JNSA

A regularity of split-biquaternionic-valued functions in Clifford analysis

Ji Eun Kim, Kwang Ho Shon*
Department of Mathematics, Pusan National University, Busan 46241, Republic of Korea.

Communicated by Y. J. Cho

Abstract

We examine corresponding Cauchy-Riemann equations by using the non-commutativity for the product on split-biquaternions. Additionally, we describe the regularity of functions and properties of their differential equations on split-biquaternions. We investigate representations and calculations of the derivatives of functions of split-biquaternionic variables. © 2016 all rights reserved.

Keywords: Cauchy-Riemann equations, regular function, split-quaternion, Clifford analysis. 2010 MSC: 32A99, 32W50, 30G35, 11E88.

1. Introduction

The algebraic properties of \mathbb{H} contribute to the various fields of analysis, where $\mathbb{H}:=\left\{q=x_{0}+e_{1} x_{1}+\right.$ $e_{2} x_{2}+e_{3} x_{3} \mid x_{r} \in \mathbb{R}$ being the set of real numbers $\left.(r=0,1,2,3)\right\}$ is the set of quaternions which has the imaginary base e_{1}, e_{2}, and e_{3} such that $e_{1}^{2}=e_{2}^{2}=e_{3}^{2}=-1, e_{1} e_{2}=e_{3}=-e_{2} e_{1}, e_{2} e_{3}=e_{1}=-e_{3} e_{2}$ and $e_{3} e_{1}=e_{2}=-e_{1} e_{3}$. Since quaternions are non-commutative to each other, there are two ways to define the limits of a difference quotient for holomorphy (see [10): let U be a domain in \mathbb{H} and $f: U \rightarrow \mathbb{H}$ be a function such that $f(q)=f_{0}+e_{1} f_{1}+e_{2} f_{2}+e_{3} f_{3}$ and $f_{r}=f_{r}\left(x_{0}, x_{1}, x_{2}, x_{3}\right)(r=0,1,2,3)$ are real-valued functions. For $\Delta x_{r} \neq 0(r=0,1,2,3)$,

$$
\begin{equation*}
\lim _{\Delta q \rightarrow 0}(\Delta q)^{-1}\{f(q+\Delta q)-f(q)\}=\lim _{\Delta q \rightarrow 0} \frac{\Delta x_{0} \Delta f-e_{1} \Delta x_{1} \Delta f-e_{2} \Delta x_{2} \Delta f-e_{3} \Delta x_{3} \Delta f}{\left(\Delta x_{0}\right)^{2}+\left(\Delta x_{1}\right)^{2}+\left(\Delta x_{2}\right)^{2}+\left(\Delta x_{3}\right)^{2}} \tag{1.1}
\end{equation*}
$$

[^0]and
\[

$$
\begin{equation*}
\lim _{\Delta q \rightarrow 0}\{f(q+\Delta q)-f(q)\}(\Delta q)^{-1}=\lim _{\Delta q \rightarrow 0} \frac{\Delta f \Delta x_{0}-\Delta f \Delta x_{1} e_{1}-\Delta f \Delta x_{2} e_{2}-\Delta f \Delta x_{3} e_{3}}{\left(\Delta x_{0}\right)^{2}+\left(\Delta x_{1}\right)^{2}+\left(\Delta x_{2}\right)^{2}+\left(\Delta x_{3}\right)^{2}}, \tag{1.2}
\end{equation*}
$$

\]

where

$$
\Delta f:=f(q+\Delta q)-f(q)=\Delta f_{0}+e_{1} \Delta f_{1}+e_{2} \Delta f_{2}+e_{3} \Delta f_{3}
$$

and

$$
\Delta f_{r}=f_{r}\left(x_{0}+\Delta x_{0}, x_{1}+\Delta x_{1}, x_{2}+\Delta x_{2}, x_{3}+\Delta x_{3}\right)-f_{r}\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \quad(r=0,1,2,3),
$$

by allowing $\Delta q=\Delta x_{0}+e_{1} \Delta x_{1}+e_{2} \Delta x_{2}+e_{3} \Delta x_{3}$ with $\Delta x_{r} \in \mathbb{R}(r=0,1,2,3)$ to approach 0 . When these limits exist, by setting Δq equal to $\Delta x_{0}, e_{1} \Delta x_{1}, e_{2} \Delta x_{2}$, and $e_{3} \Delta x_{3}$, we can obtain equations to get the derivatives from each above equation. The existence of the limits (1.1) and (1.2) give the Cauchy-Riemann equations for a quaternionic-valued function as follows:

$$
\left\{\begin{array}{l}
\frac{\partial f_{0}}{\partial x_{0}}=\frac{\partial f_{1}}{\partial x_{1}}=\frac{\partial f_{2}}{\partial x_{2}}=\frac{\partial f_{3}}{\partial x_{3}} \\
\frac{\partial f_{1}}{\partial x_{0}}=-\frac{\partial f_{0}}{\partial x_{1}}=-\frac{\partial f_{3}}{\partial x_{2}}=\frac{\partial f_{2}}{\partial x_{3}} \\
\frac{\partial f_{2}}{\partial x_{0}}=\frac{\partial f_{3}}{\partial x_{1}}=-\frac{\partial f_{0}}{\partial x_{2}}=-\frac{\partial f_{1}}{\partial x_{3}} \\
\frac{\partial f_{3}}{\partial x_{0}}=-\frac{\partial f_{2}}{\partial x_{1}}=\frac{\partial f_{1}}{\partial x_{2}}=-\frac{\partial f_{0}}{\partial x_{3}}
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
\frac{\partial f_{0}}{\partial x_{0}}=\frac{\partial f_{1}}{\partial x_{1}}=\frac{\partial f_{2}}{\partial x_{2}}=\frac{\partial f_{3}}{\partial x_{3}}, \\
\frac{\partial f_{1}}{\partial x_{0}}=-\frac{\partial f_{0}}{\partial x_{1}}=\frac{\partial f_{3}}{\partial x_{2}}=-\frac{\partial f_{2}}{\partial x_{3}}, \\
\frac{\partial f_{2}}{\partial x_{0}}=-\frac{\partial f_{3}}{\partial x_{1}}=-\frac{\partial f_{0}}{\partial x_{2}}=\frac{\partial f_{1}}{\partial x_{3}}, \\
\frac{\partial f_{3}}{\partial x_{0}}=\frac{\partial f_{2}}{\partial x_{1}}=-\frac{\partial f_{1}}{\partial x_{2}}=-\frac{\partial f_{0}}{\partial x_{3}},
\end{array}\right.
$$

respectively, which are useful in the theories of polymorphic functions in a quaternion analysis. For instance, a function f of quaternion variables is holomorphic which has continuously differential components if and only if f satisfies the equations $\overline{\partial_{q}} f=0$ and it has a derivative $\partial_{q} f$ of f, where the differential operator

$$
\overline{\partial_{q}}:=\frac{1}{2}\left(\frac{\partial}{\partial x_{0}}+e_{1} \frac{\partial}{\partial x_{1}}+e_{2} \frac{\partial}{\partial x_{2}}+e_{3} \frac{\partial}{\partial x_{3}}\right)
$$

and

$$
\partial_{q}=\frac{1}{2}\left(\frac{\partial}{\partial x_{0}}-e_{1} \frac{\partial}{\partial x_{1}}-e_{2} \frac{\partial}{\partial x_{2}}-e_{3} \frac{\partial}{\partial x_{3}}\right)
$$

used to a quaternion analysis.
Herein, we consider functions of a split-biquaternionic variable and research two analogous definitions of a holomorphic function. There are many studies about relations between holomorphy and the CauchyRiemann equations on quaternions and split-quaternions. Libine [9] approached the split-quaternions as a real form, introduced the notion of regular functions and gave two different analogues of the Cauchy-Fueter formula valid for different classes of functions. Masrouri et al. [10] studied the theory of mathematical analysis over split quaternions, formulated in a closely analogous condition for analyticity of functions of a split quaternion variable. Nôno [11] studied the properties of quaternions and the definition of hyperholomorphic functions of quaternion variables. Kajiwara et al. [2] gave a basic estimate for inhomogeneous Cauchy-Riemann systems in quaternion analysis. They applied the theory to a closed, densely defined operator and a priori estimate for the adjoint operator in Hilbert space and biconvex domains. Kim et. al.
[4, 7) obtained some results regarding the regularity of functions on the reduced quaternion field, and on the form of (dual) split quaternions, defined by differential operators in Clifford analysis. In addition, Kim and Shon [5, 6] researched corresponding Cauchy-Riemann systems and the properties of functions with values in special quaternions (such as reduced or split-quaternions) by using a regular function with values in dual split-quaternions and gave properties and calculations of functions of bicomplex variables with the commutative multiplication rule [8]. Kim [3] studied the corresponding inverse of functions of multidual complex variables in Clifford analysis.

Now, we give the two different analogous ways of defining a holomorphic function of a split-biquaternionic variable. We research the corresponding Cauchy-Riemann equations on split-biquaternions by comparing the left-side with the right-side calculations together. Also, we give regularities of functions of splitbiquaternionic variables and properties of their differential equations on split-biquaternions.

2. Preliminaries

The split-biquaternions are the complex Clifford algebra which are elements of the following set, denoted by $\mathcal{S}_{\mathbb{C}}$,

$$
\mathcal{S}_{\mathbb{C}}:=\left\{Z=z_{0}+z_{1} i+z_{2} j+z_{3} i j: z_{r}=x_{r}+\mathbf{i} y_{r} \in \mathbb{C}, \quad x_{r}, y_{r} \in \mathbb{R}\right\},
$$

where $\mathbf{i}=\sqrt{-1}$ and \mathbb{C} is the set of complex numbers. Moreover, i, j are non-commutative base elements with $i^{2}=-1, j^{2}=1$, and $i j=-j i$, which are commutative with \mathbf{i}. The set $\mathcal{S}_{\mathbb{C}}$ is isomorphic to \mathbb{C}^{4}. For two split-biquaternions $Z=z_{0}+z_{1} i+z_{2} j+z_{3} i j$ and $W=w_{0}+w_{1} i+w_{2} j+w_{3} i j$, where $w_{k} \in \mathbb{C}$, addition and multiplication are given by

$$
Z+W=\left(z_{0}+w_{0}\right)+\left(z_{1}+w_{1}\right) i+\left(z_{2}+w_{2}\right) j+\left(z_{3}+w_{3}\right) i j
$$

and

$$
\begin{aligned}
Z W= & \left(z_{0} w_{0}-z_{1} w_{1}+z_{2} w_{2}+z_{3} w_{3}\right)+\left(z_{0} w_{1}+z_{1} w_{0}-z_{2} w_{3}+z_{3} w_{2}\right) i \\
& +\left(z_{0} w_{2}-z_{1} w_{3}+z_{2} w_{0}+z_{3} w_{1}\right) j+\left(z_{0} w_{3}+z_{1} w_{2}-z_{2} w_{1}+z_{3} w_{0}\right) i j .
\end{aligned}
$$

Consider a conjugation Z^{\dagger} of $\mathcal{S}_{\mathbb{C}}$ such that $Z^{\dagger}=z_{0}-z_{1} i-z_{2} j-z_{3} i j$. Then we obtain the following form

$$
Z Z^{\dagger}=Z^{\dagger} Z=z_{0}^{2}+z_{1}^{2}-z_{2}^{2}-z_{3}^{2} \in \mathbb{C}
$$

We give a modulus $M(Z)$ of $Z \in \mathcal{S}_{\mathbb{C}}$ as

$$
M(Z):=\left(x_{0}^{2}-y_{0}^{2}+x_{1}^{2}-y_{1}^{2}-x_{2}^{2}+y_{2}^{2}-x_{3}^{2}+y_{3}^{2}\right)^{2}+4\left(x_{0} y_{0}+x_{1} y_{1}-x_{2} y_{2}-x_{3} y_{3}\right)^{2} .
$$

From the conjugation of $\mathcal{S}_{\mathbb{C}}$, we have the inverse element of Z in $\mathcal{S}_{\mathbb{C}}$ such that

$$
Z^{-1}=\frac{Z^{\dagger}}{Z Z^{\dagger}} \quad\left(x_{r} \neq y_{r}, \quad r=0,1,2,3\right)
$$

There is a representation of the base of the split-quaternions as 2×2 matrices over \mathbb{R}. We correspond the following relations (see [1]):

$$
1 \leftrightarrow\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right), \quad i \leftrightarrow\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \quad j \leftrightarrow\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \quad i j \leftrightarrow\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) .
$$

Then we can map $\mathcal{S}_{\mathbb{C}}$ to the real 2×2 matrices as follows:

$$
z_{0}+z_{1} i+z_{2} j+z_{3} i j \mapsto\left(\begin{array}{cc}
z_{0}-z_{3} & -z_{1}+z_{2} \\
z_{1}+z_{2} & z_{0}+z_{3}
\end{array}\right)
$$

Thus, we also have

$$
\operatorname{det}_{\dagger}\left[\begin{array}{cc}
z_{0}-z_{3} & -z_{1}+z_{2} \\
z_{1}+z_{2} & z_{0}+z_{3}
\end{array}\right]=z_{0}^{2}+z_{1}^{2}-z_{2}^{2}-z_{3}^{2} \in \mathbb{C}
$$

Consider the following function

$$
F: U \subset \mathbb{C}^{4} \rightarrow \mathcal{S}_{\mathbb{C}}
$$

and

$$
F\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=f_{0}+f_{1} i+f_{2} j+f_{3} i j
$$

where U is open in \mathbb{C}^{4} and $f_{r}: \mathbb{C}^{4} \rightarrow \mathbb{C} ; f_{r}=f_{r}\left(z_{0}, z_{1}, z_{2}, z_{3}\right)(r=0,1,2,3)$ are complex-valued functions. We try to construct the analogous definition of holomorphy. The first method considers split-biquaternionicvalued differential operators and the second utilizes a difference quotient (see [9] and [10]).

We give the following Dirac operators D_{Z} and D_{Z}^{\dagger} :

$$
D_{Z}:=\frac{1}{2}\left(\frac{\partial}{\partial z_{0}}-i \frac{\partial}{\partial z_{1}}+j \frac{\partial}{\partial z_{2}}+i j \frac{\partial}{\partial z_{3}}\right) \quad \text { and } \quad D_{Z}^{\dagger}=\frac{1}{2}\left(\frac{\partial}{\partial z_{0}}+i \frac{\partial}{\partial z_{1}}-j \frac{\partial}{\partial z_{2}}-i j \frac{\partial}{\partial z_{3}}\right)
$$

where $\frac{\partial}{\partial z_{r}}=\frac{\partial}{\partial x_{r}}-\mathbf{i} \frac{\partial}{\partial y_{r}}$ and $\frac{\partial}{\partial \bar{z}_{r}}=\frac{\partial}{\partial x_{r}}+\mathbf{i} \frac{\partial}{\partial y_{r}}(r=0,1,2,3)$ are usual differential operators in complex analysis. Since the Dirac operators are non-commutative for the product on $\mathcal{S}_{\mathbb{C}}$, these operators are acted to functions on either the left-side or right-side, and each calculation provides different results. The product of D_{Z} and D_{Z}^{\dagger} gives the Laplacian for complex analysis, denoted by $\Delta_{\mathcal{S}_{\mathbb{C}}}$,

$$
\Delta_{\mathcal{S}_{\mathbb{C}}}=\frac{1}{4}\left(\frac{\partial^{2}}{\partial z_{0}^{2}}+\frac{\partial^{2}}{\partial z_{1}^{2}}-\frac{\partial^{2}}{\partial z_{2}^{2}}-\frac{\partial^{2}}{\partial z_{3}^{2}}\right)
$$

Definition 2.1. Let U be an open set in $\mathcal{S}_{\mathbb{C}}$ and let $F: U \rightarrow \mathcal{S}_{\mathbb{C}}$ be a function in $\mathcal{C}^{1}(U)$ being the class which consists of all differentiable functions whose derivative is continuous. A function F is said to be left-regular if

$$
\begin{aligned}
D_{Z}^{\dagger} F= & \frac{1}{2}\left(\frac{\partial F}{\partial z_{0}}+i \frac{\partial F}{\partial z_{1}}-j \frac{\partial F}{\partial z_{2}}-i j \frac{\partial F}{\partial z_{3}}\right) \\
= & \frac{1}{2}\left\{\left(\frac{\partial f_{0}}{\partial z_{0}}-\frac{\partial f_{1}}{\partial z_{1}}-\frac{\partial f_{2}}{\partial z_{2}}-\frac{\partial f_{3}}{\partial z_{3}}\right)+\left(\frac{\partial f_{0}}{\partial z_{1}}+\frac{\partial f_{1}}{\partial z_{0}}-\frac{\partial f_{2}}{\partial z_{3}}+\frac{\partial f_{3}}{\partial z_{2}}\right) i\right. \\
& \left.+\left(-\frac{\partial f_{0}}{\partial z_{2}}-\frac{\partial f_{1}}{\partial z_{3}}-\frac{\partial f_{3}}{\partial z_{1}}+\frac{\partial f_{2}}{\partial z_{0}}\right) j+\left(-\frac{\partial f_{0}}{\partial z_{3}}+\frac{\partial f_{1}}{\partial z_{2}}+\frac{\partial f_{2}}{\partial z_{1}}+\frac{\partial f_{3}}{\partial z_{0}}\right) i j\right\}=0
\end{aligned}
$$

for every $Z \in U$. Similarly, we say that F is right-regular if

$$
\begin{aligned}
F D_{Z}^{\dagger}= & \frac{1}{2}\left\{\left(\frac{\partial f_{0}}{\partial z_{0}}-\frac{\partial f_{1}}{\partial z_{1}}-\frac{\partial f_{2}}{\partial z_{2}}-\frac{\partial f_{3}}{\partial z_{3}}\right)+\left(\frac{\partial f_{0}}{\partial z_{1}}+\frac{\partial f_{1}}{\partial z_{0}}+\frac{\partial f_{2}}{\partial z_{3}}-\frac{\partial f_{3}}{\partial z_{2}}\right) i\right. \\
& \left.+\left(-\frac{\partial f_{0}}{\partial z_{2}}+\frac{\partial f_{1}}{\partial z_{3}}+\frac{\partial f_{2}}{\partial z_{0}}+\frac{\partial f_{3}}{\partial z_{1}}\right) j+\left(-\frac{\partial f_{0}}{\partial z_{3}}-\frac{\partial f_{1}}{\partial z_{2}}-\frac{\partial f_{2}}{\partial z_{1}}+\frac{\partial f_{3}}{\partial z_{0}}\right) i j\right\}=0
\end{aligned}
$$

for every $Z \in U$.
Proposition 2.2. Let $F: U \rightarrow \mathcal{S}_{\mathbb{C}}$ be a function in $\mathcal{C}^{1}(U)$. Then F is left-regular if and only if F satisfies the following partial differential equations (PDEs):

$$
\left\{\begin{array}{l}
\frac{\partial f_{0}}{\partial z_{0}}-\frac{\partial f_{1}}{\partial z_{1}}-\frac{\partial f_{2}}{\partial z_{2}}-\frac{\partial f_{3}}{\partial z_{3}}=0 \tag{2.1}\\
\frac{\partial f_{1}}{\partial z_{0}}+\frac{\partial f_{0}}{\partial z_{1}}+\frac{\partial f_{3}}{\partial z_{2}}-\frac{\partial f_{2}}{\partial z_{3}}=0 \\
\frac{\partial f_{2}}{\partial z_{0}}-\frac{\partial f_{3}}{\partial z_{1}}-\frac{\partial f_{0}}{\partial z_{2}}-\frac{\partial f_{1}}{\partial z_{3}}=0 \\
\frac{\partial f_{3}}{\partial z_{0}}+\frac{\partial f_{2}}{\partial z_{1}}+\frac{\partial f_{1}}{\partial z_{2}}-\frac{\partial f_{0}}{\partial z_{3}}=0
\end{array}\right.
$$

Proposition 2.3. Let $F: U \rightarrow \mathcal{S}_{\mathbb{C}}$ be a function in $\mathcal{C}^{1}(U)$. Then F is right-regular if and only if F satisfies the following of PDEs:

$$
\left\{\begin{array}{l}
\frac{\partial f_{0}}{\partial z_{0}}-\frac{\partial f_{1}}{\partial z_{1}}-\frac{\partial f_{2}}{\partial z_{2}}-\frac{\partial f_{3}}{\partial z_{3}}=0 \\
\frac{\partial f_{1}}{\partial z_{0}}+\frac{\partial f_{0}}{\partial z_{1}}-\frac{\partial f_{3}}{\partial z_{2}}+\frac{\partial f_{2}}{\partial z_{3}}=0 \\
\frac{\partial f_{2}}{\partial z_{0}}+\frac{\partial f_{3}}{\partial z_{1}}-\frac{\partial f_{0}}{\partial z_{2}}+\frac{\partial f_{1}}{\partial z_{3}}=0 \\
\frac{\partial f_{3}}{\partial z_{0}}-\frac{\partial f_{2}}{\partial z_{1}}-\frac{\partial f_{1}}{\partial z_{2}}-\frac{\partial f_{0}}{\partial z_{3}}=0
\end{array}\right.
$$

Referring to [12], we offer the following example which shows that F is not a left-regular function in $\mathcal{S}_{\mathbb{C}}$.
Example 2.4. Let $A=a+b i+c j+d i j \in \mathcal{S}_{\mathbb{C}}$, where a, b, c, d are constants in $\mathcal{S}_{\mathbb{C}}$. Then

$$
\begin{aligned}
A Z= & \left(a z_{0}-b z_{1}+c z_{2}+d z_{3}\right)+\left(b z_{0}+a z_{1}+d z_{2}-c z_{3}\right) i \\
& +\left(c z_{0}+d z_{1}+a z_{2}-b z_{3}\right) j+\left(d z_{0}-c z_{1}+b z_{2}+a z_{3}\right) i j
\end{aligned}
$$

Thus, we have

$$
\begin{aligned}
D_{Z}^{\dagger}(A Z) & =(a+b i+c j+d i j)+i(-b+a i+d j-c i j)-j(c+d i+a j+b i j)-i j(d-c i-b j+a i j) \\
& =-a+b i+c j+d i j=-A^{\dagger} \neq 0
\end{aligned}
$$

and

$$
\begin{aligned}
D_{Z}^{\dagger}(Z A) & =(a+b i+c j+d i j)+i(-b+a i-d j+c i j)-j(c-d i+a j-b i j)-i j(d+c i+b j+a i j) \\
& =-a-b i-c j-d i j=-A \neq 0
\end{aligned}
$$

Similarly, using the differential operator D_{Z}^{\dagger} on right-side, we can show that $A Z$ and $Z A$ are not rightregular.

3. Differential function

A corresponding Cauchy-Riemann equations are obtained by allowing $\Delta Z=\Delta z_{0}+\Delta z_{1} i+\Delta z_{2} j+\Delta z_{3} i j$ to approach 0 being equivalent to $\Delta z_{0} \rightarrow 0, i \Delta z_{1} \rightarrow 0, j \Delta z_{2} \rightarrow 0$, and $i j \Delta z_{3} \rightarrow 0$. Referring to [10], because of non-commutativity of the split-quaternions, we consider two ways which are used to construct analogue of holomorphy. These ways are defined by, for $x_{r} \neq y_{r}(r=0,1,2,3)$,

$$
\begin{equation*}
\lim _{\Delta Z \rightarrow 0}(\Delta Z)^{-1}\{F(Z+\Delta Z)-F(Z)\}=\lim _{\Delta Z \rightarrow 0} \frac{\left(\Delta z_{0}\right) \Delta F-\left(\Delta z_{1}\right) i \Delta F-\left(\Delta z_{2}\right) j \Delta F-\left(\Delta z_{3}\right) k \Delta F}{\left(\Delta z_{0}\right)^{2}+\left(\Delta z_{1}\right)^{2}-\left(\Delta z_{2}\right)^{2}-\left(\Delta z_{3}\right)^{2}} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{\Delta Z \rightarrow 0}\{F(Z+\Delta Z)-F(Z)\}(\Delta Z)^{-1}=\lim _{\Delta Z \rightarrow 0} \frac{\Delta F\left(\Delta z_{0}\right)-\Delta F\left(\Delta z_{1}\right) i-\Delta F\left(\Delta z_{2}\right) j-\Delta F\left(\Delta z_{3}\right) k}{\left(\Delta z_{0}\right)^{2}+\left(\Delta z_{1}\right)^{2}-\left(\Delta z_{2}\right)^{2}-\left(\Delta z_{3}\right)^{2}} \tag{3.2}
\end{equation*}
$$

where

$$
\Delta F:=F(Z+\Delta Z)-F(Z)=\Delta f_{0}+\Delta f_{1} i+\Delta f_{2} j+\Delta f_{3} k
$$

and

$$
\Delta f_{r}\left(z_{0}+\Delta z_{0}, z_{1}+\Delta z_{1}, z_{2}+\Delta z_{2}, z_{3}+\Delta z_{3}\right)-f_{r}\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \quad(r=0,1,2,3)
$$

Such functions are called left- and right- $\mathcal{S}_{\mathbb{C}}$-differentiable, respectively, if each limit exists. By taking the limits as (3.1) and (3.2), we get the derivatives of F in $\mathcal{S}_{\mathbb{C}}$ as follows:

$$
\left\{\begin{array}{l}
\lim _{\Delta z_{0} \rightarrow 0}\left(\Delta z_{0}\right)^{-1}\left\{F\left(Z+\Delta z_{0}\right)-F(Z)\right\}=\frac{\partial f_{0}}{\partial z_{0}}+\frac{\partial f_{1}}{\partial z_{0}} i+\frac{\partial f_{2}}{\partial z_{0}} j+\frac{\partial f_{3}}{\partial z_{0}} i j \tag{3.3}\\
\lim _{i \Delta z_{1} \rightarrow 0}(-i)\left(\Delta z_{1}\right)^{-1}\left\{F\left(Z+\Delta z_{1}\right)-F(Z)\right\}=-\frac{\partial f_{0}}{\partial z_{1}} i+\frac{\partial f_{1}}{\partial z_{1}}-\frac{\partial f_{2}}{\partial z_{1}} i j+\frac{\partial f_{3}}{\partial z_{1}} j \\
\lim _{j \Delta z_{2} \rightarrow 0} j\left(\Delta z_{2}\right)^{-1}\left\{F\left(Z+\Delta z_{2}\right)-F(Z)\right\}=\frac{\partial f_{0}}{\partial z_{2}} j-\frac{\partial f_{1}}{\partial z_{2}} i j+\frac{\partial f_{2}}{\partial z_{2}}-\frac{\partial f_{3}}{\partial z_{2}} i \\
\lim _{i j \Delta z_{3} \rightarrow 0} i j\left(\Delta z_{3}\right)^{-1}\left\{F\left(Z+\Delta z_{3}\right)-F(Z)\right\}=\frac{\partial f_{0}}{\partial z_{3}} i j+\frac{\partial f_{1}}{\partial z_{3}} j+\frac{\partial f_{2}}{\partial z_{3}} i+\frac{\partial f_{3}}{\partial z_{3}}
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
\lim _{\Delta z_{0} \rightarrow 0}\left\{F\left(Z+\Delta z_{0}\right)-F(Z)\right\}\left(\Delta z_{0}\right)^{-1}=\frac{\partial f_{0}}{\partial z_{0}}+\frac{\partial f_{1}}{\partial z_{0}} i+\frac{\partial f_{2}}{\partial z_{0}} j+\frac{\partial f_{3}}{\partial z_{0}} i j \tag{3.4}\\
\lim _{i \Delta z_{1} \rightarrow 0}\left\{F\left(Z+\Delta z_{1}\right)-F(Z)\right\}(-i)\left(\Delta z_{1}\right)^{-1}=-\frac{\partial f_{0}}{\partial z_{1}} i+\frac{\partial f_{1}}{\partial z_{1}}+\frac{\partial f_{2}}{\partial z_{1}} i j-\frac{\partial f_{3}}{\partial z_{1}} j \\
\lim _{j \Delta z_{2} \rightarrow 0}\left\{F\left(Z+\Delta z_{2}\right)-F(Z)\right\} j\left(\Delta z_{2}\right)^{-1}=\frac{\partial f_{0}}{\partial z_{2}} j+\frac{\partial f_{1}}{\partial z_{2}} i j+\frac{\partial f_{2}}{\partial z_{2}}+\frac{\partial f_{3}}{\partial z_{2}} i \\
\lim _{i j \Delta z_{3} \rightarrow 0}\left\{F\left(Z+\Delta z_{3}\right)-F(Z)\right\} i j\left(\Delta z_{3}\right)^{-1}=\frac{\partial f_{0}}{\partial z_{3}} i j-\frac{\partial f_{1}}{\partial z_{3}} j-\frac{\partial f_{2}}{\partial z_{3}} i+\frac{\partial f_{3}}{\partial z_{3}}
\end{array}\right.
$$

where each $\Delta z_{r}=\Delta x_{r}+\mathbf{i} \Delta y_{r}$ and $\left(\Delta z_{r}\right)^{-1}=\frac{\Delta x_{r}-\mathbf{i} \Delta y_{r}}{\left(\Delta x_{r}\right)^{2}+\left(\Delta y_{r}\right)^{2}}$ with $x_{r} \neq 0$ and $y_{r} \neq 0(r=0,1,2,3)$, is the form of the inverse element in complex numbers. Dealing with the equations 3.3 , we obtain the following system of PDEs:

$$
\left\{\begin{array}{l}
l l \frac{\partial f_{0}}{\partial z_{0}}=\frac{\partial f_{1}}{\partial z_{1}}=\frac{\partial f_{2}}{\partial z_{2}}=\frac{\partial f_{3}}{\partial z_{3}} \tag{3.5}\\
\frac{\partial f_{1}}{\partial z_{0}}=-\frac{\partial f_{0}}{\partial z_{1}}=-\frac{\partial f_{3}}{\partial z_{2}}=\frac{\partial f_{2}}{\partial z_{3}} \\
\frac{\partial f_{2}}{\partial z_{0}}=\frac{\partial f_{3}}{\partial z_{1}}=\frac{\partial f_{0}}{\partial z_{2}}=\frac{\partial f_{1}}{\partial z_{3}} \\
\frac{\partial f_{3}}{\partial z_{0}}=-\frac{\partial f_{2}}{\partial z_{1}}=-\frac{\partial f_{1}}{\partial z_{2}}=\frac{\partial f_{0}}{\partial z_{3}} .
\end{array}\right.
$$

If we consider the equations (3.4), we also have the following system of PDEs:

$$
\left\{\begin{array}{l}
\frac{\partial f_{0}}{\partial z_{0}}=\frac{\partial f_{1}}{\partial z_{1}}=\frac{\partial f_{2}}{\partial z_{2}}=\frac{\partial f_{3}}{\partial z_{3}} \tag{3.6}\\
\frac{\partial f_{1}}{\partial z_{0}}=-\frac{\partial f_{0}}{\partial z_{1}}=\frac{\partial f_{3}}{\partial z_{2}}=-\frac{\partial f_{2}}{\partial z_{3}} \\
\frac{\partial f_{2}}{\partial z_{0}}=-\frac{\partial f_{3}}{\partial z_{1}}=\frac{\partial f_{0}}{\partial z_{2}}=-\frac{\partial f_{1}}{\partial z_{3}} \\
\frac{\partial f_{3}}{\partial z_{0}}=\frac{\partial f_{2}}{\partial z_{1}}=\frac{\partial f_{1}}{\partial z_{2}}=\frac{\partial f_{0}}{\partial z_{3}}
\end{array}\right.
$$

Example 3.1. Consider a function

$$
\begin{aligned}
A Z+K= & \left(a z_{0}-b z_{1}+c z_{2}+d z_{3}+k\right)+\left(b z_{0}+a z_{1}+d z_{2}-c z_{3}+l\right) i \\
& +\left(c z_{0}+d z_{1}+a z_{2}-b z_{3}+m\right) j+\left(d z_{0}-c z_{1}+b z_{2}+a z_{3}+n\right) i j
\end{aligned}
$$

where A and K are arbitrary constants in $\mathcal{S}_{\mathbb{C}}$. Because of the non-commutativity for i and j, there dose not exist the limit (3.1) for $(\Delta Z)^{-1}$. However, there exists the limit 3.2 such as

$$
\lim _{\Delta Z \rightarrow 0}\{A(Z+\Delta Z)+K-A Z-K\}(\Delta Z)^{-1}=\lim _{\Delta Z \rightarrow 0}(A \Delta Z)(\Delta Z)^{-1}=A
$$

Theorem 3.2. Let $F: U \rightarrow \mathcal{S}_{\mathbb{C}}$ be a function in $\mathcal{C}^{1}(U)$. Then F is right- $\mathcal{S}_{\mathbb{C}}$-differentiable if and only if $F(Z)=A Z+K$ for constants A and K in $\mathcal{S}_{\mathbb{C}}$.

Proof. Suppose that F is right- $\mathcal{S}_{\mathbb{C}}$-differentiable. In order to obtain the form $F(Z)=A Z+K$, it is sufficient to show that $D_{Z}\left(D_{Z} F\right)=0$. The equations (3.6) give that each component of F is continuous with respect to the complex variables $z_{r}(r=0,1,2,3)$. From the equations (3.6), the first term of $D_{Z}\left(D_{Z} F\right)$ has the following expansion:

$$
\begin{aligned}
\frac{1}{4}\left(\frac{\partial^{2} f_{0}}{\partial z_{0}^{2}}+2 \frac{\partial^{2} f_{1}}{\partial z_{1} \partial z_{0}}-\frac{\partial^{2} f_{0}}{\partial z_{1}^{2}}\right) & +i \frac{1}{4}\left(\frac{\partial^{2} f_{1}}{\partial z_{0}^{2}}-2 \frac{\partial^{2} f_{0}}{\partial z_{1} \partial z_{0}}+\frac{\partial^{2} f_{1}}{\partial z_{1}^{2}}\right) \\
= & \frac{1}{4}\left(\frac{\partial^{2} f_{1}}{\partial z_{1} \partial z_{0}}+\frac{\partial^{2} f_{3}}{\partial z_{3} \partial z_{0}}+\frac{\partial^{2} f_{3}}{\partial z_{2} \partial z_{1}}-\frac{\partial^{2} f_{2}}{\partial z_{3} \partial z_{1}}\right) \\
& +i \frac{1}{4}\left(\frac{\partial^{2} f_{3}}{\partial z_{2} \partial z_{0}}-\frac{\partial^{2} f_{2}}{\partial z_{3} \partial z_{0}}-\frac{\partial^{2} f_{2}}{\partial z_{2} \partial z_{1}}-\frac{\partial^{2} f_{1}}{\partial z_{3} \partial z_{1}}\right) \\
= & \frac{1}{4}\left\{\frac{\partial}{\partial z_{1}}\left(\frac{\partial f_{1}}{\partial z_{0}}-\frac{\partial f_{3}}{\partial z_{2}}\right)+\frac{\partial}{\partial z_{3}}\left(\frac{\partial f_{3}}{\partial z_{0}}-\frac{\partial f_{2}}{\partial z_{1}}\right)\right\} \\
& +i \frac{1}{4}\left\{\frac{\partial}{\partial z_{2}}\left(\frac{\partial f_{3}}{\partial z_{0}}-\frac{\partial f_{2}}{\partial z_{1}}\right)-\frac{\partial}{\partial z_{0}}\left(\frac{\partial f_{2}}{\partial z_{3}}-\frac{\partial f_{0}}{\partial z_{1}}\right)\right\}=0
\end{aligned}
$$

and the second term of $D_{Z}\left(D_{Z} F\right)$ has the following expansion:

$$
\begin{aligned}
\frac{1}{4}\left(\frac{\partial^{2} f_{2}}{\partial z_{2}^{2}}-2 \frac{\partial^{2} f_{3}}{\partial z_{2} \partial z_{3}}-\frac{\partial^{2} f_{2}}{\partial z_{3}^{2}}\right) & +i \frac{1}{4}\left(\frac{\partial^{2} f_{3}}{\partial z_{2}^{2}}+2 \frac{\partial^{2} f_{2}}{\partial z_{2} \partial z_{3}}-\frac{\partial^{2} f_{3}}{\partial z_{3}^{2}}\right) \\
= & \frac{1}{4}\left(\frac{\partial^{2} f_{3}}{\partial z_{2} \partial z_{3}}+\frac{\partial^{2} f_{1}}{\partial z_{3} \partial z_{0}}+\frac{\partial^{2} f_{3}}{\partial z_{2} \partial z_{3}}-\frac{\partial^{2} f_{0}}{\partial z_{3} \partial z_{1}}\right) \\
& +i \frac{1}{4}\left(\frac{\partial^{2} f_{1}}{\partial z_{2} \partial z_{0}}-\frac{\partial^{2} f_{2}}{\partial z_{3} \partial z_{2}}-\frac{\partial^{2} f_{0}}{\partial z_{2} \partial z_{1}}-\frac{\partial^{2} f_{2}}{\partial z_{3} \partial z_{2}}\right) \\
= & \frac{1}{4}\left\{\frac{\partial}{\partial z_{3}}\left(\frac{\partial f_{3}}{\partial z_{2}}-\frac{\partial f_{1}}{\partial z_{0}}\right)+\frac{\partial}{\partial z_{3}}\left(\frac{\partial f_{3}}{\partial z_{2}}+\frac{\partial f_{0}}{\partial z_{1}}\right)\right\} \\
& +i \frac{1}{4}\left\{\frac{\partial}{\partial z_{2}}\left(\frac{\partial f_{1}}{\partial z_{0}}+\frac{\partial f_{2}}{\partial z_{3}}\right)-\frac{\partial}{\partial z_{2}}\left(\frac{\partial f_{0}}{\partial z_{1}}-\frac{\partial f_{2}}{\partial z_{3}}\right)\right\}=0
\end{aligned}
$$

Similarly, for another terms, we get that each expansion of all terms of $D_{Z}\left(D_{Z} F\right)$ is zero, by using the equations (3.6). Thus, F has the form $A Z+K$, where A and K are constants in $\mathcal{S}_{\mathbb{C}}$.

Conversely, if $F(Z)=A Z+K$ is right- $\mathcal{S}_{\mathbb{C}}$-differentiable (see Example 3.1). Therefore, we obtain the result.

Corollary 3.3. Let $F: U \rightarrow \mathcal{S}_{\mathbb{C}}$ be a function in $\mathcal{C}^{1}(U)$. Then F is left- $\mathcal{S}_{\mathbb{C}}$-differentiable if and only if $F(Z)=Z A+K$, where A and K are in $\mathcal{S}_{\mathbb{C}}$.

Example 3.4. A function $F(Z)=A Z+K$ is not right- $\mathcal{S}_{\mathbb{C}}$-differentiable. However, $F(Z)=Z A+K$ is left- $\mathcal{S}_{\mathbb{C}^{-}}$differentiable.

Let $F: U \rightarrow \mathcal{S}_{\mathbb{C}}$ consist of the elements of $\mathcal{C}^{2}(U)$, which is the class of functions having the first and second derivative of the function both exist and are continuous, and F satisfies at least one of the following equations:

$$
D_{Z}^{\dagger} F=0, \quad F D_{Z}^{\dagger}=0, \quad D_{Z}^{\dagger} F=0, \quad \text { and } \quad F D_{Z}^{\dagger}=0
$$

Then each component of F satisfies Johns equation (which is referred by [9]):

$$
\Delta_{\mathcal{S}_{\mathbb{C}}} f_{r}=0 \quad(r=0,1,2,3)
$$

Such functions are said to be pseudo-hyperbolic. From the definition of pseudo-hyperbolic functions, we give a representation of regular functions. Let $\varphi: U \rightarrow \mathbb{C}$ be pseudo-hyperbolic. Then $D_{Z} \varphi$ is both left-
and right-regular. Let $F=D_{Z} \varphi$. Then we have

$$
D_{Z}^{\dagger} F=D_{Z}^{\dagger}\left(D_{Z} \varphi\right)=\Delta_{\mathcal{S}_{\mathbb{C}}} \varphi=0
$$

and

$$
F D_{Z}^{\dagger}=\left(D_{Z} \varphi\right) D_{Z}^{\dagger}=\Delta_{\mathcal{S}_{\mathbb{C}}} \varphi=0
$$

We can also deal with left- and right- $\mathcal{S}_{\mathbb{C}^{-}}$differentiable functions which are formed by pseudo-hyperbolic.
Theorem 3.5. Let $F: U \rightarrow \mathcal{S}_{\mathbb{C}}$ be comprised of functions in $\mathcal{C}^{2}(U)$. Suppose that F is left- $\mathcal{S}_{\mathbb{C}}$-differentiable. Then the components of F are pseudo-hyperbolic.

Proof. Suppose $F\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=f_{0}+f_{1} i+f_{2} j+f_{3} i j$ is right- $\mathcal{S}_{\mathbb{C}}$-differentiable. Then

$$
\begin{aligned}
\frac{\partial^{2} f_{0}}{\partial z_{0}^{2}}+\frac{\partial^{2} f_{0}}{\partial z_{1}^{2}}-\frac{\partial^{2} f_{0}}{\partial z_{2}^{2}}-\frac{\partial^{2} f_{0}}{\partial z_{3}^{2}} & =\frac{\partial}{\partial z_{0}} \frac{\partial f_{1}}{\partial z_{1}}+\frac{\partial}{\partial z_{1}} \frac{\partial f_{0}}{\partial z_{1}}-\frac{\partial}{\partial z_{3}} \frac{\partial f_{1}}{\partial z_{2}}+\frac{\partial}{\partial z_{3}} \frac{\partial f_{0}}{\partial z_{3}} \\
& =\frac{\partial}{\partial z_{1}}\left(\frac{\partial f_{1}}{\partial z_{0}}+\frac{\partial f_{0}}{\partial z_{1}}\right)+\frac{\partial}{\partial z_{3}}\left(\frac{\partial f_{1}}{\partial z_{2}}+\frac{\partial f_{0}}{\partial z_{3}}\right)=0
\end{aligned}
$$

A similar process for the other $f_{r}(r=1,2,3)$ gives the result as desired.

Corollary 3.6. Let $F: U \rightarrow \mathcal{S}_{\mathbb{C}}$ be comprised of functions in $\mathcal{C}^{2}(U)$. Suppose that F is right- $\mathcal{S}_{\mathbb{C}^{-}}$ differentiable. Then the components of F are pseudo-hyperbolic.
Proof. A similar method shown in the Theorem 3.5 gives the result as desired.
From the property shown above, we consider more simple expression of left- and right- $\mathcal{S}_{\mathbb{C}}$-differentiable functions. We let the idempotent elements, whose symbols is referred by [1], such as

$$
j_{+}=\frac{1+j}{2} \quad \text { and } \quad j_{-}=\frac{1-j}{2}
$$

which satisfy

$$
j_{+}^{2}=j_{+}, \quad j_{-}^{2}=j_{-}, \quad j_{+}+j_{-}=1 \quad \text { and } \quad j_{+}-j_{-}=j
$$

Remark 3.7. From the above properties of j_{+}and j_{-}, we have

$$
i j_{+}=j_{-} i \quad \text { and } \quad i j_{-}=j_{+} i
$$

Then we can also represent

$$
\begin{aligned}
Z & =z_{0}+z_{1} i+z_{2} j+z_{3} i j \\
& =\frac{1}{2}\left\{2 z_{0}+2 z_{1} i+2 z_{2} j+2 z_{3} i j+\left(z_{0} j-z_{0} j+z_{2}-z_{2}+z_{1} j-z_{1} j+z_{3}-z_{3}\right)\right\} \\
& =\left(z_{0}+z_{2}\right) \frac{1+j}{2}+\left(z_{0}-z_{2}\right) \frac{1-j}{2}+i\left\{\left(z_{1}+z_{3}\right) \frac{1+j}{2}+\left(z_{1}-z_{3}\right) \frac{1-j}{2}\right\}
\end{aligned}
$$

We put $\zeta_{+}=z_{0}+z_{2}, \zeta_{-}=z_{0}-z_{2}, \eta_{+}=z_{1}+z_{3}$ and $\eta_{-}=z_{1}-z_{3}$. Then

$$
Z=\zeta_{+} j_{+}+\zeta_{-} j_{-}+i\left(\eta_{+} j_{+}+\eta_{-} j_{-}\right)
$$

Also, for the differential operators, let

$$
\begin{aligned}
\partial_{\zeta_{+}} & :=\frac{\partial}{\partial z_{0}}+\frac{\partial}{\partial z_{2}}, & \partial_{\zeta_{-}} & =\frac{\partial}{\partial z_{0}}-\frac{\partial}{\partial z_{2}} \\
\partial_{\eta_{+}} & :=\frac{\partial}{\partial z_{1}}+\frac{\partial}{\partial z_{3}}, & \partial_{\eta_{-}} & =\frac{\partial}{\partial z_{1}}-\frac{\partial}{\partial z_{3}}
\end{aligned}
$$

Then we have

$$
D_{Z}^{\dagger}=\frac{1}{2}\left\{\left(\partial_{\zeta_{-}} j_{+}+\partial_{\zeta_{+}} j_{-}\right)+i\left(\partial_{\eta_{-}} j_{+}+\partial_{\eta_{+}} j_{-}\right)\right\}
$$

Theorem 3.8. Let $F: U \subset \mathbb{C}^{4} \rightarrow \mathcal{S}_{\mathbb{C}}$ be a function in $\mathcal{C}^{1}(U)$. Then F has the following form:

$$
\begin{aligned}
F\left(z_{0}, z_{1}, z_{2}, z_{3}\right)= & \left\{\varphi_{0}\left(\zeta_{+}, \eta_{+}\right)+\varphi_{1}\left(\zeta_{-}, \eta_{-}\right)\right\}+\left\{\varphi_{2}\left(\zeta_{-}, \eta_{-}\right)+\varphi_{3}\left(\zeta_{+}, \eta_{+}\right)\right\} i \\
& +\left\{\varphi_{0}\left(\zeta_{+}, \eta_{+}\right)-\varphi_{1}\left(\zeta_{-}, \eta_{-}\right)\right\} j+\left\{\varphi_{2}\left(\zeta_{-}, \eta_{-}\right)-\varphi_{3}\left(\zeta_{+}, \eta_{+}\right)\right\} i j
\end{aligned}
$$

where $\varphi_{r}: U \rightarrow \mathbb{C}(r=0,1,2,3)$ in $\mathcal{C}^{1}(U)$ if and only if F satisfies $D_{Z}^{\dagger} F=0$.
Proof. We write the function $F=f_{0}+f_{1} i+f_{2} j+f_{3} i j$, where $f_{0}=\varphi_{0}+\varphi_{1}, f_{1}=\varphi_{2}+\varphi_{3}, f_{2}=\varphi_{0}-\varphi_{1}$ and $f_{3}=\varphi_{2}-\varphi_{3}$. Since $\varphi_{r}(r=0,1,2,3)$ are continuously differentiable on U, they content the equations (3.5). So, the function F satisfies the equations 2.1 and then F assures the equation $D_{Z}^{\dagger} F=0$.

Conversely, suppose that F satisfies $D_{Z}^{\dagger} F=0$. Let $\Phi_{+}:=f_{0}+f_{2}, \Phi_{-}:=f_{0}-f_{2}, \Psi_{+}:=f_{1}+f_{3}$ and $\Psi_{-}:=f_{1}-f_{3}$. Then we also write $F=\left(\Phi_{+} j_{+}+\Phi_{-} j_{-}\right)+i\left(\Psi_{+} j_{+}+\Psi_{-} j_{-}\right)$. Using the properties of j_{+}and j_{-}, we see that the settings imply the function F satisfies $D_{Z}^{\dagger} F=0$ if and only if F satisfies the following equations:

$$
\left\{\begin{array}{l}
\partial_{\zeta_{-}} \Phi_{+} j_{+}+\partial_{\zeta_{+}} \Phi_{-} j_{-}=\partial_{\eta_{+}} \Psi_{+} j_{+}+\partial_{\eta_{-}} \Psi_{-} j_{-} \\
\partial_{\zeta_{+}} \Psi_{+} j_{+}+\partial_{\zeta_{-}} \Psi_{-} j_{-}=-\left(\partial_{\eta_{-}} \Phi_{+} j_{+}+\partial_{\eta_{+}} \Phi_{-} j_{-}\right)
\end{array}\right.
$$

We put $\Phi_{+}=\varphi_{0}, \Phi_{-}=\varphi_{1}, \Psi_{+}=\varphi_{2}$, and $\Psi_{-}=\varphi_{3}$. Then $\varphi_{r}(r=0,1,2,3)$ satisfy (3.5) and they are continuously differentiable and construct a function such as

$$
\begin{aligned}
F\left(z_{0}, z_{1}, z_{2}, z_{3}\right)= & \left\{\varphi_{0}\left(\zeta_{+}, \eta_{+}\right)+\varphi_{1}\left(\zeta_{-}, \eta_{-}\right)\right\}+\left\{\varphi_{2}\left(\zeta_{-}, \eta_{-}\right)+\varphi_{3}\left(\zeta_{+}, \eta_{+}\right)\right\} i \\
& +\left\{\varphi_{0}\left(\zeta_{+}, \eta_{+}\right)-\varphi_{1}\left(\zeta_{-}, \eta_{-}\right)\right\} j+\left\{\varphi_{2}\left(\zeta_{-}, \eta_{-}\right)-\varphi_{3}\left(\zeta_{+}, \eta_{+}\right)\right\} i j
\end{aligned}
$$

Thus, the function F has the form as desired.
Example 3.9. Consider a split-biquaternionic-valued function

$$
F\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=z_{1} z_{2} z_{3}-z_{0} z_{2} z_{3} i+z_{0} z_{1} z_{3} j+z_{0} z_{1} z_{2} i j
$$

Then F satisfies the equation $D_{Z}^{\dagger} F=0$. However, if we write F as in the above proof, then

$$
F=\frac{\left(\eta_{+}^{2}-\eta_{-}^{2}\right)\left(\zeta_{+} j_{+}-\zeta_{-} j_{-}\right)}{4}+i \frac{\left(\zeta_{+}^{2} \zeta_{-}^{2}\right)\left(-\zeta_{+} j_{+}+\zeta_{-} j_{-}\right)}{4}
$$

Hence, we have

$$
\left(\partial_{\eta_{+}} j_{+}+\partial_{\eta_{-}} j_{-}\right)\left\{\frac{\left(\eta_{+}^{2}-\eta_{-}^{2}\right)\left(\zeta_{+} j_{+}-\zeta_{-} j_{-}\right)}{4}\right\}=-2 \eta_{+} \zeta_{+} j_{+}-2 \eta_{-} \zeta_{-} \neq 0
$$

Thus, F is not of the form which has shown in Theorem 3.8.

References

[1] J. A. Emanuello, C. A. Nolder, Notions of Regularity for Functions of a Split-Quaternionic Variable, arXiv, 2015 (2015), 19 pages. 2.3
[2] J. Kajiwara, X. D. Li, K. H. Shon, Function spaces in complex and Clifford analysis, International conference on Finite or Infinite Dimensional Complex Analysis and its Applications, National Univ. Pub., Hanoi, Vietnam, Hue Univ., 14 (2006) 127-155. 1
[3] J. E. Kim, The corresponding inverse of functions of multidual complex variables in Clifford analysis, J. Nonlinear Sci. Appl., 9 (2016), 4520-4528. 1
[4] J. E. Kim, S. J. Lim, K. H. Shon, Regularity of functions on the reduced quaternion field in Clifford analysis, Abstr. Appl. Anal., 2014 (2014), 8 pages. 1
[5] J. E. Kim, K. H. Shon, The Regularity of functions on Dual split quaternions in Clifford analysis, Abstr. Appl. Anal., 2014 (2014), 8 pages. 1
[6] J. E. Kim, K. H. Shon, Polar coordinate expression of hyperholomorphic functions on split quaternions in Clifford analysis, Adv. Appl. Clifford Alg., 25 (2015), 915-924. 1
[7] J. E. Kim, K. H. Shon, Inverse mapping theory on split quaternions in Clifford analysis, Filomat., 30 (2016), 1883-1890. 1
[8] J. E. Kim, K. H. Shon, Properties of regular functions with values in bicomplex numbers, Bull. Korean Math. Soc., 53 (2016), 507-518.1
[9] M. Libine, An Invitation to Split Quaternionic Analysis, Hypercomplex Analysis and Applications, Springer Basel, Basel, (2011). $1,2,3$
[10] N. Masrouri, Y. Yayli, M. H. Faroughi, M. Mirshafizadeh, Comments on differentiable over function of split quaternions, Revista Notas de Matemática, 7 (2011), 128-134.1, 1, 2, 3
[11] K. Nôno, Hyperholomorphic functions of a quaternion variable, Bull. Fukuoka Univ. Ed., 32 (1983), 21-37.1
[12] A. Sudbery, Quaternionic Analysis, Math. Proc. Cambridge Philos. Soc., 85 (1979), 199-224. 2

[^0]: *Corresponding author
 Email addresses: jeunkim@pusan.ac.kr (Ji Eun Kim), khshon@pusan.ac.kr (Kwang Ho Shon)

