
Available online at www.tjnsa.com
J. Nonlinear Sci. Appl. 9 (2016), 6067–6076

Research Article

On certain multivalent functions involving the
generalized Srivastava-Attiya operator

Zhi-Gang Wanga,∗, Mohsan Razab, Muhammad Ayazc, Muhammad Arifc

aSchool of Mathematics and Computing Science, Hunan First Normal University, Changsha 410205, Hunan, P. R. China.
bDepartment of Mathematics, Government College University, Faisalabad, Pakistan.
cDepartment of Mathematics, Abdul Wali Khan University, Mardan 23200, Pakistan.

Communicated by Sh. Wu

Abstract

In this paper, we introduce certain new classes of multivalent functions involving the generalized
Srivastava-Attiya operator. Such results as inclusion relationships, integral representation and arc length
problems for these classes of functions are obtained. The behavior of these classes under a certain integral
operator is also discussed. c©2016 All rights reserved.
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1. Introduction and preliminaries

Let A(p) denote the class of all multivalent functions f of the form

f(z) = zp +
∞∑
n=1

an+pz
n+p,

which are analytic in the open unit disk D = {z : |z| < 1} . It is easy to see that A(1) = A, the well-known
class of normalized analytic functions.
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If f and g are analytic functions in D, then we say that f is subordinate to g, denoted by f ≺ g or
f (z) ≺ g (z) , if there exists an analytic function w in D with |w(z)| < |z| such that f(z) = g (w(z)) .
Furthermore, if the function g is univalent in D, then we have the following equivalence:

f (z) ≺ g (z)⇐⇒ f(0) = g(0) and f(D) ⊂ g(D).

For arbitrary fixed numbers A, B, σ and β satisfying −1 ≤ B < A ≤ 1, 0 < β ≤ 1 and 0 ≤ σ < 1, let
Pβ (A,B, σ) denote the family of functions

q(z) = 1 +
∞∑
n=1

qnz
n,

holomorphic in D and such that q is in the class Pβ (A,B, σ) , if and only if

q(z) ≺ (1− σ)

(
1 +Az

1 +Bz

)β
+ σ.

Therefore, q ∈ Pβ (A,B, σ), if and only if for some w with |w(z)| < |z| , we have

q(z) =
(1− σ) (1 +Aw(z))β + σ (1 +Bw(z))β

(1 +Bw(z))β
.

We note that the class P1 (A,B, σ) ≡ P (A,B, σ) was defined by Polatog̃lu et al. [18], and further
by putting σ = 0 in P (A,B, σ) , we get the class P (A,B) introduced by Janowski [8]. Also the class
Pβ (1,−1, σ) ≡ Pβ (σ) investigated by Dziok [5] recently, and further by setting σ = 0 and β = 1 in Pβ (σ) ,
we obtain the class P of functions with positive real part.

The Herglotz representation of the function q ∈ Pβ (A,B, σ) is given by

q(z) = σ +
1− σ

2

∫ 2π

0

(
1 +Aze−iθ

1 +Bze−iθ

)β
dµ(θ),

where µ(θ) is a non-decreasing function in [0, 2π] such that
∫ 2π
0 dµ(θ) = 2.

Now, we define the subclass Pm,β (A,B, σ) of analytic functions.

Definition 1.1. A function p analytic in D belongs to the class Pm,β (A,B, σ) , m ≥ 2, −1 ≤ B < A ≤ 1,
0 < β ≤ 1, 0 ≤ σ < 1, if and only if

p(z) = σ +
1− σ

2

∫ 2π

0

(
1 +Aze−iθ

1 +Bze−iθ

)β
dµ(θ), (1.1)

where µ(θ) is a non-decreasing function in [0, 2π] with∫ 2π

0
dµ(θ) = 2 and

∫ 2π

0
|dµ(θ)| ≤ m.

By using Horglotz-Stieltjes formula for the functions in the class Pm,β (A,B, σ), given by (1.1), one can
easily obtain that, for p1, p2 ∈ Pβ (A,B, σ) ,

p(z) =

(
m

4
+

1

2

)
p1(z)−

(
m

4
− 1

2

)
p2(z).

For β = 1, the class Pm,β (A,B, σ) reduces to the class Pm (A,B, σ) , studied by Noor [13], and for σ = 0,
β = 1, A = 1, B = −1, the Pm,β (A,B, σ) coincides with Pm which was introduced by Pinchuk [17]. Also
by setting β = 1, A = 1, B = −1 in Pm,β (A,B, σ), we get the class Pm (σ) , defined in [16].
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We consider the function

φ (z; s, b) =

∞∑
n=0

zn

(n+ b)s
,

where b ∈ C \
(
Z0 := {0,−1,−2, ...}

)
and s ∈ C. The function φ (z; s, b) contains many well-known familiar

functions such as Riemann and Hurwitz Zeta functions (for more details, see [19, 21]).
By making use of the technique of convolution and the function φ (z; s, b), Liu [9] introduced the gener-

alized Srivastava-Attiya operator Js,bf(z) : A(p)→ A(p) as follows:

Js,bf(z) = Gs,b(z) ∗ f(z), (1.2)

where b ∈ C \ Z0, p ∈ N, s ∈ C and

Gs,b(z) = (1 + b)s
[
φ(z; s, b)− b−s

]
. (1.3)

From (1.2) and (1.3), we have

Js,bf(z) = zp +
∞∑
n=1

(
b+ 1

b+ n+ 1

)s
an+pz

n+p, (z ∈ D) .

Some special cases of the operator Js,bf(z) are presented as follows:

1. For s = 0, the operator Js,bf(z) = f(z), and for p = 1, s = 1, b = 0, we have J1,0f(z) =
∫ z
0
f(t)
t dt,

introduced by Alexander [1].

2. If p = 1, then Js,bf(z) is known as Srivastava-Attiya operator [21].

3. By putting s = 1, b = µ + p − 1, we get the operator J1,µ+p−1f(z) = Fµ,p (f(z)) (µ > −p, p ∈ N) ,
introduced by Choi et al. [4].

4. For s = α, b = p, we have Js,bf(z) = Iαp f(z) (α > 0, p ∈ N), introduced and studied by Shams et al.
[20].

5. Jγ,p−1f(z) = J γp f(z) (γ ∈ N0) , introduced by El-Ashwah and Aouf [6].

6. For more special cases of this operator, see also [2, 10, 11, 22–26].

To avoid repetition, it is admitted once that

m ≥ 2, − 1 ≤ B < A ≤ 1, 0 < β ≤ 1, 0 ≤ σ < 1, p ∈ N, s ∈ C, b ∈ C \ Z0.

With the help of the class Pm,β (A,B, σ), along with the generalized Srivastava-Attiya operator [9], we
define the following subclasses of analytic functions.

Definition 1.2. A function f ∈ A(p) is in the class Rs,bm,β [p,A,B, σ] , if and only if

z (Js,bf (z))′

pJs,bf (z)
∈ Pm,β (A,B, σ) , (z ∈ D) .

Definition 1.3. A function f ∈ A(p) is in the class Vs,bm,β [p,A,B, σ] , if and only if

1

p
+
z (Js,bf (z))′′

p (Js,bf (z))′
∈ Pm,β (A,B, σ) , (z ∈ D) .

We note that

f ∈ Vs,bm,β [p,A,B, σ]⇐⇒ zf ′

p
∈ Rs,bm,β [p,A,B, σ] . (1.4)
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Definition 1.4. Let f ∈ A(p). Then the function f ∈Ms,b
m,β [p,A,B, σ, α] with 0 ≤ α ≤ 1, if and only if

(1− α)
z (Js,bf(z))′

pJs,bf(z)
+ α

(
z (Js,bf(z))′

)′
p (Js,bf(z))′

∈ Pm,β (A,B, σ) , (z ∈ D) .

By giving specific values to α, σ, β,A,B, s, b,m and p inMs,b
m,β [p,A,B, σ, α], we obtain many important

subclasses studied by various authors in earlier papers (see for details [3, 7, 13–17]).
To prove our main results, we need the following lemma due to Miller and Mocanu [12].

Lemma 1.5. Let q be convex in D and < (µ1q(z) + µ2) > 0, where µ1, µ2 ∈ C \ {0}. If h is analytic in D
with q(0) = h(0) and

h(z) +
zh
′
(z)

µ1h(z) + µ2
≺ q(z), (z ∈ D) ,

then h(z) ≺ q(z).

The main purpose of this paper is to derive some inclusion relationships, integral representation and
arc length problems for the function classes Rs,bm,β [p,A,B, σ], Vs,bm,β [p,A,B, σ] and Ms,b

m,β [p,A,B, σ, α]. The
behavior of these classes under a certain integral operator is also discussed.

2. Main results

We begin by deriving the following inclusion relationship.

Theorem 2.1. Let f ∈ A(p) with Js,bf(z) 6= 0. Then

Ms,b
2,β [p,A,B, σ, α] ⊂ Rs,b2,β [p,A,B, σ] .

Proof. Let f ∈Ms,b
2,β [p,A,B, σ, α] and set

φ(z) =
Js,bf(z)

zp
.

Then the function φ is analytic in D with φ(0) = 1. By taking logarithmic differentiation, we have

z (Js,bf(z))′

pJs,b(f(z))
= ϕ(z) + 1, (2.1)

where

ϕ(z) =
zφ′(z)

pφ(z)
.

By logarithmic differentiation of (2.1) with some simplification, we obtain

ϕ(z) + 1 +
α

p

zϕ′(z)

ϕ(z) + 1
= (1− α)

z (Js,bf(z))′

pJs,bf(z)
+ α

(
z (Js,bf(z))′

)′
p (Js,bf(z))′

.

Let ϕ(z) + 1 = H(z). Then H is analytic in D with H(0) = 1. Now, by using hypothesis of Theorem 2.1,
we have

H(z) +
zH ′(z)
p
αH(z)

≺ (1− σ)

(
1 +Az

1 +Bz

)β
+ σ.

By Lemma 1.5, we get

H(z) ≺ (1− σ)

(
1 +Az

1 +Bz

)β
+ σ,

which implies f ∈ Rs,b2,β [p,A,B, σ] . Thus, the assertion of Theorem 2.1 holds true.
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Theorem 2.2. If f ∈ A(p) with Js,bf(z) 6= 0, z ∈ D, then

Rs,b2,β [p,A,B, σ] ⊂ Rs+1,b
2,β [p,A,B, σ] .

Proof. Let f ∈ Rs,b2,β [p,A,B, σ] and put

z (Js+1,bf(z))′

pJs+1,bf(z)
= h(z),

where h is analytic in D and h(0) = 1. By using the identity

z (Js+1,bf(z))′ = [p− (1 + b)]Js+1,bf(z) + (1 + b)Js,bf(z),

we have
(1 + b)Js,bf(z)

Js+1,bf(z)
= h(z) +

b+ 1

p
− 1.

By differentiating the above equation logarithmically, we obtain

h(z) +
zh′(z)

ph(z) + b+ 1− p
=
z (Js,bf(z))′

pJs,bf(z)
.

By using hypothesis of Theorem 2.2 along with Lemma 1.5, we get

h(z) ≺ (1− σ)

(
1 +Az

1 +Bz

)β
+ σ.

This implies that f ∈ Rs+1,b
2,β [p,A,B, σ] .

Theorem 2.3. If f ∈ A(p) with Js,bf(z) 6= 0, z ∈ D, then

Vs,b2,β [p,A,B, σ] ⊂ Vs+1,b
2,β [p,A,B, σ] .

Proof. By Theorem 2.2 and (1.4), we see that

f ∈ Vs,b2,β [p,A,B, σ]⇐⇒ Js,bf ∈ V2,β [p,A,B, σ]

⇐⇒
z (Js,bf)′

p
∈ R2,β [p,A,B, σ]

⇐⇒ Js,b
(
zf ′ (z)

p

)
∈ R2,β [p,A,B, σ]

⇐⇒ zf ′

p
∈ Rs,b2,β [p,A,B, σ]

=⇒ zf ′

p
∈ Rs+1,b

2,β [p,A,B, σ]

⇐⇒ Js+1,b

(
zf ′

p

)
∈ R2,β [p,A,B, σ]

⇐⇒ z

p
(Js+1,bf)′ ∈ R2,β [p,A,B, σ]

⇐⇒ Js+1,bf ∈ V2,β [p,A,B, σ]

⇐⇒ f ∈ Vs+1,b
2,β [p,A,B, σ] .

The proof of Theorem 2.3 is thus completed.
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Theorem 2.4. If 0 < α1 ≤ α2 < 1, then

Ms,b
2,β [p,A,B, σ, α2] ⊂Ms,b

2,β [p,A,B, σ, α1] .

Proof. Let f ∈Ms,b
2,β [p,A,B, σ, α2] . Then

(1− α1)
z (Js,bf (z))′

pJs,bf (z)
+ α1

(
z (Js,bf (z))′

)′
p (Js,bf (z))′

=

(
1− α1

α2

)
h1(z) +

α1

α2
h2(z),

with

h1(z) =
z (Js,bf (z))′

pJs,bf (z)
,

and

h2(z) = (1− α2)
z (Js,bf (z))′

pJs,bf (z)
+ α2

(
z (Js,bf (z))′

)′
p (Js,bf (z))′

.

From hypothesis and Theorem 2.1, we easily obtain

h1, h2 ∈ P2,β (A,B, σ) .

Since the class P2,β (A,B, σ) is a convex set, it follows that(
1− α1

α2

)
h1(z) +

α1

α2
h2(z) ∈ P2,β (A,B, σ) .

This implies that f ∈Ms,b
2,β [p,A,B, σ, α1] .

Theorem 2.5. Let f ∈ Rs,bm,β [p,A,B, σ] . If s1, s2 ∈ R0,b
2,β [p,A,B, σ], then

Js,bf(z) =
(s1(z))

m
4
+ 1

2

(s2(z))
m
4
− 1

2

. (2.2)

Proof. If f ∈ Rs,bm,β [p,A,B, σ] , then there exist two functions h1, h2 ∈ P2,β (A,B, σ) such that

z (Js,bf (z))′

pJs,bf (z)
=

(
m

4
+

1

2

)
h1(z)−

(
m

4
− 1

2

)
h2(z),

which is equivalent to
z (Js,bf (z))′

pJs,bf (z)
=

(
m

4
+

1

2

)
zs′1(z)

ps1(z)
−
(
m

4
− 1

2

)
zs′2(z)

ps2(z)
, (2.3)

where s1, s2 ∈ R0,b
2,β [p,A,B, σ] . By integrating both sides of (2.3), we have

logJs,bf (z) =

(
m

4
+

1

2

)
log s1(z)−

(
m

4
− 1

2

)
log s2(z). (2.4)

From (2.4), we readily get (2.2).

Theorem 2.6. Let f ∈Ms,b
m,β [p,A,B, σ, α] . Then g ∈ Rs,bm,β [p,A,B, σ] , where

(
Js,bg(z)

z

) 1
p

=

(
Js,bf(z)

z

) 1−α
p [

(Js,bf(z))′
]α
p . (2.5)
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Proof. By differentiating both sides of (2.5) logarithmically, with some simplification, we have

z (Js,bg (z))′

pJs,bg (z)
= (1− α)

z (Js,bf (z))′

pJs,bf (z)
+ α

(
z (Js,bf (z))′

)′
p (Js,bf (z))′

∈ Pm,β (A,B, σ) .

Hence g ∈ Rs,bm,β [p,A,B, σ]. This completes the proof of Theorem 2.6.

Theorem 2.7. A function f ∈Ms,b
m,β [p,A,B, σ, α], if and only if there exists a function g ∈ Rs,bm,β [p,A,B, σ]

such that

Js,bf(z) =

[
1

α

∫ z

0
t
1
α
−1
(
Js,bg(z)

z

) 1
α

dt

]α
. (2.6)

Proof. Suppose that f ∈Ms,b
m,β [p,A,B, σ, α] and g ∈ Rs,bm,β [p,A,B, σ]. From (2.5), we have

(Js,bf(z))
1−α
α (Js,bf(z))′ =

(
Js,bg(z)

z

) 1
α

z
1−α
α . (2.7)

By integrating both sides of (2.7), we easily get (2.6). Conversely, assume that (2.6) holds with g ∈
Rs,bm,β [p,A,B, σ], we only need to show that f ∈Ms,b

m,β [p,A,B, σ, α] . From (2.6), we obtain

(1− α)
z (Js,bf)′

pJs,bf
+ α

(
z (Js,bf)′

)′
p (Js,bf)′

=
z (Js,bg)′

pJs,bg
∈ Pm,β (A,B, σ) ,

which implies that f ∈Ms,b
m,β [p,A,B, σ, α] .

Theorem 2.8. Suppose that f ∈Ms,b
m,0 [p,A,B, σ, α], Lr(f) denotes the length of the curve C, C = f(reiθ),

0 < θ ≤ 2π, and M(r) = max
0<θ≤2π

∣∣f(reiθ)
∣∣ . Then, for 0 < r < 1,

Lr(f) ≤ (2− α)πpM(r)

α

[
2 + (k − 2)A1 − kB

1−B

]
,

where A1 = (1− α)A+ αB.

Proof. Assume that F (z) = Js,bf(z). By taking integration by parts, with z = reiθ, we get

Lr(f) =

∫ 2π

0

∣∣zF ′(z)∣∣ dθ
=

∫ 2π

0
zF ′(z)e−i arg(zF

′(z))dθ

=

∫ 2π

0
F (z)e−i arg(zF

′(z))<
(

(zF ′(z))′

F ′(z)

)
dθ

≤ pM(r)

α

∫ 2π

0

∣∣∣∣(1− α)
zF ′(z)

pF (z)
+ α

(zF ′(z))′

pF ′(z)
+ (α− 1)

zF ′(z)

pF (z)

∣∣∣∣ dθ
≤ pM(r)

α

[∫ 2π

0

∣∣∣∣(1− α)
zF ′(z)

pF (z)
+ α

(zF ′(z))′

pF ′(z)

∣∣∣∣ dθ + (1− α)

∫ 2π

0

∣∣∣∣zF ′(z)pF (z)

∣∣∣∣ dθ]
≤ pM(r)

α

[(
2 + (k − 2)A1 − kB

1−B

)
π + (1− α)

(
2 + (k − 2)A1 − kB

1−B

)
π

]
=

(2− α)πpM(r)

α

[
2 + (k − 2)A1 − kB

1−B

]
.

We thus complete the proof of Theorem 2.8.
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Theorem 2.9. Let f ∈Ms,b
m,0 [p,A,B, σ, α]. Then

n |an| = O(1)M

(
1− 1

n

)
, (n ≥ 2),

where O(1) is a constant depending on A1, B, p, α and k only.

Proof. Since z = reiθ, the Cauchy theorem gives

n |an| =
1

2πrn
Lr(f).

By virtue of Theorem 2.8, we have

n |an| =
1

2rn
(2− α)pM(r)

α

[
2 + (k − 2)A1 − kB

1−B

]
,

where A1 = (1− α)A+ αB.
By taking r = 1− 1

n , we get

n |an| =
(2− α)p

2α
(
1− 1

n

)n [2 + (k − 2)A1 − kB
1−B

]
M

(
1− 1

n

)
,

which gives the desired result.

Theorem 2.10. Let c be a real number with c > −p, and Js,bFc,p(z) 6= 0, for all z ∈ D. If f ∈
Rs,b2,β [p,A,B, σ] , then

Fc,p(z) ∈ Rs,b2,β [p,A,B, σ] ,

where Fc,p : A(p)→ A(p) is defined by

Fc,p(z) =
c+ p

zc

∫ z

0
tc−1f(t)dt =

(
zp +

∞∑
n=1

c+ p

c+ p+ n
zn+p

)
∗ f(z). (2.8)

Proof. Let f ∈ Rs,b2,β [p,A,B, σ] and set

φ(z) =
Js,bFc,p(z)

zp
. (2.9)

Then φ is analytic in D with φ(0) = 1. By differentiating both sides of (2.8), we have

z (Fc,p (z))′

pFc,p(z)
=
c+ p

p

f (z)

pFc,p(z)
− c

p
. (2.10)

By applying the operator Js,b to (2.10), we get

z (Js,bFc,p(z))′

pJs,bFc,p(z)
=
c+ p

p

Jc,bf(z)

pJc,bFc,p(z)
− c

p
. (2.11)

Now, by taking logarithmic differentiation of (2.9), we obtain

z (Js,bFc,p(z))′

pJs,bFc,p(z)
− 1 =

zφ′(z)

φ(z)
= ϕ(z). (2.12)

From (2.11) and (2.12), we know that

c+ p

p

Jc,bf(z)

pJc,bFc,p(z)
= ϕ(z) + 1 +

c

p
. (2.13)
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Logarithmic differentiation of (2.13), together with (2.12) yields

H(z) +
zφ′(z)

pH(z) + c
=
z (Js,bf (z))′

pJs,bf (z)
≺ (1− σ)

(
1 +Az

1 +Bz

)β
+ σ,

where H(z) = ϕ(z) + 1. By Lemma 1.5, we see that

H(z) ≺ (1− σ)

(
1 +Az

1 +Bz

)β
+ σ.

This implies that Fc,p (z) ∈ Rs,b2,β [p,A,B, σ] .

Theorem 2.11. Let c be a real number with c > −p, and Js,bFc,p(z) 6= 0 for all z ∈ D. If f ∈ Vs,b2,β [p,A,B, σ] ,
then

Fc,p(z) ∈ Vs,b2,β [p,A,B, σ] ,

where Fc,p(z) is given by (2.8).

Proof. The proof follows directly from (1.4) and Theorem 2.10.
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