(\gamma \in \mathbb{N}_{0}\right)$, introduced by El-Ashwah and Aouf [6].
6. For more special cases of this operator, see also [2, 10, 11, 22, 26].

To avoid repetition, it is admitted once that

$$
m \geq 2, \quad-1 \leq B<A \leq 1, \quad 0<\beta \leq 1, \quad 0 \leq \sigma<1, \quad p \in \mathbb{N}, \quad s \in \mathbb{C}, \quad b \in \mathbb{C} \backslash \overline{\mathbb{Z}_{0}}
$$

With the help of the class $\mathcal{P}_{m, \beta}(A, B, \sigma)$, along with the generalized Srivastava-Attiya operator [9], we define the following subclasses of analytic functions.

Definition 1.2. A function $f \in \mathcal{A}(p)$ is in the class $\mathcal{R}_{m, \beta}^{s, b}[p, A, B, \sigma]$, if and only if

$$
\frac{z\left(\mathcal{J}_{s, b} f(z)\right)^{\prime}}{p \mathcal{J}_{s, b} f(z)} \in \mathcal{P}_{m, \beta}(A, B, \sigma), \quad(z \in \mathbb{D})
$$

Definition 1.3. A function $f \in \mathcal{A}(p)$ is in the class $\mathcal{V}_{m, \beta}^{s, b}[p, A, B, \sigma]$, if and only if

$$
\frac{1}{p}+\frac{z\left(\mathcal{J}_{s, b} f(z)\right)^{\prime \prime}}{p\left(\mathcal{J}_{s, b} f(z)\right)^{\prime}} \in \mathcal{P}_{m, \beta}(A, B, \sigma), \quad(z \in \mathbb{D})
$$

We note that

$$
\begin{equation*}
f \in \mathcal{V}_{m, \beta}^{s, b}[p, A, B, \sigma] \Longleftrightarrow \frac{z f^{\prime}}{p} \in \mathcal{R}_{m, \beta}^{s, b}[p, A, B, \sigma] \tag{1.4}
\end{equation*}
$$

Definition 1.4. Let $f \in \mathcal{A}(p)$. Then the function $f \in \mathcal{M}_{m, \beta}^{s, b}[p, A, B, \sigma, \alpha]$ with $0 \leq \alpha \leq 1$, if and only if

$$
(1-\alpha) \frac{z\left(\mathcal{J}_{s, b} f(z)\right)^{\prime}}{p \mathcal{J}_{s, b} f(z)}+\alpha \frac{\left(z\left(\mathcal{J}_{s, b} f(z)\right)^{\prime}\right)^{\prime}}{p\left(\mathcal{J}_{s, b} f(z)\right)^{\prime}} \in \mathcal{P}_{m, \beta}(A, B, \sigma), \quad(z \in \mathbb{D}) .
$$

By giving specific values to $\alpha, \sigma, \beta, A, B, s, b, m$ and p in $\mathcal{M}_{m, \beta}^{s, b}[p, A, B, \sigma, \alpha]$, we obtain many important subclasses studied by various authors in earlier papers (see for details [3, 7, 13, 17]).

To prove our main results, we need the following lemma due to Miller and Mocanu [12].
Lemma 1.5. Let q be convex in \mathbb{D} and $\Re\left(\mu_{1} q(z)+\mu_{2}\right)>0$, where $\mu_{1}, \mu_{2} \in \mathbb{C} \backslash\{0\}$. If h is analytic in \mathbb{D} with $q(0)=h(0)$ and

$$
h(z)+\frac{z h^{\prime}(z)}{\mu_{1} h(z)+\mu_{2}} \prec q(z), \quad(z \in \mathbb{D}),
$$

then $h(z) \prec q(z)$.
The main purpose of this paper is to derive some inclusion relationships, integral representation and arc length problems for the function classes $\mathcal{R}_{m, \beta}^{s, b}[p, A, B, \sigma], \mathcal{V}_{m, \beta}^{s, b}[p, A, B, \sigma]$ and $\mathcal{M}_{m, \beta}^{s, b}[p, A, B, \sigma, \alpha]$. The behavior of these classes under a certain integral operator is also discussed.

2. Main results

We begin by deriving the following inclusion relationship.
Theorem 2.1. Let $f \in \mathcal{A}(p)$ with $\mathcal{J}_{s, b} f(z) \neq 0$. Then

$$
\mathcal{M}_{2, \beta}^{s, b}[p, A, B, \sigma, \alpha] \subset \mathcal{R}_{2, \beta}^{s, b}[p, A, B, \sigma] .
$$

Proof. Let $f \in \mathcal{M}_{2, \beta}^{s, b}[p, A, B, \sigma, \alpha]$ and set

$$
\phi(z)=\frac{\mathcal{J}_{s, b} f(z)}{z^{p}} .
$$

Then the function ϕ is analytic in \mathbb{D} with $\phi(0)=1$. By taking logarithmic differentiation, we have

$$
\begin{equation*}
\frac{z\left(\mathcal{J}_{s, b} f(z)\right)^{\prime}}{p \mathcal{J}_{s, b}(f(z))}=\varphi(z)+1, \tag{2.1}
\end{equation*}
$$

where

$$
\varphi(z)=\frac{z \phi^{\prime}(z)}{p \phi(z)}
$$

By logarithmic differentiation of (2.1) with some simplification, we obtain

$$
\varphi(z)+1+\frac{\alpha}{p} \frac{z \varphi^{\prime}(z)}{\varphi(z)+1}=(1-\alpha) \frac{z\left(\mathcal{J}_{s, b} f(z)\right)^{\prime}}{p \mathcal{J}_{s, b} f(z)}+\alpha \frac{\left(z\left(\mathcal{J}_{s, b} f(z)\right)^{\prime}\right)^{\prime}}{p\left(\mathcal{J}_{s, b} f(z)\right)^{\prime}} .
$$

Let $\varphi(z)+1=H(z)$. Then H is analytic in \mathbb{D} with $H(0)=1$. Now, by using hypothesis of Theorem 2.1, we have

$$
H(z)+\frac{z H^{\prime}(z)}{\frac{p}{\alpha} H(z)} \prec(1-\sigma)\left(\frac{1+A z}{1+B z}\right)^{\beta}+\sigma .
$$

By Lemma 1.5, we get

$$
H(z) \prec(1-\sigma)\left(\frac{1+A z}{1+B z}\right)^{\beta}+\sigma,
$$

which implies $f \in \mathcal{R}_{2, \beta}^{s, b}[p, A, B, \sigma]$. Thus, the assertion of Theorem 2.1 holds true.

Theorem 2.2. If $f \in \mathcal{A}(p)$ with $\mathcal{J}_{s, b} f(z) \neq 0, z \in \mathbb{D}$, then

$$
\mathcal{R}_{2, \beta}^{s, b}[p, A, B, \sigma] \subset \mathcal{R}_{2, \beta}^{s+1, b}[p, A, B, \sigma] .
$$

Proof. Let $f \in \mathcal{R}_{2, \beta}^{s, b}[p, A, B, \sigma]$ and put

$$
\frac{z\left(\mathcal{J}_{s+1, b} f(z)\right)^{\prime}}{p \mathcal{J}_{s+1, b} f(z)}=h(z),
$$

where h is analytic in \mathbb{D} and $h(0)=1$. By using the identity

$$
z\left(\mathcal{J}_{s+1, b} f(z)\right)^{\prime}=[p-(1+b)] \mathcal{J}_{s+1, b} f(z)+(1+b) \mathcal{J}_{s, b} f(z),
$$

we have

$$
\frac{(1+b) \mathcal{J}_{s, b} f(z)}{\mathcal{J}_{s+1, b} f(z)}=h(z)+\frac{b+1}{p}-1 .
$$

By differentiating the above equation logarithmically, we obtain

$$
h(z)+\frac{z h^{\prime}(z)}{p h(z)+b+1-p}=\frac{z\left(\mathcal{J}_{s, b} f(z)\right)^{\prime}}{p \mathcal{J}_{s, b} f(z)} .
$$

By using hypothesis of Theorem 2.2 along with Lemma 1.5, we get

$$
h(z) \prec(1-\sigma)\left(\frac{1+A z}{1+B z}\right)^{\beta}+\sigma .
$$

This implies that $f \in \mathcal{R}_{2, \beta}^{s+1, b}[p, A, B, \sigma]$.
Theorem 2.3. If $f \in \mathcal{A}(p)$ with $\mathcal{J}_{s, b} f(z) \neq 0, z \in \mathbb{D}$, then

$$
\mathcal{V}_{2, \beta}^{s, b}[p, A, B, \sigma] \subset \mathcal{V}_{2, \beta}^{s+1, b}[p, A, B, \sigma] .
$$

Proof. By Theorem 2.2 and (1.4), we see that

$$
\begin{aligned}
f \in \mathcal{V}_{2, \beta}^{s, b}[p, A, B, \sigma] & \Longleftrightarrow \mathcal{J}_{s, b} f \in \mathcal{V}_{2, \beta}[p, A, B, \sigma] \\
& \Longleftrightarrow \frac{z\left(\mathcal{J}_{s, b} f\right)^{\prime}}{p} \in \mathcal{R}_{2, \beta}[p, A, B, \sigma] \\
& \Longleftrightarrow \mathcal{J}_{s, b}\left(\frac{z f^{\prime}(z)}{p}\right) \in \mathcal{R}_{2, \beta}[p, A, B, \sigma] \\
& \Longleftrightarrow \frac{z f^{\prime}}{p} \in \mathcal{R}_{2, \beta}^{s, b}[p, A, B, \sigma] \\
& \Longleftrightarrow \frac{z f^{\prime}}{p} \in \mathcal{R}_{2, \beta}^{s+1, b}[p, A, B, \sigma] \\
& \Longleftrightarrow \mathcal{J}_{s+1, b}\left(\frac{z f^{\prime}}{p}\right) \in \mathcal{R}_{2, \beta}[p, A, B, \sigma] \\
& \Longleftrightarrow \frac{z}{p}\left(\mathcal{J}_{s+1, b} f\right)^{\prime} \in \mathcal{R}_{2, \beta}[p, A, B, \sigma] \\
& \Longleftrightarrow \mathcal{J}_{s+1, b} f \in \mathcal{V}_{2, \beta}[p, A, B, \sigma] \\
& \Longleftrightarrow f \in \mathcal{V}_{2, \beta}^{s+1, b}[p, A, B, \sigma] .
\end{aligned}
$$

The proof of Theorem 2.3 is thus completed.

Theorem 2.4. If $0<\alpha_{1} \leq \alpha_{2}<1$, then

$$
\mathcal{M}_{2, \beta}^{s, b}\left[p, A, B, \sigma, \alpha_{2}\right] \subset \mathcal{M}_{2, \beta}^{s, b}\left[p, A, B, \sigma, \alpha_{1}\right] .
$$

Proof. Let $f \in \mathcal{M}_{2, \beta}^{s, b}\left[p, A, B, \sigma, \alpha_{2}\right]$. Then

$$
\left(1-\alpha_{1}\right) \frac{z\left(\mathcal{J}_{s, b} f(z)\right)^{\prime}}{p \mathcal{J}_{s, b} f(z)}+\alpha_{1} \frac{\left(z\left(\mathcal{J}_{s, b} f(z)\right)^{\prime}\right)^{\prime}}{p\left(\mathcal{J}_{s, b} f(z)\right)^{\prime}}=\left(1-\frac{\alpha_{1}}{\alpha_{2}}\right) h_{1}(z)+\frac{\alpha_{1}}{\alpha_{2}} h_{2}(z),
$$

with

$$
h_{1}(z)=\frac{z\left(\mathcal{J}_{s, b} f(z)\right)^{\prime}}{p J_{s, b} f(z)},
$$

and

$$
h_{2}(z)=\left(1-\alpha_{2}\right) \frac{z\left(\mathcal{J}_{s, b} f(z)\right)^{\prime}}{p \mathcal{J}_{s, b} f(z)}+\alpha_{2} \frac{\left(z\left(\mathcal{J}_{s, b} f(z)\right)^{\prime}\right)^{\prime}}{p\left(\mathcal{J}_{s, b} f(z)\right)^{\prime}}
$$

From hypothesis and Theorem 2.1, we easily obtain

$$
h_{1}, h_{2} \in \mathcal{P}_{2, \beta}(A, B, \sigma) .
$$

Since the class $\mathcal{P}_{2, \beta}(A, B, \sigma)$ is a convex set, it follows that

$$
\left(1-\frac{\alpha_{1}}{\alpha_{2}}\right) h_{1}(z)+\frac{\alpha_{1}}{\alpha_{2}} h_{2}(z) \in \mathcal{P}_{2, \beta}(A, B, \sigma) .
$$

This implies that $f \in \mathcal{M}_{2, \beta}^{s, b}\left[p, A, B, \sigma, \alpha_{1}\right]$.
Theorem 2.5. Let $f \in \mathcal{R}_{m, \beta}^{s, b}[p, A, B, \sigma]$. If $s_{1}, s_{2} \in \mathcal{R}_{2, \beta}^{0, b}[p, A, B, \sigma]$, then

$$
\begin{equation*}
\mathcal{J}_{s, b} f(z)=\frac{\left(s_{1}(z)\right)^{\frac{m}{4}+\frac{1}{2}}}{\left(s_{2}(z)\right)^{\frac{m}{4}-\frac{1}{2}}} . \tag{2.2}
\end{equation*}
$$

Proof. If $f \in \mathcal{R}_{m, \beta}^{s, b}[p, A, B, \sigma]$, then there exist two functions $h_{1}, h_{2} \in \mathcal{P}_{2, \beta}(A, B, \sigma)$ such that

$$
\frac{z\left(\mathcal{J}_{s, b} f(z)\right)^{\prime}}{p \mathcal{J}_{s, b} f(z)}=\left(\frac{m}{4}+\frac{1}{2}\right) h_{1}(z)-\left(\frac{m}{4}-\frac{1}{2}\right) h_{2}(z),
$$

which is equivalent to

$$
\begin{equation*}
\frac{z\left(\mathcal{J}_{s, b} f(z)\right)^{\prime}}{p \mathcal{J}_{s, b} f(z)}=\left(\frac{m}{4}+\frac{1}{2}\right) \frac{z s_{1}^{\prime}(z)}{p s_{1}(z)}-\left(\frac{m}{4}-\frac{1}{2}\right) \frac{z s_{2}^{\prime}(z)}{p s_{2}(z)}, \tag{2.3}
\end{equation*}
$$

where $s_{1}, s_{2} \in \mathcal{R}_{2, \beta}^{0, b}[p, A, B, \sigma]$. By integrating both sides of (2.3), we have

$$
\begin{equation*}
\log \mathcal{J}_{s, b} f(z)=\left(\frac{m}{4}+\frac{1}{2}\right) \log s_{1}(z)-\left(\frac{m}{4}-\frac{1}{2}\right) \log s_{2}(z) . \tag{2.4}
\end{equation*}
$$

From (2.4), we readily get (2.2).
Theorem 2.6. Let $f \in \mathcal{M}_{m, \beta}^{s, b}[p, A, B, \sigma, \alpha]$. Then $g \in \mathcal{R}_{m, \beta}^{s, b}[p, A, B, \sigma]$, where

$$
\begin{equation*}
\left(\frac{\mathcal{J}_{s, b} g(z)}{z}\right)^{\frac{1}{p}}=\left(\frac{\mathcal{J}_{s, b} f(z)}{z}\right)^{\frac{1-\alpha}{p}}\left[\left(\mathcal{J}_{s, b} f(z)\right)^{\prime}\right]^{\frac{\alpha}{p}} . \tag{2.5}
\end{equation*}
$$

Proof. By differentiating both sides of (2.5) logarithmically, with some simplification, we have

$$
\frac{z\left(\mathcal{J}_{s, b} g(z)\right)^{\prime}}{p \mathcal{J}_{s, b} g(z)}=(1-\alpha) \frac{z\left(\mathcal{J}_{s, b} f(z)\right)^{\prime}}{p \mathcal{J}_{s, b} f(z)}+\alpha \frac{\left(z\left(\mathcal{J}_{s, b} f(z)\right)^{\prime}\right)^{\prime}}{p\left(\mathcal{J}_{s, b} f(z)\right)^{\prime}} \in \mathcal{P}_{m, \beta}(A, B, \sigma)
$$

Hence $g \in \mathcal{R}_{m, \beta}^{s, b}[p, A, B, \sigma]$. This completes the proof of Theorem 2.6.
Theorem 2.7. A function $f \in \mathcal{M}_{m, \beta}^{s, b}[p, A, B, \sigma, \alpha]$, if and only if there exists a function $g \in \mathcal{R}_{m, \beta}^{s, b}[p, A, B, \sigma]$ such that

$$
\begin{equation*}
\mathcal{J}_{s, b} f(z)=\left[\frac{1}{\alpha} \int_{0}^{z} t^{\frac{1}{\alpha}-1}\left(\frac{\mathcal{J}_{s, b} g(z)}{z}\right)^{\frac{1}{\alpha}} d t\right]^{\alpha} \tag{2.6}
\end{equation*}
$$

Proof. Suppose that $f \in \mathcal{M}_{m, \beta}^{s, b}[p, A, B, \sigma, \alpha]$ and $g \in \mathcal{R}_{m, \beta}^{s, b}[p, A, B, \sigma]$. From (2.5), we have

$$
\begin{equation*}
\left(\mathcal{J}_{s, b} f(z)\right)^{\frac{1-\alpha}{\alpha}}\left(\mathcal{J}_{s, b} f(z)\right)^{\prime}=\left(\frac{\mathcal{J}_{s, b} g(z)}{z}\right)^{\frac{1}{\alpha}} z^{\frac{1-\alpha}{\alpha}} \tag{2.7}
\end{equation*}
$$

By integrating both sides of (2.7), we easily get (2.6). Conversely, assume that (2.6) holds with $g \in$ $\mathcal{R}_{m, \beta}^{s, b}[p, A, B, \sigma]$, we only need to show that $f \in \mathcal{M}_{m, \beta}^{s, b}[p, A, B, \sigma, \alpha]$. From (2.6), we obtain

$$
(1-\alpha) \frac{z\left(\mathcal{J}_{s, b} f\right)^{\prime}}{p \mathcal{J}_{s, b} f}+\alpha \frac{\left(z\left(\mathcal{J}_{s, b} f\right)^{\prime}\right)^{\prime}}{p\left(\mathcal{J}_{s, b} f\right)^{\prime}}=\frac{z\left(\mathcal{J}_{s, b} g\right)^{\prime}}{p \mathcal{J}_{s, b} g} \in \mathcal{P}_{m, \beta}(A, B, \sigma)
$$

which implies that $f \in \mathcal{M}_{m, \beta}^{s, b}[p, A, B, \sigma, \alpha]$.
Theorem 2.8. Suppose that $f \in \mathcal{M}_{m, 0}^{s, b}[p, A, B, \sigma, \alpha], L_{r}(f)$ denotes the length of the curve $C, C=f\left(r e^{i \theta}\right)$, $0<\theta \leq 2 \pi$, and $M(r)=\max _{0<\theta \leq 2 \pi}\left|f\left(r e^{i \theta}\right)\right|$. Then, for $0<r<1$,

$$
L_{r}(f) \leq \frac{(2-\alpha) \pi p M(r)}{\alpha}\left[\frac{2+(k-2) A_{1}-k B}{1-B}\right]
$$

where $A_{1}=(1-\alpha) A+\alpha B$.
Proof. Assume that $F(z)=\mathcal{J}_{s, b} f(z)$. By taking integration by parts, with $z=r e^{i \theta}$, we get

$$
\begin{aligned}
L_{r}(f) & =\int_{0}^{2 \pi}\left|z F^{\prime}(z)\right| d \theta \\
& =\int_{0}^{2 \pi} z F^{\prime}(z) e^{-i \arg \left(z F^{\prime}(z)\right)} d \theta \\
& =\int_{0}^{2 \pi} F(z) e^{-i \arg \left(z F^{\prime}(z)\right)} \Re\left(\frac{\left(z F^{\prime}(z)\right)^{\prime}}{F^{\prime}(z)}\right) d \theta \\
& \leq \frac{p M(r)}{\alpha} \int_{0}^{2 \pi}\left|(1-\alpha) \frac{z F^{\prime}(z)}{p F(z)}+\alpha \frac{\left(z F^{\prime}(z)\right)^{\prime}}{p F^{\prime}(z)}+(\alpha-1) \frac{z F^{\prime}(z)}{p F(z)}\right| d \theta \\
& \leq \frac{p M(r)}{\alpha}\left[\int_{0}^{2 \pi}\left|(1-\alpha) \frac{z F^{\prime}(z)}{p F(z)}+\alpha \frac{\left(z F^{\prime}(z)\right)^{\prime}}{p F^{\prime}(z)}\right| d \theta+(1-\alpha) \int_{0}^{2 \pi}\left|\frac{z F^{\prime}(z)}{p F(z)}\right| d \theta\right] \\
& \leq \frac{p M(r)}{\alpha}\left[\left(\frac{2+(k-2) A_{1}-k B}{1-B}\right) \pi+(1-\alpha)\left(\frac{2+(k-2) A_{1}-k B}{1-B}\right) \pi\right] \\
& =\frac{(2-\alpha) \pi p M(r)}{\alpha}\left[\frac{2+(k-2) A_{1}-k B}{1-B}\right]
\end{aligned}
$$

We thus complete the proof of Theorem 2.8 .

Theorem 2.9. Let $f \in \mathcal{M}_{m, 0}^{s, b}[p, A, B, \sigma, \alpha]$. Then

$$
n\left|a_{n}\right|=O(1) M\left(1-\frac{1}{n}\right), \quad(n \geq 2)
$$

where $O(1)$ is a constant depending on A_{1}, B, p, α and k only.
Proof. Since $z=r e^{i \theta}$, the Cauchy theorem gives

$$
n\left|a_{n}\right|=\frac{1}{2 \pi r^{n}} L_{r}(f)
$$

By virtue of Theorem 2.8, we have

$$
n\left|a_{n}\right|=\frac{1}{2 r^{n}} \frac{(2-\alpha) p M(r)}{\alpha}\left[\frac{2+(k-2) A_{1}-k B}{1-B}\right]
$$

where $A_{1}=(1-\alpha) A+\alpha B$.
By taking $r=1-\frac{1}{n}$, we get

$$
n\left|a_{n}\right|=\frac{(2-\alpha) p}{2 \alpha\left(1-\frac{1}{n}\right)^{n}}\left[\frac{2+(k-2) A_{1}-k B}{1-B}\right] M\left(1-\frac{1}{n}\right)
$$

which gives the desired result.
Theorem 2.10. Let c be a real number with $c>-p$, and $\mathcal{J}_{s, b} F_{c, p}(z) \neq 0$, for all $z \in \mathbb{D}$. If $f \in$ $\mathcal{R}_{2, \beta}^{s, b}[p, A, B, \sigma]$, then

$$
F_{c, p}(z) \in \mathcal{R}_{2, \beta}^{s, b}[p, A, B, \sigma]
$$

where $F_{c, p}: \mathcal{A}(p) \rightarrow \mathcal{A}(p)$ is defined by

$$
\begin{equation*}
F_{c, p}(z)=\frac{c+p}{z^{c}} \int_{0}^{z} t^{c-1} f(t) d t=\left(z^{p}+\sum_{n=1}^{\infty} \frac{c+p}{c+p+n} z^{n+p}\right) * f(z) \tag{2.8}
\end{equation*}
$$

Proof. Let $f \in \mathcal{R}_{2, \beta}^{s, b}[p, A, B, \sigma]$ and set

$$
\begin{equation*}
\phi(z)=\frac{\mathcal{J}_{s, b} F_{c, p}(z)}{z^{p}} \tag{2.9}
\end{equation*}
$$

Then ϕ is analytic in \mathbb{D} with $\phi(0)=1$. By differentiating both sides of (2.8), we have

$$
\begin{equation*}
\frac{z\left(F_{c, p}(z)\right)^{\prime}}{p F_{c, p}(z)}=\frac{c+p}{p} \frac{f(z)}{p F_{c, p}(z)}-\frac{c}{p} \tag{2.10}
\end{equation*}
$$

By applying the operator $\mathcal{J}_{s, b}$ to 2.10 , we get

$$
\begin{equation*}
\frac{z\left(\mathcal{J}_{s, b} F_{c, p}(z)\right)^{\prime}}{p \mathcal{J}_{s, b} F_{c, p}(z)}=\frac{c+p}{p} \frac{\mathcal{J}_{c, b} f(z)}{p \mathcal{J}_{c, b} F_{c, p}(z)}-\frac{c}{p} \tag{2.11}
\end{equation*}
$$

Now, by taking logarithmic differentiation of (2.9), we obtain

$$
\begin{equation*}
\frac{z\left(\mathcal{J}_{s, b} F_{c, p}(z)\right)^{\prime}}{p \mathcal{J}_{s, b} F_{c, p}(z)}-1=\frac{z \phi^{\prime}(z)}{\phi(z)}=\varphi(z) \tag{2.12}
\end{equation*}
$$

From (2.11) and (2.12), we know that

$$
\begin{equation*}
\frac{c+p}{p} \frac{\mathcal{J}_{c, b} f(z)}{p \mathcal{J}_{c, b} F_{c, p}(z)}=\varphi(z)+1+\frac{c}{p} \tag{2.13}
\end{equation*}
$$

Logarithmic differentiation of (2.13), together with 2.12 yields

$$
H(z)+\frac{z \phi^{\prime}(z)}{p H(z)+c}=\frac{z\left(\mathcal{J}_{s, b} f(z)\right)^{\prime}}{p \mathcal{J}_{s, b} f(z)} \prec(1-\sigma)\left(\frac{1+A z}{1+B z}\right)^{\beta}+\sigma
$$

where $H(z)=\varphi(z)+1$. By Lemma 1.5, we see that

$$
H(z) \prec(1-\sigma)\left(\frac{1+A z}{1+B z}\right)^{\beta}+\sigma .
$$

This implies that $F_{c, p}(z) \in \mathcal{R}_{2, \beta}^{s, b}[p, A, B, \sigma]$.
Theorem 2.11. Let c be a real number with $c>-p$, and $\mathcal{J}_{s, b} F_{c, p}(z) \neq 0$ for all $z \in \mathbb{D}$. If $f \in \mathcal{V}_{2, \beta}^{s, b}[p, A, B, \sigma]$, then

$$
F_{c, p}(z) \in \mathcal{V}_{2, \beta}^{s, b}[p, A, B, \sigma]
$$

where $F_{c, p}(z)$ is given by 2.8.
Proof. The proof follows directly from (1.4) and Theorem 2.10 .

Acknowledgment

The present investigation was supported by the National Natural Science Foundation of China under Grant no. 11301008 and the Natural Science Foundation of Hunan Province under Grant no. 2016JJ2036.

References

[1] J. W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. Math., 17 (1915), 12-22. 1
[2] M. K. Aouf, A. O. Mostafa, H. M. Zayed, Some characterizations of integral operators associated with certain classes of p-valent functions defined by the Srivastava-Saigo-Owa fractional differintegral operator, Complex Anal. Oper. Theory, 10 (2016), 1267-1275. 6
[3] M. Arif, K. I. Noor, M. Raza, Hankel determinant problem of a subclass of analytic functions, J. Inequal. Appl., 2012 (2012), 7 pages. 1
[4] J. H. Choi, M. Saigo, H. M. Srivastava, Some inclusion properties of a certain family of integral operators, J. Math. Anal. Appl., 276 (2002), 432-445. 3
[5] J. Dziok, Meromorphic functions with bounded boundary rotation, Acta Math. Sci. Ser. B Engl. Ed., 34 (2014), 466-472. 1
[6] R. M. El-Ashwah, M. K. Aouf, Some properties of new integral operator, Acta Univ. Apulensis Math. Inform., 24 (2010), 51-61. 5
[7] S. Hussain, M. Arif, S. N. Malik, Higher order close-to-convex functions associated with Attiya-Srivastava operator, Bull. Iranian Math. Soc., 40 (2014), 911-920. 1
[8] W. Janowski, Some extremal problems for certain families of analytic functions, I, Ann. Polon. Math., 28 (1973), 297-326. 1
[9] J.-L. Liu, Subordinations for certain multivalent analytic functions associated with the generalized SrivastavaAttiya operator, Integral Transforms Spec. Funct., 19 (2008), 893-901. 1, 1
[10] Z.-H. Liu, Z.-G. Wang, F.-H. Wen, Y. Sun, Some subclasses of analytic functions involving the generalized Srivastava-Attiya operator, Hacet. J. Math. Stat., 41 (2012), 421-434. 6]
[11] P. Maheshwari, On modified Srivastava-Gupta operators, Filomat, 29 (2015), 1173-1177. 6
[12] S. S. Miller, P. T. Mocanu, Differential subordinations, Theory and applications, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, Inc., New York, (2000). 1
[13] K. I. Noor, Higher order close-to-convex functions, Math. Japon., 37 (1992), 1-8. 1, 1
[14] K. I. Noor, M. Arif, Mapping properties of an integral operator, Appl. Math. Lett., 25 (2012), 1826-1829. 1
[15] K. I. Noor, W. Ul-Haq, M. Arif, S. Mustafa, On bounded boundary and bounded radius rotations, J. Inequal. Appl., 2009 (2009), 12 pages. 1
[16] K. S. Padmanabhan, R. Parvatham, Properties of a class of functions with bounded boundary rotation, Ann. Polon. Math., 31 (1975/76), 311-323. 1. 1
[17] B. Pinchuk, Functions of bounded boundary rotation, Israel J. Math., 10 (1971), 6-16. 1, 1,
[18] Y. Polatog̃lu, M. Bolcal, A. Şen, E. Yavuz, A study on the generalization of Janowski functions in the unit disc, Acta Math. Acad. Paedagog. Nyházi. (N.S.), 22 (2006), 27-31. 1
[19] D. Răducanu, H. M Srivastava, A new class of analytic functions defined by means of a convolution operator involving the Hurwitz-Lerch zeta function, Integral Transforms Spec. Funct., 18 (2007), 933-943. 1
[20] S. Shams, S. R. Kulkarni, J. M. Jahangiri, Subordination properties of p-valent functions defined by integral operators, Int. J. Math. Math. Sci., 2006 (2006), 3 pages. 4
[21] H. M. Srivastava, A. A. Attiya, An integral operator associated with the Hurwitz-Lerch zeta function and differential subordination, Integral Transforms Spec. Funct., 18 (2007), 207-216. 1, 2
[22] Y. Sun, W.-P. Kuang, Z.-G. Wang, Properties for uniformly starlike and related functions under the SrivastavaAttiya operator, Appl. Math. Comput., 218 (2011), 3615-3623. 6
[23] N. Ularu, Properties for an integral operator on the class of close-to-convex functions, Filomat, 29 (2015), 12911296. 6
[24] Z.-G. Wang, Z.-H. Liu, Y. Sun, Some properties of the generalized Srivastava-Attiya operator, Integral Transforms Spec. Funct., 23 (2012), 223-236. 6
[25] Q.-H. Xu, H.-G. Xiao, H. M. Srivastava, Some applications of differential subordination and the Dziok-Srivastava convolution operator, Appl. Math. Comput., 230 (2014), 496-508. 6
[26] S.-M. Yuan, Z.-M. Liu, Some properties of two subclasses of k-fold symmetric functions associated with SrivastavaAttiya operator, Appl. Math. Comput., 218 (2011), 1136-1141. 6

[^0]: *Corresponding author
 Email addresses: wangmath@163.com (Zhi-Gang Wang), mohsan976@yahoo.com (Mohsan Raza), mayazmath@awkum.edu.pk (Muhammad Ayaz), marifmaths@awkum.edu.pk (Muhammad Arif)

