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Abstract

The aim of this paper is to investigate the oscillation and asymptotic behavior of a class of third-
order nonlinear neutral differential equations with distributed deviating arguments. By means of Riccati
transformation technique and some inequalities, we establish several sufficient conditions which ensure that
every solution of the studied equation is either oscillatory or converges to zero. Two examples are provided
to illustrate the main results. c©2016 All rights reserved.
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1. Introduction

During the past few decades, an increasing interest in obtaining sufficient conditions for oscillatory
and nonoscillatory behavior of different classes of differential equations has been stimulated due to their
applications in natural sciences and engineering (see Hale [9] and Wong [24]). This resulted in publication
of several monographs [1, 11], numerous research papers [2–6, 8, 10, 12–23, 25, 26], and the references cited
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therein. Analysis of qualitative properties of neutral differential equations is important not only for the sake
of further development of the oscillation theory, but for practical reasons too. In fact, neutral differential
equations are used in modeling of networks containing lossless transmission lines (see, for instance, the paper
by Driver [7]).

In what follows, let us present some background details which motivate our study. Assuming that

0 ≤ p(t) ≤ p0 <∞, (1.1)

the oscillation of second-order neutral differential equation

[r(t)(x(t) + p(t)x[τ(t)])′]′ + q(t)f(x(σ(t))) = 0,

and its particular cases were investigated by Bacuĺıková and Džurina [4, 5], Fǐsnarová and Mař́ık [8], Li
and Rogovchenko [14, 15], Li et al. [16], and Xing et al. [25]. For the oscillation of second-order neutral
differential equations with distributed deviating arguments, Li et al. [12] and Li and Thandapani [17]
established several oscillation criteria for

(r(t)|z′(t)|α−1z′(t))′ +
∫ b

a
q(t, ξ) |x[g(t, ξ)]|α−1 x[g(t, ξ)]dσ(ξ) = 0,

where z(t) := x(t) + p(t)x[τ(t)]. Compared with second-order neutral differential equations, there are few
oscillation results for third-order neutral differential equations. Bacuĺıková and Džurina [2, 3], Jiang and Li
[10], and Li et al. [18] examined an equation of the form

(r(t)((x(t) + p(t)x(τ(t)))′′)γ)′ + q(t)xγ(σ(t)) = 0, (1.2)

under the assumption that
0 ≤ p(t) ≤ p0 < 1,

whereas Li and Rogovchenko [14], Thandapani and Li [20], and Xing et al. [25] deduced oscillation of (1.2)
assuming that condition (1.1) is satisfied.

On the basis of the ideas exploited by Li et al. [12, 18], the objective of this paper is to establish several
oscillation criteria for

(r(t)|z′′(t)|α−1z′′(t))′ +
∫ b

a
q(t, ξ) |x[g(t, ξ)]|α−1 x[g(t, ξ)]dσ(ξ) = 0, (1.3)

where t ≥ t0 > 0, α > 0 is a constant, and z(t) := x(t) + p(t)x[τ(t)]. As usual, a solution x of (1.3) is called
oscillatory, if the set of its zeros is unbounded from above, otherwise, it is said to be nonoscillatory.

In order to accomplish these tasks, it is necessary to make the following assumptions hold throughout
this paper:

(A1) r ∈ C1([t0,∞), (0,∞)) and p ∈ C([t0,∞), [0,∞));

(A2) q ∈ C([t0,∞)× [a, b], [0,∞)) and q(t, ξ) is not eventually zero on any [tµ,∞)× [a, b], tµ ∈ [t0,∞);

(A3) g ∈ C([t0,∞)×[a, b],R) is a nondecreasing function for ξ satisfying lim inft→∞ g(t, ξ) =∞ for ξ ∈ [a, b];

(A4) τ ∈ C1([t0,∞),R), τ ′(t) ≥ τ0 > 0, limt→∞ τ(t) =∞, and g(τ(t), ξ) = τ [g(t, ξ)];

(A5) σ ∈ C([a, b],R) is nondecreasing and the integral of (1.3) is taken in the sense of Riemann–Stieltijes.

Main results in this paper are organized into two parts in accordance with different assumptions on the
coefficient r. In Section 2, oscillation results for (1.3) are established in the case where∫ ∞

t0

r−1/α(t)dt =∞. (1.4)
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By assuming that ∫ ∞
t0

r−1/α(t)dt <∞, (1.5)

oscillation criteria for (1.3) are obtained in Section 3. To illustrate the results reported in Sections 2 and 3,
we give two examples in Section 4.

In the sequel, we use the following notations for a compact presentation of our results:

Q(t, ξ) := min{q(t, ξ), q(τ(t), ξ)}, R(t) := max{r(t), r[τ(t)]},

ρ′+(t) := max{0, ρ′(t)}, ϑ(t) :=

∫ ∞
ζ(t)

r−1/α(s)ds,

where ρ and ζ will be explained later, and all functional inequalities are tacitly assumed to hold for all t
large enough, unless mentioned otherwise.

2. Oscillation criteria for the case (1.4)

In this section, we consider two cases g(t, a) ≤ τ(t) and g(t, a) ≥ τ(t). Let us start with the first case.

Theorem 2.1. Let conditions (A1)-(A5), (1.1), (1.4), and α ≥ 1 be satisfied. Suppose that g(t, a) ∈
C1([t0,∞),R), g′(t, a) > 0, g(t, a) ≤ t, and g(t, a) ≤ τ(t) for t ≥ t0. If there exists a function ρ ∈
C1([t0,∞), (0,∞)) such that, for all sufficiently large t1 ≥ t0 and for some t2 > t1,∫ ∞ [

21−αρ(t)G1(t)

∫ b

a
Q(t, ξ)dσ(ξ)− 1

(α+ 1)α+1

(
1 +

pα0
τ0

)
r[g(t, a)](ρ′+(t))α+1

(ρ(t)g′(t, a))α

]
dt =∞ (2.1)

and ∫ ∞
u

[
1

R(u)

∫ ∞
u

∫ b

a
Q(s, ξ)dσ(ξ)ds

]1/α
du =∞, (2.2)

where

G1(t) :=

(∫ g(t,a)
t2

∫ s
t1
r−1/α(u)duds∫ g(t,a)

t1
r−1/α(u)du

)α
, (2.3)

then every solution x of (1.3) is either oscillatory or satisfies limt→∞ x(t) = 0.

Proof. Assume that (1.3) has a nonoscillatory solution x. Without loss of generality, we may suppose that
there exists a t1 ≥ t0 such that x(t) > 0, x[τ(t)] > 0 for t ≥ t1, and x[g(t, ξ)] > 0 for (t, ξ) ∈ [t1,∞)× [a, b].
Then we have z > 0. It follows from (1.3) that

(r(t)|z′′(t)|α−1z′′(t))′ ≤ 0, (2.4)

and

(r(t)|z′′(t)|α−1z′′(t))′ +
∫ b

a
q(t, ξ)xα[g(t, ξ)]dσ(ξ)

+
pα0
τ ′(t)

(r[τ(t)]|z′′[τ(t)]|α−1z′′[τ(t)])′ +

∫ b

a
pα0 q(τ(t), ξ)xα[g(τ(t), ξ)]dσ(ξ) = 0.

By virtue of (2.4) and τ ′(t) ≥ τ0 > 0, we obtain

(r(t)|z′′(t)|α−1z′′(t))′ +
∫ b

a
q(t, ξ)xα[g(t, ξ)]dσ(ξ)

+

∫ b

a
pα0 q(τ(t), ξ)xα[g(τ(t), ξ)]dσ(ξ) +

pα0
τ0

(r[τ(t)]|z′′[τ(t)]|α−1z′′[τ(t)])′ ≤ 0.



C. M. Jiang, T. X. Li, J. Nonlinear Sci. Appl. 9 (2016), 6170–6182 6173

By using the latter inequality and condition g(τ(t), ξ) = τ [g(t, ξ)], we have

(r(t)|z′′(t)|α−1z′′(t))′+pα0
τ0

(r[τ(t)]|z′′[τ(t)]|α−1z′′[τ(t)])′

≤ −
∫ b

a
(q(t, ξ)xα[g(t, ξ)] + pα0 q(τ(t), ξ)xα[g(τ(t), ξ)]) dσ(ξ)

≤ −
∫ b

a
Q(t, ξ) (xα[g(t, ξ)] + pα0x

α[τ(g(t, ξ))]) dσ(ξ). (2.5)

In view of 0 ≤ p(t) ≤ p0 <∞ and the inequality (see [5, Lemma 1])

Aα +Bα ≥ 1

2α−1
(A+B)α for A ≥ 0, B ≥ 0, and α ≥ 1,

we arrive at

xα[g(t, ξ)] + pα0x
α[τ(g(t, ξ))] ≥ (x[g(t, ξ)] + p0x[τ(g(t, ξ))])α

2α−1
≥ zα[g(t, ξ)]

2α−1
. (2.6)

By combining (2.5) and (2.6), we conclude that

(r(t)|z′′(t)|α−1z′′(t))′ + pα0
τ0

(r[τ(t)]|z′′[τ(t)]|α−1z′′[τ(t)])′ ≤ − 1

2α−1

∫ b

a
Q(t, ξ)zα[g(t, ξ)]dσ(ξ). (2.7)

Based on condition (1.4), z satisfies two possible cases:

(I) z > 0, z′ > 0, z′′ > 0, and (r|z′′|α−1z′′)′ ≤ 0;

(II) z > 0, z′ < 0, z′′ > 0, and (r|z′′|α−1z′′)′ ≤ 0.

Assume first that case (I) holds. By using z′ > 0, z′′ > 0, and the fact that g(t, ξ) is a nondecreasing
function for ξ ∈ [a, b], we have by (2.7) that

(r(t)(z′′(t))α)′ +
pα0
τ0

(r[τ(t)](z′′[τ(t)])α)′ ≤ −z
α[g(t, a)]

2α−1

∫ b

a
Q(t, ξ)dσ(ξ). (2.8)

Define a Riccati transformation ω by

ω(t) := ρ(t)
r(t)(z′′(t))α

(z′[g(t, a)])α
, t ≥ t1. (2.9)

Clearly, ω > 0 and

ω′(t) =
ρ′(t)

ρ(t)
ω(t) + ρ(t)

(r(t)(z′′(t))α)′

(z′[g(t, a)])α
− αr(t)ρ(t)g′(t, a)

(z′′(t))αz′′[g(t, a)]

(z′[g(t, a)])α+1
.

Applying the monotonicity of r|z′′|α−1z′′ and g(t, a) ≤ t implies that

z′′[g(t, a)] ≥
(

r(t)

r[g(t, a)]

)1/α

z′′(t).

Then, combining the latter inequality and (2.9), we conclude that

ω′(t) ≤
ρ′+(t)

ρ(t)
ω(t) + ρ(t)

(r(t)(z′′(t))α)′

(z′[g(t, a)])α
− αg′(t, a)

(ρ(t)r[g(t, a)])1/α
ω(α+1)/α(t). (2.10)

Furthermore, we define another function ν by

ν(t) := ρ(t)
r[τ(t)](z′′[τ(t)])α

(z′[g(t, a)])α
, t ≥ t1. (2.11)
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Thus, we have ν > 0 and

ν ′(t) =
ρ′(t)

ρ(t)
ν(t) + ρ(t)

(r[τ(t)](z′′[τ(t)])α)′

(z′[g(t, a)])α
− αρ(t)g′(t, a)r[τ(t)]

(z′′[τ(t)])αz′′[g(t, a)]

(z′[g(t, a)])α+1
.

We derive from the monotonicity of r|z′′|α−1z′′ and g(t, a) ≤ τ(t) that

z′′[g(t, a)] ≥
(

r[τ(t)]

r[g(t, a)]

)1/α

z′′[τ(t)].

By using the latter inequality and (2.11), we deduce that

ν ′(t) ≤
ρ′+(t)

ρ(t)
ν(t) + ρ(t)

(r[τ(t)](z′′[τ(t)])α)′

(z′[g(t, a)])α
− αg′(t, a)

(ρ(t)r[g(t, a)])1/α
ν(α+1)/α(t). (2.12)

It follows from (2.10) and (2.12) that

ω′(t) +
pα0
τ0
ν ′(t) ≤ ρ(t)

[
(r(t)(z′′(t))α)′

(z′[g(t, a)])α
+
pα0
τ0

(r[τ(t)](z′′[τ(t)])α)′

(z′[g(t, a)])α

]
+
ρ′+(t)

ρ(t)
ω(t)− αg′(t, a)

(ρ(t)r[g(t, a)])1/α
ω(α+1)/α(t)

+
pα0
τ0

[
ρ′+(t)

ρ(t)
ν(t)− αg′(t, a)

(ρ(t)r[g(t, a)])1/α
ν(α+1)/α(t)

]
.

Let

C :=
ρ′+(t)

ρ(t)
and D :=

αg′(t, a)

(ρ(t)r[g(t, a)])1/α
.

By using the inequality (see [13])

Cu−Du(α+1)/α ≤ αα

(α+ 1)α+1

Cα+1

Dα
, D > 0, (2.13)

we conclude that

ρ′+(t)

ρ(t)
ω(t)− αg′(t, a)

(ρ(t)r[g(t, a)])1/α
ω(α+1)/α(t) ≤ 1

(α+ 1)α+1

r[g(t, a)](ρ′+(t))α+1

(ρ(t)g′(t, a))α

and
ρ′+(t)

ρ(t)
ν(t)− αg′(t, a)

(ρ(t)r[g(t, a)])1/α
ν(α+1)/α(t) ≤ 1

(α+ 1)α+1

r[g(t, a)](ρ′+(t))α+1

(ρ(t)g′(t, a))α
.

By combining the latter inequalities and (2.8), we obtain

ω′(t) +
pα0
τ0
ν ′(t) ≤ − ρ(t)

2α−1

(
z[g(t, a)]

z′[g(t, a)]

)α ∫ b

a
Q(t, ξ)dσ(ξ)

+
1

(α+ 1)α+1

(
1 +

pα0
τ0

)
r[g(t, a)](ρ′+(t))α+1

(ρ(t)g′(t, a))α
.

(2.14)

By virtue of (r(z′′)α)′ ≤ 0,

z′(t) = z′(t1) +

∫ t

t1

z′′(s)ds = z′(t1) +

∫ t

t1

(r(s)(z′′(s))α)1/α

r1/α(s)
ds ≥ r1/α(t)z′′(t)

∫ t

t1

r−1/α(s)ds.
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Hence, we get (
z′(t)∫ t

t1
r−1/α(s)ds

)′
≤ 0,

which implies that, for t ≥ t2 > t1,

z(t) = z(t2) +

∫ t

t2

z′(s)ds = z(t2) +

∫ t

t2

z′(s)∫ s
t1
r−1/α(u)du

∫ s

t1

r−1/α(u)duds

≥ z′(t)∫ t
t1
r−1/α(u)du

∫ t

t2

∫ s

t1

r−1/α(u)duds,

and so
z(t)

z′(t)
≥
∫ t
t2

∫ s
t1
r−1/α(u)duds∫ t

t1
r−1/α(u)du

. (2.15)

Then, we have (
z[g(t, a)]

z′[g(t, a)]

)α
≥ G1(t),

where G1 is defined by (2.3). Substitution of this inequality into (2.14) yields

ω′(t) +
pα0
τ0
ν ′(t) ≤ −21−αρ(t)G1(t)

∫ b

a
Q(t, ξ)dσ(ξ)

+
1

(α+ 1)α+1

(
1 +

pα0
τ0

)
r[g(t, a)](ρ′+(t))α+1

(ρ(t)g′(t, a))α
.

Integrating the latter inequality from t3 (t3 > t2) to t, we conclude that∫ t

t3

[
ρ(s)G1(s)

2α−1

∫ b

a
Q(s, ξ)dσ(ξ)− 1 + pα0 /τ0

(α+ 1)α+1

r[g(s, a)](ρ′+(s))α+1

(ρ(s)g′(s, a))α

]
ds ≤ ω(t3) +

pα0
τ0
ν(t3),

which contradicts (2.1).
Assume now that case (II) holds. On the basis of the monotonicities of z and g(t, ξ), we have z[g(t, ξ)] ≥

z[g(t, b)]. By taking into account that z′′ > 0, inequality (2.7) becomes

(r(t)(z′′(t))α)′ +
pα0
τ0

(r[τ(t)](z′′[τ(t)])α)′ ≤ −z
α[g(t, b)]

2α−1

∫ b

a
Q(t, ξ)dσ(ξ).

By using a similar proof of [14, Theorem 15], we can obtain limt→∞ x(t) = 0 when using (2.2). This
completes the proof.

Now, we turn our attention to the case when g(t, a) ≥ τ(t).

Theorem 2.2. Let conditions (A1)-(A5), (1.1), (1.4), (2.2), and α ≥ 1 be satisfied. Suppose that τ(t) ≤ t
and g(t, a) ≥ τ(t) for t ≥ t0. If there exists a function ρ ∈ C1([t0,∞), (0,∞)) such that for all sufficiently
large t1 ≥ t0 and for some t2 > t1,∫ ∞ [

21−αρ(t)G2(t)

∫ b

a
Q(t, ξ)dσ(ξ)− 1

(α+ 1)α+1

(
1 +

pα0
τ0

)
r[τ(t)](ρ′+(t))α+1

(τ0ρ(t))α

]
dt =∞, (2.16)

where

G2(t) :=

(∫ τ(t)
t2

∫ s
t1
r−1/α(u)duds∫ τ(t)

t1
r−1/α(u)du

)α
, (2.17)

then the conclusion of Theorem 2.1 remains intact.
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Proof. Assume that (1.3) has a nonoscillatory solution x. Without loss of generality, we may suppose that
there exists a t1 ≥ t0 such that x(t) > 0, x[τ(t)] > 0 for t ≥ t1, and x[g(t, ξ)] > 0 for (t, ξ) ∈ [t1,∞)× [a, b].
As in the proof of Theorem 2.1, we have (2.4), (2.7), and two possible cases (I) and (II) (as those in the
proof of Theorem 2.1) for z.

Assume first that case (I) holds. It follows from g(t, ξ) ≥ g(t, a) ≥ τ(t), z′ > 0, and z′′ > 0 that

(r(t)(z′′(t))α)′ +
pα0
τ0

(r[τ(t)](z′′[τ(t)])α)′ ≤ −z
α[τ(t)]

2α−1

∫ b

a
Q(t, ξ)dσ(ξ). (2.18)

Define a Riccati transformation ω by

ω(t) := ρ(t)
r(t)(z′′(t))α

(z′[τ(t)])α
, t ≥ t1. (2.19)

Then ω > 0. Applying (2.4) and τ(t) ≤ t yields

z′′[τ(t)] ≥
(

r(t)

r[τ(t)]

)1/α

z′′(t).

By differentiating (2.19), we conclude that

ω′(t) =
ρ′(t)

ρ(t)
ω(t) + ρ(t)

(r(t)(z′′(t))α)′

(z′[τ(t)])α
− αr(t)ρ(t)τ ′(t)

(z′′(t))αz′′[τ(t)]

(z′[τ(t)])α+1

≤
ρ′+(t)

ρ(t)
ω(t) + ρ(t)

(r(t)(z′′(t))α)′

(z′[τ(t)])α
− αρ(t)τ ′(t)

r(α+1)/α(t)

r1/α[τ(t)]

(
z′′(t)

z′[τ(t)]

)α+1

=
ρ′+(t)

ρ(t)
ω(t) + ρ(t)

(r(t)(z′′(t))α)′

(z′[τ(t)])α
− ατ ′(t)

(ρ(t)r[τ(t)])1/α
ω(α+1)/α(t). (2.20)

Similarly, define another Riccati transformation ν by

ν(t) := ρ(t)
r[τ(t)](z′′[τ(t)])α

(z′[τ(t)])α
, t ≥ t1.

Clearly, ν > 0 and

ν ′(t) =
ρ′(t)

ρ(t)
ν(t) + ρ(t)

(r[τ(t)](z′′[τ(t)])α)′

(z′[τ(t)])α
− αρ(t)τ ′(t)r[τ(t)]

(
z′′[τ(t)]

z′[τ(t)]

)α+1

≤
ρ′+(t)

ρ(t)
ν(t) + ρ(t)

(r[τ(t)](z′′[τ(t)])α)′

(z′[τ(t)])α
− ατ ′(t)

(ρ(t)r[τ(t)])1/α
ν(α+1)/α(t). (2.21)

In view of (2.20) and (2.21), we get

ω′(t) +
pα0
τ0
ν ′(t) ≤ ρ(t)

[
(r(t)(z′′(t))α)′

(z′[τ(t)])α
+
pα0
τ0

(r[τ(t)](z′′[τ(t)])α)′

(z′[τ(t)])α

]
+
ρ′+(t)

ρ(t)
ω(t)− ατ ′(t)

(ρ(t)r[τ(t)])1/α
ω(α+1)/α(t)

+
pα0
τ0

[
ρ′+(t)

ρ(t)
ν(t)− ατ ′(t)

(ρ(t)r[τ(t)])1/α
ν(α+1)/α(t)

]
.

Set

C :=
ρ′+(t)

ρ(t)
and D :=

ατ ′(t)

(ρ(t)r[τ(t)])1/α
.
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By virtue of (2.13) and (2.18), we have

ω′(t) +
pα0
τ0
ν ′(t) ≤ − ρ(t)

2α−1

(
z[τ(t)]

z′[τ(t)]

)α ∫ b

a
Q(t, ξ)dσ(ξ) +

1

(α+ 1)α+1

(
1 +

pα0
τ0

)
r[τ(t)](ρ′+(t))α+1

(ρ(t)τ ′(t))α
.

Similarly, as in the proof of Theorem 2.1, we obtain (2.15), and hence(
z[τ(t)]

z′[τ(t)]

)α
≥ G2(t),

where G2 is defined as in (2.17). Therefore,

ω′(t) +
pα0
τ0
ν ′(t) ≤ −ρ(t)G2(t)

2α−1

∫ b

a
Q(t, ξ)dσ(ξ) +

1

(α+ 1)α+1

(
1 +

pα0
τ0

)
r[τ(t)](ρ′+(t))α+1

(τ0ρ(t))α
.

By integrating the latter inequality from t3 (t3 > t2) to t, we have∫ t

t3

[
ρ(s)G2(s)

2α−1

∫ b

a
Q(s, ξ)dσ(ξ)− 1 + pα0 /τ0

(α+ 1)α+1

r[τ(s)](ρ′+(s))α+1

(τ0ρ(s))α

]
ds ≤ ω(t3) +

pα0
τ0
ν(t3),

which contradicts (2.16).
Assume now that case (II) holds. As in the proof of Case (II) in Theorem 2.1, we arrive at the desired

conclusion. The proof is complete.

3. Oscillation criteria for the case (1.5)

In this section, we establish some oscillation criteria for (1.3) under the assumption that (1.5) holds.
Similarly, as in Section 2, we begin with the case when g(t, a) ≤ τ(t) holds.

Theorem 3.1. Let conditions (A1)-(A5), (1.1), (1.5), (2.2), and α ≥ 1 be satisfied. Suppose that g(t, a) ∈
C1([t0,∞),R), g′(t, a) > 0, and g(t, a) ≤ τ(t) ≤ t for t ≥ t0. Assume further that there exists a function
ρ ∈ C1([t0,∞), (0,∞)) such that (2.1) holds for all sufficiently large t1 ≥ t0 and for some t2 > t1. If there
exists a function ζ ∈ C1([t0,∞),R) such that, ζ(t) ≥ t, ζ(t) ≥ g(t, a), ζ ′(t) > 0 for t ≥ t0, and for all
sufficiently large t1 ≥ t0,∫ ∞ [

21−αϑα(t)G3(t)

∫ b

a
Q(t, ξ)dσ(ξ)−

(
α

α+ 1

)α+1(
1 +

pα0
τ0

)
ζ ′(t)

ϑ(t)r1/α[ζ(t)]

]
dt =∞, (3.1)

where
G3(t) := (g(t, a)− t1)α, (3.2)

then every solution x of (1.3) is either oscillatory or satisfies limt→∞ x(t) = 0.

Proof. Assume that (1.3) has a nonoscillatory solution x. Without loss of generality, we may suppose that
there exists a t1 ≥ t0 such that x(t) > 0, x[τ(t)] > 0 for t ≥ t1, and x[g(t, ξ)] > 0 for (t, ξ) ∈ [t1,∞)× [a, b].
Then we have z > 0. Based on condition (1.5), there exist three possible cases (I), (II) (as those in the proof
of Theorem 2.1), and

(III) z > 0, z′ > 0, z′′ < 0, and (r|z′′|α−1z′′)′ ≤ 0.

Assume that case (I) and case (II) hold. By using the proof of Theorem 2.1, we get the conclusion of
Theorem 3.1.

Assume now that case (III) holds. In view of g(t, ξ) ≥ g(t, a), z′ > 0, and z′′ < 0, inequality (2.7) reduces
to

(−r(t)(−z′′(t))α)′ +
pα0
τ0

(−r[τ(t)](−z′′[τ(t)])α)′ ≤ −z
α[g(t, a)]

2α−1

∫ b

a
Q(t, ξ)dσ(ξ). (3.3)
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From (r|z′′|α−1z′′)′ ≤ 0, we have (r(−z′′)α)′ ≥ 0, which shows that r(−z′′)α is nondecreasing. Thus, we
obtain

z′′(s) ≤ r1/α(t)

r1/α(s)
z′′(t), s ≥ t ≥ t1.

An integration from ζ(t) to l yields

z′(l) ≤ z′[ζ(t)] + r1/α(t)z′′(t)

∫ l

ζ(t)
r−1/α(s)ds.

By passing to the limit as l→∞, we get

0 ≤ z′[ζ(t)] + r1/α(t)z′′(t)ϑ(t),

that is,

−ϑ(t)
r1/α(t)z′′(t)

z′[ζ(t)]
≤ 1.

Define a function ϕ by

ϕ(t) := −r(t)(−z
′′(t))α

(z′[ζ(t)])α
, t ≥ t1. (3.4)

Clearly, ϕ < 0 and
− ϑα(t)ϕ(t) ≤ 1. (3.5)

Similarly, we define another function φ by

φ(t) := −r[τ(t)](−z′′[τ(t)])α

(z′[ζ(t)])α
, t ≥ t1. (3.6)

Then φ < 0. From the monotonicity of r(−z′′)α and τ(t) ≤ t, we obtain

r[τ(t)](−z′′[τ(t)])α ≤ r(t)(−z′′(t))α.

Hence, 0 < −φ(t) < −ϕ(t). By virtue of (3.5), we have

− ϑα(t)φ(t) ≤ 1. (3.7)

Now, by differentiating (3.4), we arrive at

ϕ′(t) =
(−r(t)(−z′′(t))α)′

(z′[ζ(t)])α
+
αr(t)ζ ′(t)(−z′′(t))αz′′[ζ(t)]

(z′[ζ(t)])α+1
.

By virtue of ζ(t) ≥ t and the fact that r(−z′′)α is nondecreasing, we get

z′′[ζ(t)] ≤ r1/α(t)

r1/α[ζ(t)]
z′′(t),

and so

ϕ′(t) ≤ (−r(t)(−z′′(t))α)′

(z′[ζ(t)])α
− αζ ′(t)

r1/α[ζ(t)]
(−ϕ(t))(α+1)/α. (3.8)

Similarly, by differentiating (3.6), we have

φ′(t) =
(−r[τ(t)](−z′′[τ(t)])α)′

(z′[ζ(t)])α
+
αζ ′(t)r[τ(t)](−z′′[τ(t)])αz′′[ζ(t)]

(z′[ζ(t)])α+1
.
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By taking into account that r(−z′′)α is nondecreasing and ζ(t) ≥ τ(t), we conclude that

z′′[ζ(t)] ≤ r1/α[τ(t)]

r1/α[ζ(t)]
z′′[τ(t)],

and hence

φ′(t) ≤ (−r[τ(t)](−z′′[τ(t)])α)′

(z′[ζ(t)])α
− αζ ′(t)

r1/α[ζ(t)]
(−φ(t))(α+1)/α. (3.9)

It follows from (3.3), (3.8), and (3.9) that

ϕ′(t) +
pα0
τ0
φ′(t) ≤ (−r(t)(−z′′(t))α)′

(z′[ζ(t)])α
+
pα0
τ0

(−r[τ(t)](−z′′[τ(t)])α)′

(z′[ζ(t)])α

− αζ ′(t)

r1/α[ζ(t)]
(−ϕ(t))(α+1)/α − pα0

τ0

αζ ′(t)

r1/α[ζ(t)]
(−φ(t))(α+1)/α

≤ −21−α
(
z[g(t, a)]

z′[ζ(t)]

)α ∫ b

a
Q(t, ξ)dσ(ξ)

− αζ ′(t)

r1/α[ζ(t)]
(−ϕ(t))(α+1)/α − pα0

τ0

αζ ′(t)

r1/α[ζ(t)]
(−φ(t))(α+1)/α.

Applying z > 0 and z′′ < 0 implies that

z(t) = z(t1) +

∫ t

t1

z′(s)ds ≥ (t− t1)z′(t).

Hence, we have (
z[g(t, a)]

z′[ζ(t)]

)α
=

(
z[g(t, a)]

z′[g(t, a)]

z′[g(t, a)]

z′[ζ(t)]

)α
≥ G3(t),

where G3 is as in (3.2). Then, we have

ϕ′(t) +
pα0
τ0
φ′(t) ≤ −21−αG3(t)

∫ b

a
Q(t, ξ)dσ(ξ)− αζ ′(t)

r1/α[ζ(t)]
(−ϕ(t))(α+1)/α

− αpα0
τ0

ζ ′(t)

r1/α[ζ(t)]
(−φ(t))(α+1)/α.

By multiplying the latter inequality by ϑα(t) and integrating the resulting inequality from t2 (t2 > t1) to t,
we get

ϑα(t)ϕ(t)−ϑα(t2)ϕ(t2) + α

∫ t

t2

[
ϑα−1(s)ζ ′(s)

r1/α[ζ(s)]
ϕ(s) +

ϑα(s)ζ ′(s)

r1/α[ζ(s)]
(−ϕ(s))(α+1)/α

]
ds

+
pα0
τ0

(ϑα(t)φ(t)− ϑα(t2)φ(t2)) +
αpα0
τ0

∫ t

t2

[
ϑα−1(s)ζ ′(s)

r1/α[ζ(s)]
φ(s) +

ϑα(s)ζ ′(s)

r1/α[ζ(s)]
(−φ(s))(α+1)/α

]
ds

+

∫ t

t2

21−αϑα(s)G3(s)

∫ b

a
Q(s, ξ)dσ(ξ)ds ≤ 0.

Set

A := −
[
ϑα(s)ζ ′(s)

r1/α[ζ(s)]

]α/(α+1)

ϕ(s) and B :=

[
α

α+ 1

ϑα−1(s)ζ ′(s)

r1/α[ζ(s)]

[
ϑα(s)ζ ′(s)

r1/α[ζ(s)]

]−α/(α+1)
]α
.

By using the inequality (see [12])

α+ 1

α
AB1/α −A(α+1)/α ≤ 1

α
B(α+1)/α, for A ≥ 0 and B ≥ 0, (3.10)
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we obtain

ϑα−1(s)ζ ′(s)

r1/α[ζ(s)]
ϕ(s) +

ϑα(s)ζ ′(s)

r1/α[ζ(s)]
(−ϕ(s))(α+1)/α ≥ − 1

α

(
α

α+ 1

)α+1 ζ ′(s)

ϑ(s)r1/α[ζ(s)]
.

On the other hand, define

A := −
[
ϑα(s)ζ ′(s)

r1/α[ζ(s)]

]α/(α+1)

φ(s) and B :=

[
α

α+ 1

ϑα−1(s)ζ ′(s)

r1/α[ζ(s)]

[
ϑα(s)ζ ′(s)

r1/α[ζ(s)]

]−α/(α+1)
]α
.

By virtue of (3.10), we have

ϑα−1(s)ζ ′(s)

r1/α[ζ(s)]
φ(s) +

ϑα(s)ζ ′(s)

r1/α[ζ(s)]
(−φ(s))(α+1)/α ≥ − 1

α

(
α

α+ 1

)α+1 ζ ′(s)

ϑ(s)r1/α[ζ(s)]
.

By using (3.5) and (3.7), we conclude that∫ t

t2

[
21−αϑα(s)G3(s)

∫ b

a
Q(s, ξ)dσ(ξ)−

(
α

α+ 1

)α+1(
1 +

pα0
τ0

)
ζ ′(s)

ϑ(s)r1/α[ζ(s)]

]
ds

≤ ϑα(t2)ϕ(t2) +
pα

τ0
ϑα(t2)φ(t2) + 1 +

pα0
τ0
,

which contradicts (3.1). This completes the proof.

With a proof similar to the proof of Theorems 2.2 and 3.1, we can obtain the following criterion for (1.3)
assuming that g(t, a) ≥ τ(t).

Theorem 3.2. Let conditions (A1)-(A5), (1.1), (1.5), (2.2), and α ≥ 1 be satisfied. Suppose that τ(t) ≤ t
and g(t, a) ≥ τ(t) for t ≥ t0. Assume also that there exists a function ρ ∈ C1([t0,∞), (0,∞)) such that (2.16)
holds for all sufficiently large t1 ≥ t0 and for some t2 > t1. If there exists a function ζ ∈ C1([t0,∞),R) such
that ζ(t) ≥ t, ζ(t) ≥ g(t, a), ζ ′(t) > 0 for t ≥ t0, and (3.1) holds for all sufficiently large t1 ≥ t0, then the
conclusion of Theorem 3.1 remains intact.

4. Examples

Similar results can be obtained under the assumption that 0 < α ≤ 1. In this case, utilizing [5, Lemma 2],
one has to replace Q(t, ξ) := min{q(t, ξ), q(τ(t), ξ)} with Q(t, ξ) := 2α−1 min{q(t, ξ), q(τ(t), ξ)} and proceed
as above. In this section, we illustrate possible applications with two examples.

Example 4.1. For t ≥ 1, consider a third-order neutral differential equation

[x(t) + x(t− 2π)]′′′ +

∫ π

−4π
x[t+ ξ]dξ = 0. (4.1)

Let α = 1, a = −4π, b = π, r(t) = 1, p(t) = p0 = 1, τ(t) = t− 2π, q(t, ξ) = 1, g(t, ξ) = t+ ξ, and σ(ξ) = ξ.
Note that Q(t, ξ) = min{q(t, ξ), q(τ(t), ξ)} = 1, g′(t, a) = 1 > 0, g(t, a) = t − 4π < t, and g(t, a) < τ(t).
Moreover, let τ0 = 1 and ρ(t) = 1, then

G1(t) =

∫ t−4π
t2

∫ s
t1
r−1/α(u)duds∫ t−4π

t1
r−1/α(u)du

=
t2/2− (4π + t1)t+ β

t− (4π + t1)
, β = 8π2 − t22

2
+ 4πt1 + t1t2,

and ∫ ∞ [
21−αρ(t)G1(t)

∫ b

a
Q(t, ξ)dσ(ξ)− 1

(α+ 1)α+1

(
1 +

pα0
τ0

)
r[g(t, a)](ρ′+(t))α+1

(ρ(t)g′(t, a))α

]
dt
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= 5π

∫ ∞
G1(t)dt =

5π

2

∫ ∞ t2 − 2(4π + t1)t+ 2β

t− (4π + t1)
dt =∞.

Hence, by Theorem 2.1, every solution x of (4.1) is either oscillatory or satisfies limt→∞ x(t) = 0. As a
matter of fact, x(t) = sin t is an oscillatory solution to (4.1).

Example 4.2. For t ≥ 1, consider a third-order neutral differential equation

[
t2(x(t) + p(t)x(t− γ))′′

]′
+

∫ 1

0
(ξ + 1)x[t+ ξ]dξ = 0, (4.2)

where 0 < p(t) ≤ p0, p0 and γ are positive constants. Let α = 1, a = 0, b = 1, r(t) = t2, τ(t) = t − γ,
q(t, ξ) = ξ+1, g(t, ξ) = t+ξ, and σ(ξ) = ξ. Note that Q(t, ξ) = min{q(t, ξ), q(τ(t), ξ)} = ξ+1, τ(t) = t−γ ≤
t, and g(t, a) = t ≥ τ(t). Moreover, let τ0 = 1, ρ(t) = 1, and ζ(t) = t+ 1, then we have ϑ(t) = 1/(t+ 1),

G2(t) =

∫ t−γ
t2

∫ s
t1
r−1/α(u)duds∫ t−γ

t1
r−1/α(u)du

=

∫ t−γ
t2

∫ s
t1
u−2duds∫ t−γ

t1
u−2du

=
(t− γ)2 + (t1lnt2 − t2)(t− γ)− t1(t− γ)ln(t− γ)

t− γ − t1
,

and
G3(t) = (g(t, a)− t1)α = t− t1,

and thus∫ ∞ [
21−αρ(t)G2(t)

∫ b

a
Q(t, ξ)dσ(ξ)− 1

(α+ 1)α+1

(
1 +

pα0
τ0

)
r[τ(t)](ρ′+(t))α+1

(τ0ρ(t))α

]
dt

=
3

2

∫ ∞
G2(t)dt =

3

2

∫ ∞ (t− γ)2 + (t1lnt2 − t2)(t− γ)− t1(t− γ)ln(t− γ)

t− γ − t1
dt =∞,

and ∫ ∞ [
21−αϑα(t)G3(t)

∫ b

a
Q(t, ξ)dσ(ξ)−

(
α

α+ 1

)α+1(
1 +

pα0
τ0

)
ζ ′(t)

ϑ(t)r1/α[ζ(t)]

]
dt

=

∫ ∞ [3(t− t1)
2(t+ 1)

− 1 + p0
4(t+ 1)

]
dt =∞.

Therefore, by Theorem 3.2, every solution x of (4.2) is either oscillatory or satisfies limt→∞ x(t) = 0.
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[3] B. Bacuĺıková, J. Džurina, Oscillation of third-order neutral differential equations, Math. Comput. Modelling, 52
(2010), 215–226. 1
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