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Abstract

In this paper, we study a hybrid algorithm for finding a common solution of a finite family of equilibrium
problems which is also a common fixed point of a finite family of asymptotically quasi-φ-nonexpansive
mappings in a strictly convex and uniformly smooth Banach space which also has the Kadec-Klee property.
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1. Introduction and preliminaries

Let E be a real Banach space and let E∗ be the dual space of E. Recall that the normalized duality
mapping J from E to 2E

∗
is defined by

Jx = {f∗ ∈ E∗ : ‖x‖2 = 〈x, f∗〉 = ‖f∗‖2}.

Let BE be the unit sphere of E. Recall that E is said to be a strictly convex space iff ‖x + y‖ < 2 for

all x, y ∈ BE and x 6= y. Recall that E is said to have a Gâteaux differentiable norm iff limt→0
‖x+ty‖−‖x‖

t
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exists for each x, y ∈ BE . In this case, we also say that E is smooth. E is said to have a uniformly Gâteaux
differentiable norm, if for each y ∈ BE , the limit is attained uniformly for all x ∈ BE . E is also said to have
a uniformly Fréchet differentiable norm iff the above limit is attained uniformly for x, y ∈ BE . In this case,
we say that E is uniformly smooth. It is known that if E is uniformly smooth, then duality mapping J is
uniformly norm-to-norm continuous on every bounded subset of E. It is also known that E∗ is uniformly
convex, if and only if E is uniformly smooth.

Next, we assume that E is a smooth Banach space which means mapping J is single-valued. Consider
the functional

φ(x, y) := ‖x‖2 + ‖y‖2 − 2〈x, Jy〉, ∀x, y ∈ E.

In [2], Alber studied a new mapping ΠC in a Banach space E which is an analogue of PC , the metric
projection, in Hilbert spaces. Recall that the generalized projection ΠC : E → C is a mapping that assigns
to an arbitrary point x ∈ E the minimum point of φ(x, y), that is, ΠCx = x̄, where x̄ is the solution to the
minimization problem φ(x̄, x) = miny∈C φ(y, x). It is obvious from the definition of function φ that

(‖x‖ − ‖y‖)2 ≤ φ(x, y), ∀x, y ∈ E.

Recall that E has the Kadec-Klee property, if limn→∞ ‖xn − x‖ = 0, as n → ∞, for any sequence
{xn} ⊂ E, and x ∈ E with xn ⇀ x, and ‖xn‖ → ‖x‖, as n → ∞. It is known that every uniformly convex
Banach space has the Kadec-Klee property.

Let T : C → C be a mapping. In this paper, we use Fix(T ) to denote the fixed point set of mapping T.
T is said to be closed, if for any sequence {xn} ⊂ C such that limn→∞ xn = x′ and limn→∞ Txn = y′, we
have Tx′ = y′.

Recall that a point p is said to be an asymptotic fixed point of mapping T if and only if subset C contains
a sequence {xn} which converges weakly to p such that limn→∞ ‖xn − Txn‖ = 0. We use F̃ ix(T ) to denote
the asymptotic fixed point set. Let K be a bounded subset of C. Recall that T is said to be uniformly
asymptotically regular on C if and only if lim supn→∞ supx∈K{‖Tnx− Tn+1x‖} = 0.

Recall that T is said to be relatively nonexpansive [6] iff

φ(p, Tx) ≤ φ(p, x), ∀x ∈ C, ∀p ∈ F̃ ix(T ) = Fix(T ) 6= ∅.

T is said to be relatively asymptotically nonexpansive [1] iff

φ(p, Tnx) ≤ (µn + 1)φ(p, x), ∀x ∈ C, ∀p ∈ F̃ ix(T ) = Fix(T ) 6= ∅, ∀n ≥ 1,

where {µn} ⊂ [0,∞) is a sequence such that µn → 0 as n→∞.
T is said to be quasi-φ-nonexpansive [15] iff

φ(p, Tx) ≤ φ(p, x), ∀x ∈ C, ∀p ∈ Fix(T ) 6= ∅.

T is said to be asymptotically quasi-φ-nonexpansive [16] iff there exists a sequence {µn} ⊂ [0,∞) with
µn → 0 as n→∞ such that

φ(p, Tnx) ≤ (µn + 1)φ(p, x), ∀x ∈ C, ∀p ∈ Fix(T ) 6= ∅, ∀n ≥ 1.

Remark 1.1. Quasi-φ-nonexpansive mappings and asymptotically quasi-φ-nonexpansive mappings do not
require the strong restriction that the fixed point set equals the asymptotic fixed point set. The class of quasi-
φ-nonexpansive mappings and the class of asymptotically quasi-φ-nonexpansive mappings are generalizations
of the class of quasi-nonexpansive mappings and the class of asymptotically quasi-nonexpansive mappings
in Hilbert spaces since

√
φ(x, y) = ‖x− y‖.

Mann iterative algorithm is efficient for studying fixed points of (asymptotically) nonexpansive operators.
However, in the framework of infinite-dimensional Banach spaces, they are only weakly convergent (see
[10] and the references therein). In many modern disciplines, problems arise in the framework of infinite
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dimension spaces. In such nonlinear problems, strong convergence is often much more desirable than the
weak convergence. To guarantee the strong convergence of Mann iteration algorithms, many authors use
different regularization methods in the framework of Banach spaces; see [4, 7, 13, 17] and the references
therein.

Let C be a nonempty closed and convex subset of E and let B : C × C → R be a function. Recall the
following equilibrium problem [5]. Find x̄ ∈ C such that B(x̄ y) ≥ 0, for all y ∈ C. We use Sol(B) to denote
the solution set of the equilibrium problem. That is, Sol(B) = {x ∈ C : B(x, y) ≥ 0, ∀y ∈ C}.

In order to study the equilibrium problem, we assume that B satisfies the following conditions:

(B1) B(a, a) ≡ 0, ∀a ∈ C;

(B2) B(b, a) +B(a, b) ≤ 0, ∀a, b ∈ C;

(B3) B(a, b) ≥ lim supt↓0B(tc+ (1− t)a, b), ∀a, b, c ∈ C;

(B4) b 7→ B(a, b) is convex and weakly lower semi-continuous for all a ∈ C.

We remark here that B is said to be monotone iff B(x, y) + B(y, x) ≤ 0, for all x, y ∈ C. y 7→ B(x, y)
is convex iff B(tx + (1 − t)y, z) ≤ tB(x, z) + (1 − t)B(y, z) for all x, y, z ∈ C and t ∈ (0, 1). y 7→ B(x, y) is
lower semi-continuous iff B(x, yn) → B(x, y) whenever yn → y as n → ∞. It is known that the indicator
function of an open set is lower semi-continuous. The equilibrium problem is dynamic and is experiencing
an explosive growth in both theory and applications. It includes variational inequality problems, saddle
problems, complementary problems, zero point problem as special cases, provides a unified framework for
many problems in image recovery, traffic and network bandwidth allocation (see [3, 9, 11, 19, 24] and the
references therein).

In this paper, we study a hybrid algorithm for a finite family of equilibrium problems and fixed point
problems of asymptotically quasi-φ-nonexpansive mappings. Strong convergence of the algorithm is obtained
in a strictly convex and uniformly smooth Banach space which also has the Kadec-Klee property. From
the framework of the space, the operator and the restrictions imposed on the control sequences, the results
presented in this paper mainly improve the corresponding results in [8, 12, 14–16, 22, 23].

The following lemmas play an important role in this paper.

Lemma 1.2 ([20]). Let r be a positive real number and let E be uniformly convex. Then there exists a
strictly increasing, continuous, and convex function g : [0, 2r]→ R such that g(0) = 0 and

‖(1− t)y + ta‖2 + t(1− t)g(‖b− a‖) ≤ t‖a‖2 + (1− t)‖b‖2

for all a, b ∈ Br := {a ∈ E : ‖a‖ ≤ r} and t ∈ [0, 1].

Lemma 1.3 ([2]). Let E be a strictly convex, reflexive, and smooth Banach space and let C be a nonempty,
closed, and convex subset of E. Let x ∈ E. Then

φ(y,ΠCx) ≤ φ(y, x)− φ(ΠCx, x), ∀y ∈ C,

〈y − x0, Jx− Jx0〉 ≤ 0, ∀y ∈ C,

if and only if x0 = ΠCx.

Lemma 1.4 ([16]). Let E be a strictly convex, smooth, and reflexive Banach space and let C be a closed
convex subset of E. Let T : C → C be an asymptotically quasi-φ-nonexpansive mapping. Then Fix(T ) is
convex and closed.

Lemma 1.5 ([15, 21]). Let E be a strictly convex, smooth, and reflexive Banach space and let C be a closed
convex subset of E. Let B be a function, which satisfies (B1)-(B4), from C × C to R. Let x ∈ E and let
r > 0. Define a mapping WG,r : E → C by

RB,rx = {z ∈ C : rB(z, y) + 〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C}.
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Then, there exists z ∈ C such that rB(z, y)+〈z−y, Jz−Jx〉 ≤ 0, for all y ∈ C and the following conclusions
hold:

(1) RB,r is single-valued quasi-φ-nonexpansive and

〈RB,rx−RB,ry, JRB,rx− JRB,ry〉 ≤ 〈RB,rx−RB,ry, Jx− Jy〉

for all x, y ∈ E.

(2) φ(q,RB,rx) + φ(RB,rx, x) ≤ φ(q, x), ∀q ∈ Fix(RB,r).

(3) Fix(RB,r) = Sol(B) is closed and convex.

2. Convergence theorems

Theorem 2.1. Let E be a uniformly smooth and strictly convex Banach space. Let C be a convex and closed
subset of E. Let N be some positive integer. Let Bi be a bifunction with restrictions (B1), (B2), (B3), (B4)
and let Ti : C → C be an asymptotically quasi-φ-nonexpansive mapping such that Ti is uniformly asymp-
totically regular and closed on C for each 1 ≤ i ≤ N . Assume ∩Ni=1

(
Sol(Bi) ∩ Fix(Ti)

)
is nonempty and

bounded. Let {xn} be a sequence generated in the following process.

C(1,i) = C, ∀1 ≤ i ≤ N,
C1 = ∩Ni=1C(1,i),

x1 = ΠC1x0,

y(n,i) = J−1
(
(1− α(n,i))JT

n
i xn + α(n,i)Jxn

)
,

r(n,i)Bi(u(n,i), y) + 〈u(n,i) − y, Ju(n,i) − Jy(n,i)〉 ≤ 0, ∀y ∈ Cn,

C(n+1,i) = {z ∈ C(n,i) : µ(n,i)M(n,i) + φ(z, xn) ≥ φ(z, u(n,i))},
Cn+1 = ∩Ni=1C(n+1,i),

xn+1 = ΠCn+1x1,

where M(n,i) = sup{φ(p, xn) : p ∈ ∩Ni=1

(
Sol(Bi) ∩ Fix(Ti)

)
}, {r(n,i)} is a real sequence in [r,∞), where r

is some positive real number and {α(n,i)} is a real sequence in [a, b], where 0 < a < b < 1. If E has the
Kadec-Klee property, then {xn} converges strongly to Π

∩Ni=1

(
Sol(Bi)∩Fix(Ti)

)x1.

Proof. From Lemmas 1.4 and 1.5, we find that ∩Ni=1

(
Sol(Bi) ∩ Fix(Ti)

)
is convex and closed. Hence,

Π∩i∈ΛS(Gi)
⋂
∩i∈ΛF (Ti)x is well-defined for any element in E.

Next, we prove that Cn is convex and closed. We show this by the induction. It is obvious that C(1,i) = C
is convex and closed. Assume that C(m,i) is convex and closed for some m ≥ 1. Let z1, z2 ∈ C(m+1,i). Hence
z1, z2 ∈ C(m,i). Therefore, z = tz1+(1−t)z2 ∈ C(m,i), where t ∈ (0, 1). Notice that φ(z1, u(m,i))−φ(z1, xm) ≤
µ(m,i)M(m,i), and φ(z2, u(m,i))− φ(z2, xm) ≤ µ(m,i)M(m,i). Hence, one has

2〈z1, Jxm − Ju(m,i)〉 − ‖xm‖2 + ‖u(m,i)‖2 ≤ µ(m,i)M(m,i),

and
2〈z2, Jxk − Ju(m,i)〉 − ‖xm‖2 + ‖u(m,i)‖2 ≤ µ(m,i)M(m,i).

This finds φ(z, u(m,i)) ≤ φ(z, xm)+µ(m,i)M(m,i), where z ∈ C(m,i). This shows that C(m+1,i) is closed and

convex. Hence, Cn = ∩Ni=1C(n,i) is a convex and closed set. This proves that ΠCn+1x1 is well-defined. On

the other hand, we have ∩Ni=1

(
Sol(Bi) ∩ Fix(Ti)

)
is in Cn, for each n ≥ 1. And ∩Ni=1

(
Sol(Bi) ∩ Fix(Ti)

)
⊂
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C1 = C is obvious. Suppose that ∩Ni=1

(
Sol(Bi) ∩ Fix(Ti)

)
⊂ C(m,i) for some positive integer m. For any

w ∈ ∩Ni=1

(
Sol(Bi) ∩ Fix(Ti)

)
⊂ C(m,i), we see that

φ(w, u(m,i)) ≤ φ(w, y(m,i))

= ‖w‖2 + ‖α(m,i)Jxm + (1− α(m,i))JT
m
i xm‖2

− 2〈w,α(m,i)Jxm + (1− α(m,i))JT
m
i xm〉

≤ ‖w‖2 − 2(1− α(m,i))〈w, JTm
i xm〉 − 2α(m,i)〈w, Jxm〉

+ (1− α(m,i))‖Tm
i xm‖2 + α(m,i)‖xm‖2

≤ (1− α(m,i))φ(w, xm) + α(m,i)φ(w, xm)

+ (1− α(m,i))µ(m,i)φ(w, xm)

≤ φ(w, xm) + µ(m,i)φ(w, xm),

which shows that w ∈ C(m+1,i). This completes the proof that ∩Ni=1

(
Sol(Bi)∩ Fix(Ti)

)
⊂ C(n,i). Hence, we

find that ∩Ni=1

(
Sol(Bi)∩Fix(Ti)

)
⊂ ∩Ni=1C(n,i). From Lemma 1.3, one has 〈z − xn, Jx1 − Jxn〉 ≤ 0, for any

z ∈ Cn. Hence, we have

〈w − xn, Jx1 − Jxn〉 ≤ 0, ∀w ∈ ∩Ni=1

(
Sol(Bi) ∩ Fix(Ti)

)
. (2.1)

By using Lemma 1.3, we have φ(xn, x1) ≤ φ(Π
∩Ni=1

(
Sol(Bi)∩Fix(Ti)

)x1, x1), which shows that {φ(xn, x1)}
is a bounded sequence. Hence, {xn} is also a bounded sequence. Since the framework of E is reflexive, we
may assume that xn ⇀ x̄. It follows that x̄ ∈ Cn. Therefore, φ(xn, x1) ≤ φ(x̄, x1). Since the norm function
is a weakly lower semicontinuous function, we have

φ(x̄, x1) ≤ lim inf
n→∞

(‖xn‖2 + ‖x1‖2 − 2〈xn, Jx1〉) = lim inf
n→∞

φ(xn, x1) ≤ φ(x̄, x1).

It follows that limn→∞ φ(xn, x1) = φ(x̄, x1). Hence, we have limn→∞ ‖xn‖ = ‖x̄‖. By using the Kadec-
Klee property of the spaces, one obtains that xn converges strongly to x̄ as n → ∞. On the other hand,
we find that φ(xn+1, x1) ≥ φ(xn, x1), which shows that {φ(xn, x1)} is a nondecreasing sequence. Therefore,
one has limn→∞ φ(xn, x1) exists. It follows that φ(xn+1, xn) ≤ φ(xn+1, x1) − φ(xn, x1). Therefore, we have
limn→∞ φ(xn+1, xn) = 0. On the other hand, since xn+1 ∈ Cn+1, one sees that

φ(xn+1, xn) + µ(n,i)M(n,i) ≥ φ(xn+1, u(n,i)) ≥ 0.

This yields that limn→∞ φ(xn+1, u(n,i)) = 0. Hence, one has limn→∞(‖u(n,i)‖−‖xn+1‖) = 0. This implies
that limn→∞ ‖u(n,i)‖ = ‖x̄‖. That is,

lim
n→∞

‖Ju(n,i)‖ = lim
n→∞

‖u(n,i)‖ = ‖x̄‖ = ‖Jx̄‖.

This implies that {Ju(n,i)} is bounded. Assume that Ju(n,i) converges weakly to u(∗,i) ∈ E∗. In view
of the reflexivity of E, we see that J(E) = E∗. This shows that there exists an element ui ∈ E such that
Jui = u(∗,i). It follows that

φ(xn+1, u(n,i)) + 2〈xn+1, Ju(n,i)〉 = ‖xn+1‖2 + ‖Ju(n,i)‖2.

By taking lim infn→∞, one has

φ(x̄, ui) = ‖x̄‖2 + ‖Jui‖2 − 2〈x̄, Jui〉 = ‖x̄‖2 − 2〈x̄, u(∗,i)〉+ ‖u(∗,i)‖2 ≤ 0.

That is, x̄ = ui, which in turn implies that Jx̄ = u(∗,i). Hence, Ju(n,i) ⇀ Jx̄ ∈ E∗. Since E∗ is uniformly
convex. Hence, it has the Kadec-Klee property, we obtain that Jx̄ = limn→∞ Ju(n,i). Since J−1 : E∗ → E
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is demi-continuous and E has the Kadec-Klee property, one gets that u(n,i) → x̄, as n → ∞. This implies
limn→∞ ‖xn−u(n,i)‖ = 0. Hence, we have limn→∞(φ(w, u(n,i))−φ(w, xn)) = 0. Since E∗ is uniformly convex,
we find from Lemma 1.2 that

φ(w, u(n,i)) ≤ ‖w‖2 + ‖α(n,i)Jxn + (1− α(n,i))JT
n
i xn‖2

− 2〈w, (1− α(n,i))JT
n
i xn + α(n,i)Jxn〉

≤ ‖w‖2 − 2(1− α(n,i))〈w, JTn
i xn〉 − 2α(n,i)〈w, Jxn〉

− α(n,i)(1− α(n,i))g(‖Jxn − JTn
i xn‖)

+ α(n,i)‖xn‖2 + (1− α(n,i))‖Tn
i xn‖2

≤ φ(w, xn) + (1− α(n,i))µ(n,i)φ(w, xn)− α(n,i)(1− α(n,i))g(‖Jxn − JTn
i xn‖)

≤ φ(w, xn) + µ(n,i)M(n,i) − α(n,i)(1− α(n,i))g(‖Jxn − JTn
i xn‖).

It follows that

α(n,i)(1− α(n,i))g(‖Jxn − JTn
i xn‖) ≤ φ(w, xn) + µ(n,i)M(n,i) − φ(w, u(n,i)).

This yields from the restriction imposed on {α(n,i)} that limn→∞ ‖Jxn − JTn
i xn‖ = 0. Therefore, we

have
lim
n→∞

‖Jx̄− JTn
i xn‖ = 0.

Since J−1 : E∗ → E is demi-continuous, one has Tn
i xn ⇀ x̄. Hence, one has limn→∞ ‖Tn

i xn‖ = ‖x̄‖.
Since E has the Kadec-Klee property, we obtain

lim
n→∞

‖x̄− Tn
i xn‖ = 0.

Since each Ti is uniformly asymptotically regular, one has limn→∞ ‖Tn+1
i xn−x̄‖ = 0. That is, Ti(T

n
i xn)→ x̄.

Since Ti is a closed mapping, we find x̄ = Tix̄ for each 1 ≤ i ≤ N. This proves x̄ ∈ ∩Ni=1Fix(Ti).
On the other hand, we have limn→∞(‖y(n,i)‖ − ‖u(n,i)‖) = 0. Since u(n,i) → x̄ as n → ∞, we find that

limn→∞ ‖Jy(n,i)‖ = ‖Jx̄‖. This shows that {Jy(n,i)} is bounded. Since E is uniformly smooth, one sees that

E∗ is reflexive. We may assume that Jy(n,i) ⇀ y(∗,i) ∈ E∗. There exists yi ∈ E such that Jyi = y(∗,i). It
follows that

‖u(n,i)‖2 + ‖Jy(n,i)‖2 = φ(u(n,i), y(n,i)) + 2〈u(n,i), Jy(n,i)〉.

Hence, we have

0 ≤ φ(x̄, yi) = ‖x̄‖2 + ‖yi‖2 − 2〈x̄, Jyi〉 = ‖x̄‖2 + ‖y(∗,i)‖2 − 2〈x̄, y(∗,i)〉 ≤ 0.

That is, x̄ = yi. Hence, we have y(∗,i) = Jx̄. It follows that Jy(n,i) ⇀ Jx̄ ∈ E∗. Since E∗ is uniformly
convex, it has the Kadec-Klee property, we obtain that Jy(n,i) − Jx̄ → 0 as n → ∞. Since J−1 : E∗ → E
is demi-continuous, we see that y(n,i) ⇀ x̄. By using the Kadec-Klee property, we obtain that y(n,i) → x̄ as
n→∞. Since E is uniformly smooth, limn→∞ ‖Jy(n,i) − Ju(n,i)‖ = 0. Since Bi is monotone, we find that

r(n,i)Bi(y, u(n,i)) ≤ ‖y − u(n,i)‖‖Ju(n,i) − Jy(n,i)‖, ∀y ∈ Cn.

Therefore, one sees Bi(y, x̄) ≤ 0 for all y ∈ C. For y ∈ C and 0 < ti < 1, define y(t,i) = (1 − ti)x̄ + tiy.
This implies that 0 ≥ Bi(y(t,i), x̄). Hence, we have

0 = Bi(y(t,i), y(t,i)) ≤ tiBi(y(t,i), y).

It follows that Bi(x̄, y) ≥ 0 for all y ∈ C. This implies that x̄ ∈ Sol(Bi) for every 1 ≤ i ≤ N .
Finally, we prove x̄ = Π

∩Ni=1

(
Sol(Bi)∩Fix(Ti)

)x1. By letting n→∞ in (2.1), we arrive at 〈x̄−w, Jx1−Jx̄〉 ≥

0 w ∈ ∩Ni=1

(
Sol(Bi)∩Fix(Ti)

)
. From Lemma 1.3, we find that x̄ = Π

∩Ni=1

(
Sol(Bi)∩Fix(Ti)

)x1. This completes

the proof.
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For the class of quasi-φ-nonexpansive mappings, we find the following result immediately.

Corollary 2.2. Let E be a uniformly smooth and strictly convex Banach space. Let C be a convex and closed
subset of E. Let N be some positive integer. Let Bi be a bifunction with restrictions (B1), (B2), (B3), (B4)
and let Ti : C → C be a quasi-φ-nonexpansive mapping such that Ti is uniformly asymptotically regular and
closed on C for each 1 ≤ i ≤ N . Assume ∩Ni=1

(
Sol(Bi) ∩ Fix(Ti)

)
is nonempty. Let {xn} be a sequence

generated in the following process.

C(1,i) = C,∀1 ≤ i ≤ N,
C1 = ∩Ni=1C(1,i),

x1 = ΠC1x0,

y(n,i) = J−1
(
(1− α(n,i))JTixn + α(n,i)Jxn

)
,

r(n,i)Bi(u(n,i), y) + 〈u(n,i) − y, Ju(n,i) − Jy(n,i)〉 ≤ 0,∀y ∈ Cn,

C(n+1,i) = {z ∈ C(n,i) : φ(z, u(n,i)) ≤ φ(z, xn)},
Cn+1 = ∩Ni=1C(n+1,i),

xn+1 = ΠCn+1x1,

where {r(n,i)} is a real sequence in [r,∞), where r is some positive real number and {α(n,i)} is a real
sequence in [a, b], where 0 < a < b < 1. If E has the Kadec-Klee property, then {xn} converges strongly to
Π
∩Ni=1

(
Sol(Bi)∩Fix(Ti)

)x1.

In the framework of Hilbert spaces, the generalized projection Π is reduced to the metric projection
Proj, φ(x, y) = ‖x − y‖2 and the class of asymptotically quasi-φ-nonexpansive mappings is reduced to
the class of asymptotically quasi-nonexpansive mappings. From Theorem 2.1, we find the following results
immediately.

Corollary 2.3. Let E be a Hilbert space and let C be a convex and closed subset of E. Let N be some
positive integer. Let Bi be a bifunction with restrictions (B1), (B2), (B3), (B4) and let Ti : C → C be an
asymptotically quasi-nonexpansive mapping such that Ti is uniformly asymptotically regular and closed on
C for each 1 ≤ i ≤ N . Assume ∩Ni=1

(
Sol(Bi) ∩ Fix(Ti)

)
is nonempty and bounded. Let {xn} be a sequence

generated in the following process.

C(1,i) = C, ∀1 ≤ i ≤ N,
C1 = ∩Ni=1C(1,i),

x1 = ProjC1x0,

y(n,i) = (1− α(n,i))T
n
i xn + α(n,i)xn,

r(n,i)Bi(u(n,i), y) + 〈u(n,i) − y, u(n,i) − y(n,i)〉 ≤ 0, ∀y ∈ Cn,

C(n+1,i) = {z ∈ C(n,i) : ‖u(n,i) − z‖2 ≤ µ(n,i)M(n,i) + ‖xn − z‖2},
Cn+1 = ∩Ni=1C(n+1,i),

xn+1 = ProjCn+1x1,

where M(n,i) = sup{‖xn − p‖2 : p ∈ ∩Ni=1

(
Sol(Bi) ∩ Fix(Ti)

)
}, {r(n,i)} is a real sequence in [r,∞), where

r is some positive real number and {α(n,i)} is a real sequence in [a, b], where 0 < a < b < 1. Then {xn}
converges strongly to Proj

∩Ni=1

(
Sol(Bi)∩Fix(Ti)

)x1.

Finally, we give an application to variational inequalities. Let A : C → E∗ be a single-valued monotone
operator which is continuous along each line segment in C with respect to the weak∗ topology of E∗. Recall
the following variational inequality. Find a point x ∈ C such that 〈x− y,Ax〉 ≤ 0 for all y ∈ C. The symbol
NC(x) stands for the normal cone for C at a point x ∈ C; that is, NC(x) = {x∗ ∈ E∗ : 〈x− y, x∗〉 ≥ 0, ∀y ∈
C}. Next, we use V I(C,A) to denote the solution set of the variational inequality.
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Corollary 2.4. Let E be a uniformly smooth and strictly convex Banach space. Let C be a convex and
closed subset of E. Let N be some positive integer. Let Ai : C → E∗ be a single-valued, monotone and
hemicontinuous operator and let Bi be a bifunction satisfying (B1), (B2), (B3) and (B4) for each 1 ≤ i ≤ N .
Assume that ∩Ni=1

(
Sol(Bi) ∩ V I(C,Ai)

)
is nonempty. Let {xn} be a sequence generated in the following

process. x0 ∈ E chosen arbitrarily and

C1,i = C, ∀1 ≤ i ≤ N,
C1 = ∩Ni=1C(1,i),

x1 = ΠC1x0,

z(n,i) = V I(C,Ai + 1
ri

(J − Jxn)),

Jy(n,i) = (1− α(n,i))Jzn,i + α(n,i)Jxn, n ≥ 1,

r(n,i)Bi(u(n,i), y) + 〈y − u(n,i), Ju(n,i) − Jy(n,i)〉 ≥ 0, ∀y ∈ Cn,

C(n+1,i) = {w ∈ C(n,i) : φ(w, un,i) ≤ φ(w, xn)},
Cn+1 = ∩i∈∆C(n+1,i),

xn+1 = ΠCn+1x0, ∀n ≥ 1,

where {r(n,i)} is a real sequence in [r,∞), where r is some positive real number and {α(n,i)} is a real sequence
in [a, b], where 0 < a < b < 1. Then {xn} converges strongly to Π

∩Ni=1

(
Sol(Bi)∩V I(C,Ai)

)x1.

Proof. For each 1 ≤ i ≤ N , define a mapping Wi by

Wix =

{
∅, x /∈ C,
Aix+NCx, x ∈ C.

From Rockafellar [18], we see that Wi is a maximal monotone operator with V I(C,Ai) = W−1
i (0).

For each ri > 0, and x ∈ E, we see that there exists a unique xri in the domain of Wi such that Jx ∈
Jxri + riTi(xri), where xri = (J + riWi)

−1Jx. For each 1 ≤ i ≤ N ,

zn,i = V I(C,
1

ri
(J − Jxn) +Ai),

which is equivalent to

〈zn,i − y,Aizn,i +
1

ri
(Jzn,i − Jxn)〉 ≤ 0, ∀y ∈ C,

that is,
1

ri

(
Jxn − Jzn,i

)
∈ NC(zn,i) +Aizn,i.

This implies that zn,i = (J + riTi)
−1Jxn. Since (J + riTi)

−1J is closed quasi-φ-nonexpansive with
Fix((J + riTi)

−1J) = T−1
i (0), by using Theorem 2.1, we find the desired conclusion immediately.

Remark 2.5. To construct a mathematical model which is as close as possible to a real world problem, we
often have to use more than one constraint. Solving such real world problems, we have to obtain some
solution which is simultaneously the solution of two or more subproblems. In this paper, we study a hybrid
algorithm for finding a common solution of a finite family of equilibrium problems which is also a common
fixed point of a finite family of asymptotically quasi-φ-nonexpansive mappings. Strong convergence theorems
are established without any compact assumption in a strictly convex and uniformly smooth Banach space
which also has the Kadec-Klee property.
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