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Abstract

A model of Hepatitis C is considered using the concept of derivative with fractional order. Using the
benefits associated to Caputo derivative with fractional order, we study the existence and uniqueness of
the system solutions with the help of fixed-point theorem. We derive special solutions using an iterative
method. To see the efficiency of the used method, we present in detail the stability analysis of this method
together with the uniqueness of the special solutions. c©2016 All rights reserved.
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1. Introduction

In many discipline and manufacturing fields, the concept of memory effect or properties have been
extensively found in complicated classifications [5, 6]. To mention, the memory effect has been found
in uncharacteristic transmission, in viscoelastic deformation medium for instance an aquifer, stock market,
bacterial chemo-taxis and many other complex networks [3, 8, 10–12]. Nonetheless, how to portray truthfully
the memory property of systems is still remain a thought-provoking subject in objective modeling and
phenomenological portrayal. From widespread hypothetical and investigational analysis, the concept of
fractional operators has been contemplated as one of the superlative mathematical tools to exemplify the
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memory property of complicated systems and certain materials [4, 7, 13]. But these fractional operators with
constant order have failed to accurately characterize more complex system as for instance the movement of
pollution within a deformable aquifer [2]. But the variable-order fractional derivative, which are extension of
constant-order fractional derivative have been suggested and have been considered as the best mathematical
operators to depict the memory property which changes with time or spatial location [1, 9]. However, there
are couples of problems associate to these variable order derivatives. For instance differential equations with
these derivatives cannot be solved analytically, and we cannot find a clear relation between these derivatives
with the well-known integral transform like Mellin transform, Laplace transform, Fourier transform and
Sumudu transform. With these derivatives, one cannot calculate the derivative of a simple function for
instance sinus or exponential function. Therefore a new fractional variable order is needed which can be
handled analytically and also have a relationship with the well-known integral transform. In the work, we
will propose a fractional variable order derivative, that can be handled analytically and also have relationship
with some other integral transform. The rest of the paper is structured as follows: in Section 2, we present
some definitions of existing fractional variable order operators.

2. Model derivation with Caputo-Fabrizio derivative with fractional order

We first give the definitions of Caputo-Fabrizio derivative with fractional order. Caputo-Fabrizio deriva-
tive with fractional order has been considered with no singular kernel [5, 10].

Definition 2.1. Let f ∈ H1(a, b), b > a, α ∈ [0, 1] then the new Caputo derivative of fractional order is
defined as:

Dα
t (f(t)) =

M(α)

1− α

∫ t

a
f
′
(x) exp

[
−α t− x

1− α

]
dx,

where M(α) is a normalization function such that M(0) = M(1) = 1, [5, 10]. But, if the function does not
belong to H1(a, b), then the derivative can be reformulated as

Dα
t (f(t)) =

αM(α)

1− α

∫ t

a
(f(t)− f(x)) exp

[
−α t− x

1− α

]
dx.

Remark 2.2. The investigators observed that, if σ = 1−α
α ∈ [0,∞), α = 1

1+α ∈ [0, 1], then new Caputo
derivative of fractional order assumes the form

Dα
t (f(t)) =

N(σ)

σ

∫ t

a
f
′
(x) exp

[
− t− x

σ

]
dx, N(0) = N(∞) = 1.

In addition,

lim
σ→0

1

σ
exp

[
− t− x

σ

]
= δ(x− t).

At this instant subsequent to the preface of the novel derivative, the connected anti-derivative turns out to
be imperative; the connected integral of the derivative was proposed by Nieto and Losada [10].

Definition 2.3. Let 0 < α < 1. The fractional integral of order α of a function f is defined by

Itα(f(t)) =
2(1− α)

(2− α)M(α)
f(t) +

2α

(2− α)M(α)

∫ t

0
f(s)ds, t ≥ 0.

Remark 2.4. Note that, according to above definition, the fractional integral of Caputo type of function of
order 0 < α < 1 is an average between function f and its integral of order one. This therefore imposes

2(1− α)

(2− α)M(α)
+

2α

(2− α)M(α)
= 1.
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The above expression yields an explicit formula for

M(α) =
2

(2− α)
, 0 ≤ α ≤ 1.

Because of the above, Nieto and Losada proposed that the new Caputo derivative of order 0 < α < 1 can
be reformulated as

Dα
t (f(t)) =

1

1− α

∫ t

a
f
′
(x) exp

[
−α t− x

1− α

]
dx.

2.1. Hepatitis C model with Caputo-Fabrizio fractional derivative

The model that we study in this paper is a Caputo-Fabrizio derivative and α satisfying 0 < α ≤ 1 with
fractional order is presented via following system:

CF
0 Dα

t T (t) = s− dT (t)− (1− η)βV (t)T (t),
CF
0 Dα

t I(t) = (1− η)βV (t)T (t)− δI(t),
CF
0 Dα

t V (t) = (1− ε)pI(t)− cV (t),

(2.1)

where T represents uninfected hepatocytes, I represents infected hepatocytes and V represents virus. The
model assumes that uninfected hepatocytes are produced at a constant rate s, die at rate d, per cell and are
infected at constant rate β. Infected hepatocytes are lost at a rate δ per cell. Viral particles (virions) are
produced at rate p per infected hepatocyte and cleared at rate c per virion.

Let α ∈ (0, 1] and consider the system
CF
0 Dα

t T (t) = f1(T, I, V ),
CF
0 Dα

t I(t) = f2(T, I, V ),
CF
0 Dα

t V (t) = f3(T, I, V )

with the initial conditions T1(0) = T01, I1(0) = I01 and V1(0) = V01. Also the efficacy of treatment in
blocking virion production and reducing new infections are described by two parameters, 0 < ε < 1 and
0 < η < 1, respectively. Here

f1(T, I, V ) = s− dT (t)− (1− η)βV (t)T (t),

f2(T, I, V ) = (1− η)βV (t)T (t)− δI(t),

f3(T, I, V ) = (1− ε)pI(t)− cV (t).

3. Derivation of the special solution

The aim of this section is to provide a special solution of the above equation (2.1) applying the Sumudu
transform on both sides of equation (2.1) together with an iterative method. We shall give the Sumudu
transform in the following theorem.

Theorem 3.1. Let f(t) be a function for which the Caputo-Fabrizio exists, then the Sumudu transform of
the Caputo-Fabrizio fractional derivative of f(t) is given as:

ST
(
CF
0 Dα

t

)
((f(t)) = M(α)

SF (f(t))− f(0)

1− α+ αu
.

Proof. The proof of the Theorem 3.1 can be found in [2].
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To solve the above equation (2.1), we apply the Sumudu transform on both sides of equation (2.1), we
obtain

M(α)
SF (T (t))− T (0)

1− α+ αs
= SL {s− dT (t)− (1− η)βV (t)T (t)} ,

M(α)
SF (I(t))− I(0)

1− α+ αs
= SL {(1− η)βV (t)T (t)− δI(t)} ,

M(α)
SF (V (t))− V (0)

1− α+ αs
= SL {(1− ε)pI(t)− cV (t)} .

Rearranging, we obtain

SF (T (t)) = T (0) +
(1− α+ αs)

M(α)
SL {s− dT (t)− (1− η)βV (t)T (t)} ,

SF (I(t)) = I(0) +
(1− α+ αs)

M(α)
SL {(1− η)βV (t)T (t)− δI(t)} ,

SF (V (t)) = V (0) +
(1− α+ αs)

M(α)
SL {(1− ε)pI(t)− cV (t)} .

(3.1)

Now applying the inverse Sumudu transform on both sides of equation (3.1), we obtain

T (t) = T (0) + SL−1

(1− α+ αs)

M(α)
SL


s

−dT (t)
−(1− η)βV (t)T (t)


 ,

I(t) = I(0) + SL−1
{

(1− α+ αs)

M(α)
SL {(1− η)βV (t)T (t)− δI(t)}

}
,

V (t) = V (0) + SL−1
{

(1− α+ αs)

M(α)
SL {(1− ε)pI(t)− cV (t)}

}
.

We next obtain the following recursive formula

T(n+1)(t) = T(n)(0) + SL−1

(1− α+ αs)

M(α)
SL


s

−dT(n)(t)
−(1− η)βV(n)(t)T(n)(t)


 ,

I(n+1)(t) = I(n)(0) + SL−1
{

(1− α+ αs)

M(α)
SL

{
(1− η)βV(n)(t)T(n)(t)

−δI(n)(t)

}}
,

V(n+1)(t) = V(n)(0) + SL−1
{

(1− α+ αs)

M(α)
SL
{

(1− ε)pI(n)(t)− cV(n)(t)
}}

.

(3.2)

And the solution of (3.2) is provided by

T (t) = lim
n→∞

Tn(t),

I(t) = lim
n→∞

In(t),

V (t) = lim
n→∞

Vn(t).

3.1. Application of fixed-point theorem for stability analysis of iteration method

Let (X, ‖.‖) be a Banach space and H a self-map of X. Let yn+1 = g(H, yn) be particular recurcive
procedure. Suppose that, F (H) the fixed-point set of H has at least one element and that yn converges to a
point p ∈ F (H). Let {xn}⊂X and define en = ‖xn+1 − g(H,xn)‖ . If lim

n→∞
en = 0 implies that lim

n→∞
xn = p,

then the iteration method yn+1 = g(H, yn) is said to be H-stable. Without any loss of generality, we
must assume that, our sequence {xn} has an upper boundary; otherwise we cannot expect the possibility
of convergence. If all these conditions are satisfied for yn+1 = Hyn which is known as Picard’s iteration,
consequently the iteration will be H-stable. We shall then state the following theorem.
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Theorem 3.2. Let (X, ‖.‖) be a Banach space and H a self-map of X satisfying

‖Hx −Hy‖ ≤ C ‖x−Hx‖+ c ‖x− y‖

for all x, y in X where 0 ≤ C, 0 ≤ c < 1. Suppose that H is Picard H-stable [12].

Let us take into account the following recursive formula equation (3.2) connected to equation (2.1).

T(n+1)(t) = T(n)(0) + SL−1
{

(1− α+ αs)

M(α)
SL

{
s− dT(n)(t)

−(1− η)βV(n)(t)T(n)(t)

}}
,

I(n+1)(t) = I(n)(0) + SL−1
{

(1− α+ αs)

M(α)
SL

{
(1− η)βV(n)(t)T(n)(t)

−δI(n)(t)

}}
,

V(n+1)(t) = V(n)(0) + SL−1
{

(1− α+ αs)

M(α)
SL
{

(1− ε)pI(n)(t)− cV(n)(t)
}}

,

where 1+(s−1)α
M(α) is the fractional Lagrange multiplier.

Theorem 3.3. Let P be a self-map defined as

P (T(n)(t)) = T(n+1)(t) = T(n)(t) + SL−1
{

(1− α+ αs)

M(α)
SL

{
s− dT(n)(t)

−(1− η)βV(n)(t)T(n)(t)

}}
,

P (I(n)(t)) = I(n+1)(t) = I(n)(t) + SL−1
{

(1− α+ αs)

M(α)
SL

{
(1− η)βV(n)(t)T(n)(t)

−δI(n)(t)

}}
,

P (V(n)(t)) = V(n+1)(t) = V(n)(t) + SL−1
{

(1− α+ αs)

M(α)
SL
{

(1− ε)pI(n)(t)− cV(n)(t)
}}

is P−stable in L1(a, b) if 
{1− df(γ) + (η − 1)β(K + S)g(γ)} < 1,

{1 + (1− η)β(K + S)h(γ)− sQ(γ)} < 1,

{1 + (1− ε)pL(γ)− cN(γ)} < 1.

Proof. The fist step of the proof will consist on showing that P has a fixed point. To achieve this, we
evaluate the followings for all (n,m) ∈ N× N.

P (T(n)(t))− P (T(m)(t)) = T(n)(t)− T(m)(t)

+ SL−1
{

1 + (s− 1)α

M(α)
SL
{
s− dT(n)(t)− (1− η)βV(n)(t)T(n)(t)

}}
− SL−1

{
1 + (s− 1)α

M(α)
SL
{
s− dT(m)(t)− (1− η)βV(m)(t)T(m)(t)

}}
,

(3.3)

P (I(n)(t))− P (I(m)(t)) = I(n)(t)− I(m)(t)

+ SL−1
{

1 + (s− 1)α

M(α)
SL
{

(1− η)βV(n)(t)T(n)(t)− δI(n)(t)
}}

− SL−1
{

1 + (s− 1)α

M(α)
SL
{

(1− η)βV(m)(t)T(m)(t)− δI(m)(t)
}}

,

and

P (V(n)(t))− P (V(m)(t)) = V(n)(t)− V(m)(t)

+ SL−1
{

1 + (s− 1)α

M(α)
SL
{

(1− ε)pI(n)(t)− cV(n)(t)
}}

− SL−1
{

1 + (s− 1)α

M(α)
SL
{

(1− ε)pI(m)(t)− cV(m)(t)
}}

.
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Let consider the equality (3.3) and applying norm on both sides and without loss of generality∥∥P (T(n)(t))− P (T(m)(t))
∥∥

=
∥∥T(n)(t)− T(m)(t)

+ SL−1
{

1 + (s− 1)α

M(α)
SL

{
−d
{
T(n)(t)− T(m)(t)

}
−(1− η)β

{
V(n)(t)T(n)(t)− V(m)(t)T(m)(t)

} }}∥∥. (3.4)

Using the properties of the norm in particular the triangular inequality, the right hand side of equation (3.4)
is converted to∥∥P (T(n)(t))− P (T(m)(t))

∥∥ ≤ ∥∥T(n)(t)− T(m)(t)
∥∥

+

∥∥∥∥∥∥∥∥∥SL
−1


1+(s−1)α
M(α)

SL


−d
{
T(n)(t)− T(m)(t)

}
−(1− η)β

{
V(n)(t)

{
T(n)(t)− T(m)(t)

}
+T(m)(t)

{
V(n)(t)− V(m)(t)

} }


∥∥∥∥∥∥∥∥∥ .

The above can further be transformed using the property of norm and integral as follows∥∥P (T(n)(t))− P (T(m)(t))
∥∥ ≤ ∥∥T(n)(t)− T(m)(t)

∥∥
+ SL−1

{
1 + (s− 1)α

M(α)
SL
{∥∥−d{T(n)(t)− T(m)(t)

}∥∥}}

+ SL−1


1+(s−1)α
M(α)

SL

{∥∥∥∥(η − 1)β

{
V(n)(t)

{
T(n)(t)− T(m)(t)

}
+T(m)(t)

{
V(n)(t)− V(m)(t)

} }∥∥∥∥}
 .

(3.5)

Since both the solutions play the same role, we shall assume in this case that∥∥T(n)(t)− T(m)(t)
∥∥ ∼= ∥∥V(n)(t)− V(m)(t)

∥∥ ,∥∥T(n)(t)− T(m)(t)
∥∥ ∼= ∥∥I(n)(t)− I(m)(t)

∥∥ .
Replacing this in equation (3.5), we obtain the following relation∥∥P (T(n)(t))− P (T(m)(t))

∥∥ ≤ ∥∥T(n)(t)− T(m)(t)
∥∥

+ SL−1
{

1 + (s− 1)α

M(α)
SL
{∥∥−d{T(n)(t)− T(m)(t)

}∥∥}}

+ SL−1


1+(s−1)α
M(α)

SL

{∥∥∥∥(η − 1)β

{
V(n)(t)

{
T(n)(t)− T(m)(t)

}
+T(m)(t)

{
T(n)(t)− T(m)(t)

} }∥∥∥∥}
 .

(3.6)

Since T(n)(t), T(m)(t) and V(n)(t) are bounded, we can find three different positive constants, R, S, K such
that for all t. ∥∥T(n)(t)∥∥ < R,

∥∥T(m)(t)
∥∥ < S,∥∥V(n)(t)∥∥ < K, (n,m) ∈ N× N.

(3.7)

Now considering equation (3.6) with (3.7), we obtain the following

∥∥P (T(n)(t))− P (T(m)(t))
∥∥ ≤ { 1− df(γ)

+(η − 1)β(K + S)g(γ)

}∥∥T(n)(t)− T(m)(t)
∥∥ , (3.8)

where f, g are functions from SL−1
{

1+(s−1)α
M(α) SL

}
.
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In the same way, we get∥∥P (I(n)(t))− P (I(m)(t))
∥∥ ≤ { 1 + (1− η)β(K + S)h(γ)

−δQ(γ)

}∥∥I(n)(t)− I(m)(t)
∥∥ (3.9)

and ∥∥P (V(n)(t))− P (V(m)(t))
∥∥ ≤ {1 + (1− ε)pL(γ)− cN(γ)}

∥∥V(n)(t)− V(m)(t)
∥∥ . (3.10)

For

{1− df(γ) + (η − 1)β(K + S)g(γ)} < 1,

{1 + (1− η)β(K + S)h(γ)− δQ(γ)} < 1,

{1 + (1− ε)pL(γ)− cN(γ)} < 1.

Then the nonlinear P -self mapping has a fixed point. We next show that, P satisfies the conditions in
Theorem 3.2. Let (3.8), (3.9), and (3.10) hold, thus putting

c = (0, 0, 0), C =


1− df(γ) + (η − 1)β(K + S)g(γ),
1 + (1− η)β(K + S)h(γ)− δQ(γ),
1 + (1− ε)pL(γ)− cN(γ),

then the above shows that condition of Theorem (3.2) hold for the nonlinear mapping P . Therefore since
all conditions in Theorem 3.2 hold for the defined non-linear mapping P , then P is Picards P−stable. This
completes the proof of Theorem 3.3.

4. Uniqueness of the special solution

In this section, we show that the special solution of equation (2.1) using the iteration method is unique.
We shall first assume that, equation (2.1) has an exact solution via which, the special solution converges for
a large number m. We consider the following Hilbert space H = L2 ((a, b)× (0, T )) that can be defined as
the set of those functions.

v : (a, b)× [0, T ]→ R,
∫ ∫

uvdudv <∞.

We now, consider the following operator

P (T, I, V ) =


s− dT (t)− (1− η)βV (t)T (t),
(1− η)βV (t)T (t)− δI(t),
(1− ε)pI(t)− cV (t).

The aim of this part is to prove that the inner product of

(P (X11 −X12, X21 −X22, X31 −X32), (w1, w2, w3)) ,

where (X11 −X12) , (X21 −X22) and (X31 −X32) are special solution of system. However,

(P (X11 −X12, X21 −X22, X31 −X32), (w1, w2, w3))

=


(−d (X11 −X12)− (1− η)β (X31 −X32) (X11 −X12) , w1) ,
((1− η)β (X31 −X32) (X11 −X12)− δ (X21 −X22) , w2) ,
((1− ε)p (X21 −X22)− c (X31 −X32) , w3) .

(4.1)

We shall evaluate the first equation in the system without loss of generality

(−d (X11 −X12)− (1− η)β (X31 −X32) (X11 −X12) , w1)
∼= (−d (X11 −X12) , w1) + (−(1− η)β (X31 −X32) (X11 −X12) , w1)

(4.2)
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Since both solutions play almost the same role, we can assume that,

X11 −X12
∼= X21 −X22

∼= X31 −X32,

then the equation (4.2) becomes

(−d (X11 −X12)− (1− η)β (X31 −X32) (X11 −X12) , w1)

∼= (−d (X11 −X12) , w1) +
(

(1− η)β (X11 −X12)
2 , w1

)
.

Nevertheless, using the relationship between the norm and the inner product, we obtain the following
inequality

(−d (X11 −X12)− (1− η)β (X31 −X32) (X11 −X12) , w1)

≤ (d (X12 −X11) , w1) +
(

(1− η)β (X12 −X11)
2 , w1

)
≤ d ‖X12 −X11‖ ‖w1‖+ (1− η)β ‖X12 −X11‖2 ‖w1‖
= (d+ (1− η)βw) ‖X12 −X11‖ ‖w1‖ .

(4.3)

Using the same routine, the second equation of the system can be evaluated as follows

((1− η)β (X31 −X32) (X11 −X12)− δ (X21 −X22) , w2)

≤ (1− η)β ‖X22 −X21‖2 ‖w2‖+ δ ‖X22 −X21‖ ‖w2‖
= (1− η)βf + δ ‖X22 −X21‖ ‖w2‖ .

(4.4)

Finally, third equation of the system is considered as below

((1− ε)p (X21 −X22)− c (X31 −X32) , w3)

≤ (ε− 1)p ‖X32 −X31‖ ‖w3‖+ c ‖X32 −X31‖ ‖w3‖
((ε− 1)p+ c) ‖X32 −X31‖ ‖w3‖ .

(4.5)

Replacing equations (4.3), (4.4), and (4.5) into equation (4.1), we obtain

(P (X11 −X12, X21 −X22, X31 −X32), (w1, w2, w3))

≤


(d+ (1− η)βw) ‖X12 −X11‖ ‖w1‖ ,
(1− η)βf + δ ‖X22 −X21‖ ‖w2‖ ,
((ε− 1)p+ c) ‖X32 −X31‖ ‖w3‖ .

(4.6)

But, for large numbers m,n and k, both solutions converge to the exact solution, using the topology concept;
we can find three very small positive parameters ln, lm, lk such that

‖T −X11‖ , ‖T −X12‖ <
ln

3 (d+ (1− η)βw) ‖w1‖
,

‖I −X21‖ , ‖I −X22‖ <
lm

3(1− η)βf + δ ‖w2‖
,

‖V −X31‖ , ‖V −X32‖ <
lk

3 ((ε− 1)p+ c) ‖w3‖
.

Thus introducing the exact solution in the right hand side of equation (4.6), using the triangular inequality
and finally taking M = max(n,m, k), l = max(ln, lm, lk).

(d+ (1− η)βw) ‖X12 −X11‖ ‖w1‖ ,
(1− η)βf + δ ‖X22 −X21‖ ‖w2‖ ,
((ε− 1)p+ c) ‖X32 −X31‖ ‖w3‖ ,

<


l,
l,
l,
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Since l is a very small positive parameter, we conclude based on the topology idea that
(d+ (1− η)βw) ‖X12 −X11‖ ‖w1‖ ,
(1− η)βf + δ ‖X22 −X21‖ ‖w2‖ ,
((ε− 1)p+ c) ‖X32 −X31‖ ‖w3‖ ,

<


0,
0,
0,

but

(d+ (1− η)βw) , (1− η)βf + δ, ((ε− 1)p+ c) 6= 0, ‖w1‖ , ‖w2‖ , ‖w3‖ 6= 0

⇒ ‖X12 −X11‖ = ‖X22 −X21‖ = ‖X31 −X32‖ = 0

⇒ X11 = X12, X21 = X22 and X31 = X32.

This completes the proof of uniqueness.

5. Conclusion

A model of Hepatitis C was considered using the concept of derivative with fractional order. We used
the newly proposed derivative with fractional order. The design of the definition allows the description of
the memory without any singularity like in the case of Caputo and Riemann-Liouville derivative. With the
benefits of the new derivative, we presented the stability of the equilibrium points. We derived the solution
of the new equation using an iterative scheme. In order to show the efficiency of the used method, we
employed the fixed-point theorem to study the stability analysis of the method for solving the new equation.
We presented in detail the uniqueness of the special derived solution.
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