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Abstract

In this paper, we present a new modified semi-implicit midpoint rule with the viscosity technique for
finding a common fixed point of nonexpansive mappings and 2-generalized hybrid mappings in a real Hilbert
space. The proposed algorithm is based on implicit midpoint rule and viscosity approximation method.
Under some mild conditions, the strong convergence of the iteration sequences generated by the proposed
algorithm is derived. c©2016 All rights reserved.
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1. Introduction

The implicit midpoint rule is one of the powerful numerical methods for solving ordinary differential
equations (in particular, the stiff equations) and differential algebra equations. For related works, we refer
to [2, 3, 9, 11, 13, 14, 20–22].

For the ordinary differential equation

x′ = f(t), x(0) = x0, (1.1)
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the implicit midpoint rule generates a sequence {xn} by the recursive procedure

xn+1 = xn + hf(
xn + xn+1

2
), (1.2)

where h > 0 is a stepsize. It is known that if f : RN → RN is Lipschitz continuous and sufficiently smooth,
then the sequence {xn} generated by (1.2) converges to the exact solution of (1.1) as h→ 0 uniformly over
t ∈ [0, t̄) for any fixed t̄ > 0.

If we write the function f in the form f(t) = g(t)−t, then differential equation (1.1) becomes x′ = g(t)−t.
Then the equilibrium problem associated with the differential equation is the fixed point problem t = g(t).

Based on the above fact, in [1] and [26], the authors presented the following semi-implicit midpoint rule
for nonexpansive mappings:

xn+1 = (1− αn)xn + αnT (
xn + xn+1

2
), (1.3)

and

xn+1 = αnf(xn) + (1− αn)T (
xn + xn+1

2
), (1.4)

where f is a contraction and T : H → H is a nonexpansive mapping. They proved the weak convergence of
(1.3) and strong convergence of (1.4) under some mild conditions, respectively.

Furthermore, Yao et al. [29] applied the viscosity technique to the implicit rules of nonexpansive map-
pings in Hilbert spaces and proved that the sequence {xn} defined by the following viscosity semi-implicit
midpoint rule

xn+1 = αnf(xn) + βnxn + γnT (
xn + xn+1

2
),

converges strongly to the unique solution z ∈ Fix(T ) of the variational inequality (VI)

〈(I − f)z, x− z〉 ≥ 0, ∀x ∈ Fix(T ). (1.5)

Motivated and inspired by the above facts, Yu and Wen [31] also proved that the sequence {xn} defined
by the following iterative method

xn+1 = αnf(xn) + βnxn + γnT (δnxn + (1− δn)xn+1),

converges strongly to the unique solution z ∈ Fix(T ) of the variational inequality VI (1.5).

Remark 1.1. The usefulness of (1.4) is that it can be used to find a periodic solution of the time-dependent
nonlinear evolution equation (see [26])

du

dt
+A(t)u = g(t, u), t ≥ 0,

where A(t) is a family of closed linear operators in a Hilbert space H and g maps R1 ×H into H.

In this paper, we present a new modified semi-implicit midpoint rule with the viscosity technique for
finding a common fixed point of nonexpansive mappings and 2-generalized hybrid mappings in a real Hilbert
space. The proposed algorithm is based on implicit midpoint rule (see [1, 26]) and viscosity approximation
method (see [19, 24, 28]). Under some mild conditions, the strong convergence of the iteration sequences
generated by the proposed algorithm is derived. Our results extend, improve and develop the corresponding
results in [1, 26, 29, 31].

2. Preliminaries

Throughout this paper, we assume that H is a real Hilbert space, C is a nonempty and closed convex
subset of H. In the sequel, we denote by xn → x and xn ⇀ x the strong and weak convergences of {xn},
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respectively. Denote by Fix(T ) the set of fixed points of a mapping T : C → C. Namely,

Fix(T ) = {x ∈ C : Tx = x}.

For each x, y ∈ H and γ ∈ [0, 1], we have

‖γx+ (1− γ)y‖2 = γ ‖x‖2 + (1− γ) ‖y‖2 − γ(1− γ) ‖x− y‖2 .

Furthermore, we see that, for all x, y, u, v ∈ H,

2〈x− y, u− v〉 = ‖x− v‖2 + ‖y − u‖2 − ‖x− u‖2 − ‖y − v‖2 . (2.1)

Definition 2.1. A mapping T : C → H is said to be:

(1) a nonexpansive mapping, if ‖Tx− Ty‖ ≤ ‖x− y‖, for all x, y ∈ C;

(2) a nonspreading mapping, if 2 ‖Tx− Ty‖2 ≤ ‖Tx− y‖2 + ‖x− Ty‖2, for all x, y ∈ C;

(3) a hybrid mapping, if 3 ‖Tx− Ty‖2 ≤ ‖x− y‖2 + ‖Tx− y‖2 + ‖x− Ty‖2, for all x, y ∈ C;

(4) a generalized hybrid mapping, if there exist α, β ∈ R such that

α ‖Tx− Ty‖2 + (1− α) ‖x− Ty‖2 ≤ β ‖Tx− y‖2 + (1− β) ‖x− y‖2 , ∀x, y ∈ C;

(5) a 2-generalized hybrid mapping, if there exist δ1, δ2, ε1, ε2 ∈ R such that

δ1

∥∥T 2x− Ty
∥∥2

+ δ2 ‖Tx− Ty‖2 + (1− δ1 − δ2) ‖x− Ty‖2 ≤ ε1
∥∥T 2x− y

∥∥2

+ ε2 ‖Tx− y‖2 + (1− ε1 − ε2) ‖x− y‖2 ,

for all x, y ∈ C.

We know that the class of 2-generalized hybrid mappings contains the classes of nonexpansive mappings,
nonspreading mappings, hybrid mappings and generalized hybrid mappings in a Hilbert space (see[15, 30]).
We give an example for a 2-generalized hybrid mapping.

Example 2.2 ([18]). Let S : [0, 2]→ R be defined as

Sx =

{
0, x ∈ [0, 2);
1, x = 2.

Then S is a 2-generalized hybrid mapping and Fix(S) = {0}.

In 2012, Hojo et al. [12] also gave an example for a 2-generalized hybrid mapping which is not a
generalized hybrid mapping with Fix(T ) = {(0, 0)} as follow.

Example 2.3. Let A = {x ∈ R2 : ‖x‖ ≤ 1} and T : A→ R be defined as

Tx =

{
(0, 0), x ∈ A;
x
‖x‖ , x ∈ R2/A.

Hojo et al. [12] showed that T is a 2-generalized hybrid mapping, but T is not a generalized hybrid
mapping. Note that T does not have the demiclosed property. Indeed, there exists a sequence {xn} ⊂ A
such that xn ⇀ ω and limn→∞ ‖Txn − xn‖ = 0, but ω in R2/Fix(T ) = R2/{(0, 0)}.

Proof. Let rn = 1+ 1
n , xn = (rn cos θ, rn sin θ) for all n ∈ N, then xn → (cos θ, sin θ) and Txn = (cos θ, sin θ).

We also have ‖Txn − xn‖ = ‖(rn − 1) cos θ, (rn − 1) sin θ)‖ = (rn − 1)→ 0, but (cos θ, sin θ) 6= (0, 0).

To obtain our main results, we need the following lemmas.
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Lemma 2.4 ([23]). Let {αn} be a sequence of nonnegative numbers satisfying the property

αn+1 ≤ (1− γn)αn + bn + γncn, n ∈ N,

where {γn}, {bn}, {cn} satisfy the restrictions:

(i)
∑∞

n=1 γn =∞, limn→∞ γn = 0;

(ii) bn ≥ 0,
∑∞

n=1 bn <∞;

(iii) lim supn→∞ cn ≤ 0.

Then, limn→∞ αn = 0.

Lemma 2.5 ([32]). Let H be a Hilbert space. Then for all xi ∈ H and αi ∈ [0, 1] for i = 0, 1, 2, · · ·, n such
that α0 + α1 + · · ·+ αn = 1, the following inequality holds∥∥∥∥∥

n∑
i=0

αixi

∥∥∥∥∥
2

≤
n∑

i=0

αi ‖xi‖2 −
∑

0≤i,j≤n
αiαj ‖xi − xj‖2 .

Lemma 2.6 ([16]). Let {αn} be a sequence of real numbers such that there exists a subsequence {ni} of
{n} such that αni < αni+1 for all i ∈ N. Then there exists a nondecreasing sequence {mk} ⊆ N such that
mk →∞ and the following properties are satisfied for all (sufficiently large) numbers k ∈ N:

αmk
≤ αmk+1 and αk ≤ αmk+1.

In fact, mk = max{j ≤ k : αj < αj+1}.

Lemma 2.7 ([17, 27]). Let C be a closed convex subset of a real Hilbert space H. Suppose x ∈ H and y ∈ C
are given. Then y = PCx, if and only if the following inequality holds

〈x− y, z − y〉 ≤ 0,

for every z ∈ C.

Lemma 2.8 ([10]). (Demiclosedness principle). Let C be a nonempty closed convex subset of a real Hilbert
space H, and let T : C → C be a nonexpansive mapping. Then, the mapping I − T is demiclosed. That is,
if {xn} is a sequence in C such that xn ⇀ x and (I − T )xn → y, then (I − T )x = y.

3. Main results

Theorem 3.1. Let H be a Hilbert space and C be a nonempty closed convex subset of H. Let T : C → C be
a nonexpansive mapping and S : C → C be a 2-generalized hybrid mapping. Moreover, let f : C → C be a
contraction with coefficient α ∈ [0, 1). Suppose that F := Fix(T )

⋂
Fix(S) 6= ∅. For given x1 ∈ C arbitrarily,

define

xn+1 = αnf(xn) + βnxn + γnT

(
δn
n

n−1∑
k=0

Skxn + (1− δn)xn+1

)
, n ≥ 1, (3.1)

where {αn}, {βn}, {γn} and {δn} are real number sequences in [0, 1] satisfying

(i) limn→∞ αn = 0 and
∑∞

n=1 αn =∞;

(ii) αn + βn + γn = 1;

(iii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;

(iv) 0 < lim infn→∞ δn ≤ lim supn→∞ δn < 1.
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Then {xn} converges strongly to a point p ∈ F, where p = PFf(p).

Proof. Equation (3.1) is well-defined. As a matter of fact, for fixed u ∈ C, we can define a mapping

x 7→ Tux := αf(u) + βu+ γT

(
δ

N

N−1∑
k=0

Sku+ (1− δ)x

)
, x ∈ C.

In light of the nonexpansiveness of T , we deduce that

‖Tux− Tuy‖ =

∥∥∥∥∥γT
(
δ

N

N−1∑
k=0

Sku+ (1− δ)x

)
− γT

(
δ

N

N−1∑
k=0

Sku+ (1− δ)y

)∥∥∥∥∥
≤ γ(1− δ) ‖x− y‖ .

This means Tu is a contraction with coefficient γ(1− δ) ∈ (0, 1). Hence the algorithm (3.1) is well-defined.
We show the sequence {xn} generated by (3.1) is bounded. Take any x∗ ∈ F and let

Sn :=
1

n

n−1∑
k=0

Sk.

We see Sn is quasi-nonexpansive. Indeed, since S is a 2-generalized hybrid mapping, we know that S is a
quasi-nonexpansive mapping, and hence∥∥∥∥∥ 1

n

n−1∑
k=0

Skx− x∗
∥∥∥∥∥ ≤ 1

n

n−1∑
k=0

∥∥∥Skx− x∗
∥∥∥ ≤ 1

n

n−1∑
k=0

‖x− x∗‖ = ‖x− x∗‖ .

From (3.1), we find that

‖xn+1 − x∗‖ = ‖αnf(xn) + βnxn + γnT (δnSnxn + (1− δn)xn+1)− x∗‖
≤ αn ‖f(xn)− f(x∗)‖+ αn ‖f(x∗)− x∗‖+ βn ‖xn − x∗‖

+ γn ‖T (δnSnxn + (1− δn)xn+1)− x∗‖
≤ αnα ‖xn − x∗‖+ αn ‖f(x∗)− x∗‖+ βn ‖xn − x∗‖ (3.2)

+ γn ‖δn(Snxn − x∗) + (1− δn)(xn+1 − x∗)‖
≤ αnα ‖xn − x∗‖+ αn ‖f(x∗)− x∗‖+ βn ‖xn − x∗‖

+ γnδn ‖Snxn − x∗‖+ γn(1− δn) ‖xn+1 − x∗‖
≤ αn ‖f(x∗)− x∗‖+ (αnα+ βn + γnδn) ‖xn − x∗‖+ γn(1− δn) ‖xn+1 − x∗‖ .

We derive from (3.2) that

(1− γn(1− δn)) ‖xn+1 − x∗‖ ≤ αn ‖f(x∗)− x∗‖+ (αnα+ βn + γnδn) ‖xn − x∗‖ ,

which implies

‖xn+1 − x∗‖ ≤
αn(1− α)

1− γn(1− δn)

‖f(x∗)− x∗‖
1− α

+
1− γn(1− δn)− αn(1− α)

1− γn(1− δn)
‖xn − x∗‖

≤ max{‖f(x∗)− x∗‖
1− α

, ‖xn − x∗‖}.

By the induction, we deduce

‖xn+1 − x∗‖ ≤ max{‖f(x∗)− x∗‖
1− α

, ‖x1 − x∗‖}.
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This implies that the sequence {xn} is bounded.
From Lemma 2.5 and (3.1), we have

‖xn+1 − x∗‖2 = ‖αnf(xn) + βnxn + γnT (δnSnxn + (1− δn)xn+1)− x∗‖2

≤ αn ‖f(xn)− x∗‖2 + βn ‖xn − x∗‖2 + γn ‖T (δnSnxn + (1− δn)xn+1)− x∗‖2

− βnγn ‖T (δnSnxn + (1− δn)xn+1)− xn‖2

≤ αn ‖f(xn)− x∗‖2 + βn ‖xn − x∗‖2 + γn ‖δnSnxn + (1− δn)xn+1 − x∗‖2

− βnγn ‖T (δnSnxn + (1− δn)xn+1)− xn‖2

≤ αn ‖f(xn)− x∗‖2 + βn ‖xn − x∗‖2 + γnδn ‖xn − x∗‖2 + γn(1− δn) ‖xn+1 − x∗‖2

− βnγn ‖T (δnSnxn + (1− δn)xn+1)− xn‖2

≤ αn ‖f(xn)− x∗‖2 + (βn + γnδn) ‖xn − x∗‖2 + γn(1− δn) ‖xn+1 − x∗‖2

− βnγn ‖T (δnSnxn + (1− δn)xn+1)− xn‖2 ,

which implies

βnγn ‖T (δnSnxn + (1− δn)xn+1)− xn‖2 ≤ αn(‖f(xn)− x∗‖2 − ‖xn+1 − x∗‖2) (3.3)

+ (βn + γnδn)(‖xn − x∗‖2 − ‖xn+1 − x∗‖2).

Similarly, we also have

‖xn+1 − x∗‖2 = ‖αnf(xn) + βnxn + γnT (δnSnxn + (1− δn)xn+1)− x∗‖2

≤ αn ‖f(xn)− x∗‖2 + βn ‖xn − x∗‖2 + γn ‖T (δnSnxn + (1− δn)xn+1)− x∗‖2

≤ αn ‖f(xn)− x∗‖2 + βn ‖xn − x∗‖2 + γn ‖δnSnxn + (1− δn)xn+1 − x∗‖2

≤ αn ‖f(xn)− x∗‖2 + βn ‖xn − x∗‖2 + γnδn ‖xn − x∗‖2 + γn(1− δn) ‖xn+1 − x∗‖2

− γnδn(1− δn) ‖Snxn − xn+1‖2

≤ αn ‖f(xn)− x∗‖2 + (βn + γnδn) ‖xn − x∗‖2 + γn(1− δn) ‖xn+1 − x∗‖2

− γnδn(1− δn) ‖Snxn − xn+1‖2 ,

which yields that

γnδn(1− δn) ‖Snxn − xn+1‖2 ≤ αn(‖f(xn)− x∗‖2 − ‖xn+1 − x∗‖2) (3.4)

+ (βn + γnδn)(‖xn − x∗‖2 − ‖xn+1 − x∗‖2).

Since F is a nonempty closed convex subset of H, we can take p ∈ F such that p = PFf(p). By Lemma 2.7,
this point p is also a unique solution of the hierarchical variational inequality

〈f(p)− p, q − p〉 ≤ 0, ∀q ∈ F.

Next we divide our proof into two possible cases.

Case1: Suppose that there exists n0 ∈ N such that

‖xn+1 − p‖ ≤ ‖xn − p‖ , (3.5)

for all n ≥ n0.

Then we see that {‖xn − p‖} is convergent. Thus, from (i)-(iii), (3.3) and (3.5), we obtain

lim
n→∞

‖T (δnSnxn + (1− δn)xn+1)− xn‖ = 0. (3.6)
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By (i), (3.1) and (3.6), we have that

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

‖αn(f(xn)− xn) + γn(T (δnSnxn + (1− δn)xn+1)− xn)‖ = 0. (3.7)

Moreover, from (i)-(iv), (3.4) and (3.5) we get

lim
n→∞

‖Snxn − xn+1‖ = 0. (3.8)

It follows immediately from (3.7) and (3.8) that

lim
n→∞

‖Snxn − xn‖ = 0. (3.9)

By setting yn = δnSnxn + (1− δn)xn+1, we find that

‖yn − xn‖ = ‖δnSnxn + (1− δn)xn+1 − xn‖ ≤ δn ‖Snxn − xn‖+ (1− δn) ‖xn+1 − xn‖ .

This along with (3.7) and (3.9) implies that

lim
n→∞

‖yn − xn‖ = 0. (3.10)

Further, in light of (3.6), (3.10) and the fact ‖Tyn − yn‖ ≤ ‖Tyn − xn‖+ ‖yn − xn‖ , we deduce that

lim
n→∞

‖Tyn − yn‖ = 0. (3.11)

Next, we want to show that
lim sup
n→∞

〈f(p)− p, xn − p〉 ≤ 0. (3.12)

Without loss of generality, there exists a subsequence {xni} of {xn} such that xni ⇀ ω for some ω ∈ C and

lim sup
n→∞

〈f(p)− p, xn − p〉 = lim
i→∞
〈f(p)− p, xni − p〉.

Since S is a 2-generalized hybrid mapping, there exist δ1, δ2, ε1, ε2 ∈ R such that

δ1

∥∥S2x− Sy
∥∥2

+ δ2 ‖Sx− Sy‖2 + (1− δ1 − δ2) ‖x− Sy‖2 ≤ ε1
∥∥S2x− y

∥∥2
+ ε2 ‖Sx− y‖2

+ (1− ε1 − ε2) ‖x− y‖2 ,

for all x, y ∈ C. By replacing x by Skxn in above inequality, we have from (2.1), for all y ∈ C and
k = 0, 1, 2..., n− 1,

δ1

∥∥∥Sk+2xn − Sy
∥∥∥2

+ δ2

∥∥∥Sk+1xn − Sy
∥∥∥2

+ (1− δ1 − δ2)
∥∥∥Skxn − Sy

∥∥∥2

≤ ε1
∥∥∥Sk+2xn − y

∥∥∥2
+ ε2

∥∥∥Sk+1xn − y
∥∥∥2

+ (1− ε1 − ε2)
∥∥∥Skxn − y

∥∥∥2

≤ ε1(
∥∥∥Sk+2xn − Sy

∥∥∥2
+ ‖Sy − y‖2

+ 2〈Sk+2xn − Sy, Sy − y〉)

+ ε2(
∥∥∥Sk+1xn − Sy

∥∥∥2
+ ‖Sy − y‖2

+ 2〈Sk+1xn − Sy, Sy − y〉)

+ (1− ε1 − ε2)(
∥∥∥Skxn − Sy

∥∥∥2
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+ ‖Sy − y‖2 + 2〈Skxn − Sy, Sy − y〉).

This implies that

0 ≤ (ε1 − δ1)
∥∥∥Sk+2xn − Sy

∥∥∥2
+ ‖Sy − y‖2 + 2ε1〈Sk+2xn − Sy, Sy − y〉

+ (ε2 − δ2)
∥∥∥Sk+1xn − Sy

∥∥∥2
+ 2ε2〈Sk+1xn − Sy, Sy − y〉

+ (δ1 − ε1 + δ2 − ε2)
∥∥∥Skxn − Sy

∥∥∥2
+ 2(1− ε1 − ε2)〈Skxn − Sy, Sy − y〉

≤ (ε1 − δ1)(
∥∥∥Sk+2xn − Sy

∥∥∥2
−
∥∥∥Skxn − Sy

∥∥∥2
) + (ε2 − δ2)(

∥∥∥Sk+1xn − Sy
∥∥∥2
−
∥∥∥Skxn − Sy

∥∥∥2
)

+ ‖Sy − y‖2 + 2〈Skxn − Sy + ε1(Sk+2xn − Skxn) + ε2(Sk+1xn − Skxn), Sy − y〉.

(3.13)

By summing up these inequalities (3.13) with respect to k = 0 to k = n− 1 and dividing by n, we have

0 ≤ ε1 − δ1

n
(
∥∥Sn+1xn − Sy

∥∥2
+ ‖Snxn − Sy‖2 − ‖Sxn − Sy‖2 − ‖xn − Sy‖2)

+
ε2 − δ2

n
(‖Snxn − Sy‖2 − ‖xn − Sy‖2) + ‖Sy − y‖2 + 2〈Snxn − Sy, Sy − y〉 (3.14)

+
2

n
〈ε1(Sn+1xn + Snxn − Sxn − xn) + ε2(Snxn − xn), Sy − y〉.

Replace n by ni and let ni →∞. Then from (3.9) and (3.14), we have Snixni ⇀ ω and

0 ≤ ‖Sy − y‖2 + 2〈ω − Sy, Sy − y〉.

By taking y = ω in the above inequality, we have

0 ≤ ‖Sω − ω‖2 + 2〈ω − Sω, Sω − ω〉 = ‖Sω − ω‖2 − 2 ‖Sω − ω‖2 = −‖Sω − ω‖2 .

This implies that w ∈ Fix(S). In light of (3.10), (3.11) and Lemma 2.8, we also have that ω ∈ Fix(T ). Then
it turns out that

lim sup
n→∞

〈f(p)− p, xn − p〉 = lim
i→∞
〈f(p)− p, xni − p〉

= 〈f(p)− p, ω − p〉
= 〈f(p)− PFf(p), ω − PFf(p)〉
≤ 0.

Finally, we prove that xn → p. Notice

‖xn+1 − p‖2 = 〈αnf(xn) + βnxn + γnT (δnSnxn + (1− δn)xn+1)− p, xn+1 − p〉
= αn〈f(xn)− f(p), xn+1 − p〉+ αn〈f(p)− p, xn+1 − p〉+ βn〈xn − p, xn+1 − p〉

+ γn〈T (δnSnxn + (1− δn)xn+1)− p, xn+1 − p〉
≤ αnα ‖xn − p‖ ‖xn+1 − p‖+ αn〈f(p)− p, xn+1 − p〉+ βn ‖xn − p‖ ‖xn+1 − p‖

+ γn ‖T (δnSnxn + (1− δn)xn+1)− p‖ ‖xn+1 − p‖
≤ αnα ‖xn − p‖ ‖xn+1 − p‖+ αn〈f(p)− p, xn+1 − p〉+ βn ‖xn − p‖ ‖xn+1 − p‖

+ γnδn ‖xn − p‖ ‖xn+1 − p‖+ γn(1− δn) ‖xn+1 − p‖2

≤ 1

2
(αnα+ βn + γnδn) ‖xn − p‖2 +

1

2
(αnα+ βn + γnδn) ‖xn+1 − p‖2

+ αn〈f(p)− p, xn+1 − p〉+ γn(1− δn) ‖xn+1 − p‖2 .
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It follows that

(αn −
1

2
αnα+

1

2
βn +

1

2
γnδn) ‖xn+1 − p‖2 ≤

(
αn −

1

2
αnα+

1

2
βn +

1

2
γnδn − αn(1− α)

)
× ‖xn − p‖2 + αn〈f(p)− p, xn+1 − p〉,

which yields

‖xn+1 − p‖2 ≤
αn − 1

2αnα+ 1
2βn + 1

2γnδn − αn(1− α)

αn − 1
2αnα+ 1

2βn + 1
2γnδn

‖xn − p‖2

+
αn(1− α)

αn − 1
2αnα+ 1

2βn + 1
2γnδn

〈f(p)− p, xn+1 − p〉
1− α

.

(3.15)

Applying Lemma 2.4 and (3.12) to (3.15) to deduce that xn → p.

Case 2: Suppose that there exists {ni} of {n} such that ‖xni − p‖ < ‖xni+1 − p‖ for all i ∈ N.

By Lemma 2.6, there exists a nondecreasing sequence {mj} in N such that∥∥xmj − p
∥∥ ≤ ∥∥xmj+1 − p

∥∥ and ‖xj − p‖ ≤
∥∥xmj+1 − p

∥∥ . (3.16)

Then by (3.3), we have

βmjγmj

∥∥T (δmjSmjxmj + (1− δmj )xmj+1)− xmj

∥∥2 ≤ αmj (
∥∥f(xmj )− p

∥∥2 −
∥∥xmj+1 − p

∥∥2
) (3.17)

+ (βmj + γmjδmj )(
∥∥xmj − p

∥∥2 −
∥∥xmj+1 − p

∥∥2
).

And hence (i)-(iii), (3.16) and (3.17) imply that

lim
j→∞

∥∥T (δmjSmjxmj + (1− δmj )xmj+1

)
− xmj

∥∥ = 0. (3.18)

Moreover, from (i) and (3.18), we deduce

lim
j→∞

∥∥xmj+1 − xmj

∥∥ = lim
j→∞

∥∥αmj (f(xmj )− xmj ) + γmj (T (δmjSmjxmj + (1− δmj )xmj+1)− xmj )
∥∥

= 0.
(3.19)

Thus, like in Case 1, we derive from (3.4), (i)-(iv) and (3.16) that

lim
j→∞

∥∥Smjxmj − xmj+1

∥∥ = 0. (3.20)

By combining (3.19) and (3.20), we find that

lim
j→∞

∥∥Smjxmj − xmj

∥∥ = 0. (3.21)

By setting ymj = δmjSmjxmj + (1− δmj )xmj+1, we have∥∥ymj − xmj

∥∥ =
∥∥δmjSmjxmj + (1− δmj )xmj+1 − xmj

∥∥
≤ δmj

∥∥Smjxmj − xmj

∥∥+ (1− δmj )
∥∥xmj+1 − xmj

∥∥ . (3.22)

Thus, we have from (3.19), (3.21) and (3.22) that

lim
j→∞

∥∥ymj − xmj

∥∥ = 0. (3.23)
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Due to (3.18), (3.23) and the fact that
∥∥Tymj − ymj

∥∥ ≤ ∥∥Tymj − xmj

∥∥+
∥∥ymj − xmj

∥∥ , we see

lim
j→∞

∥∥Tymj − ymj

∥∥ = 0. (3.24)

We want to show that
lim sup
j→∞

〈f(p)− p, xmj − p〉 ≤ 0, (3.25)

where p = PFf(p). Without loss of generality, there exists a subsequence {xmjk
} of {xmj} such that

xmjk
⇀ ω for some ω ∈ C and

lim sup
j→∞

〈f(p)− p, xmj − p〉 = lim
k→∞
〈f(p)− p, xmjk

− p〉.

By virtue of (3.23), (3.24) and Lemma 2.8, we deduce that ω ∈ Fix(T ). By following a similar argument as
in the proof of Case 1, we also have ω ∈ Fix(S). Therefore, we have

lim sup
j→∞

〈f(p)− p, xmj − p〉 = lim
k→∞
〈f(p)− p, xmjk

− p〉

= 〈f(p)− PFf(p), ω − PFf(p)〉
≤ 0.

It follows that∥∥xmj+1 − p
∥∥2

= 〈αmjf(xmj ) + βmjxmj + γmjT (δmjSmjxmj + (1− δmj )xmj+1)− p, xmj+1 − p〉
= αmj 〈f(xmj )− f(p), xmj+1 − p〉+ αmj 〈f(p)− p, xmj+1 − p〉+ βmj 〈xmj − p, xmj+1 − p〉

+ γmj 〈T (δmjSmjxmj + (1− δmj )xmj+1)− p, xmj+1 − p〉
≤ αmjα

∥∥xmj − p
∥∥∥∥xmj+1 − p

∥∥+ αmj 〈f(p)− p, xmj+1 − p〉+ βmj

∥∥xmj − p
∥∥∥∥xmj+1 − p

∥∥
+ γmj

∥∥T (δmjSmjxmj + (1− δmj )xmj+1)− p
∥∥∥∥xmj+1 − p

∥∥
≤ αmjα

∥∥xmj − p
∥∥∥∥xmj+1 − p

∥∥+ αmj 〈f(p)− p, xmj+1 − p〉+ βmj

∥∥xmj − p
∥∥∥∥xmj+1 − p

∥∥
+ γmjδmj

∥∥xmj − p
∥∥∥∥xmj+1 − p

∥∥+ γmj (1− δmj )
∥∥xmj+1 − p

∥∥2

≤ 1

2
(αmjα+ βmj + γmjδmj )

∥∥xmj − p
∥∥2

+
1

2
(αmjα+ βmj + γmjδmj )

∥∥xmj+1 − p
∥∥2

+ αmj 〈f(p)− p, xmj+1 − p〉+ γmj (1− δmj )
∥∥xmj+1 − p

∥∥2
,

which yields that(
αmj −

1

2
αmjα+

1

2
βmj +

1

2
γmjδmj

)∥∥xmj+1 − p
∥∥2 ≤

(
αmj −

1

2
αmjα+

1

2
βmj +

1

2
γmjδmj − αmj (1− α)

)
×
∥∥xmj − p

∥∥2
(3.26)

+ αmj 〈f(p)− p, xmj+1 − p〉.

Then we derive from (3.16) and (3.26) that (1− α)
∥∥xmj − p

∥∥2 ≤ 〈f(p)− p, xmj+1 − p〉.
By noticing (3.19) and (3.25), we have that

lim
j→∞

∥∥xmj − p
∥∥ = 0. (3.27)

By using (3.19) and (3.27), we get limj→∞
∥∥xmj+1 − p

∥∥ = 0, and by virtue of (3.16), we have that

lim
j→∞

‖xj − p‖ ≤ lim
j→∞

∥∥xmj+1 − p
∥∥ = 0.

This completes the proof.
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Remark 3.2. Theorem 3.1 extends, improves and develops Theorem 2.6 of Alghamdi et al. [1], Theorem
3.1 of Xu et al. [26], Theorem 4.4 of Yao et al. [29] and Theorem 3.5 of Yu and Wen [31] in the following
aspects:

• Theorem 3.1 extends, improves and develops corresponding results in [1, 26, 29, 31] from the problem
for finding an element of the set of Fix(T ) to the more general and challenging problem for finding an
element of the set of Fix(T )

⋂
Fix(S).

• The algorithm (3.1) is more advantageous and more flexible than the ones given in [1, 26, 29, 31].
Therefore, the new algorithm is expected to be widely applicable.

• The proof of our Theorem 3.1 is very different from the proof of Theorem 2.6 [1], Theorem 3.1 [26],
Theorem 4.4 [29] and Theorem 3.5 [31]. In Theorem 3.1, Lemma 2.6 is used to prove the result, while
it was not applied in [1, 26, 29, 31].

As a direct consequence of Theorem 3.1, we obtain the following two corollaries.

Corollary 3.3. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let T : C → C
be a nonexpansive mapping and let S : C → C be a generalized hybrid mapping. Moreover, let f : C → C
be a contraction with coefficient α ∈ [0, 1). Suppose that F := Fix(T )

⋂
Fix(S) 6= ∅. For given x1 ∈ C

arbitrarily, define

xn+1 = αnf(xn) + βnxn + γnT

(
δn
n

n−1∑
k=0

Skxn + (1− δn)xn+1

)
, n ≥ 1,

where {αn}, {βn}, {γn} and {δn} are real number sequences in [0, 1] satisfying the conditions (i)-(iv) in
Theorem 3.1. Then {xn} converges strongly to a point p ∈ F, where p = PFf(p).

Corollary 3.4. Let H be a Hilbert space and let C be a nonempty closed convex subset of H. Let T, S :
C → C be two nonexpansive mappings. Moreover, let f : C → C be a contraction with coefficient α ∈ [0, 1).
Suppose that F := Fix(T )

⋂
Fix(S) 6= ∅. For given x1 ∈ C arbitrarily, define

xn+1 = αnf(xn) + βnxn + γnT (δnSxn + (1− δn)xn+1), n ≥ 1, (3.28)

where {αn}, {βn}, {γn} and {δn} are real number sequences in [0, 1] satisfying the conditions (i)-(iv) in
Theorem 3.1. Then {xn} converges strongly to a point p ∈ F, where p = PFf(p).

Proof. By using the demiclosedness principle for the nonexpansive mapping S and by a similar argument
as in the proof of Theorem 3.1, we can obtain the desired results immediately.

4. Applications

In this section, we apply our main results to approximate common solutions of split feasibility problems
and fixed point problems.

Let C and Q be nonempty closed convex subsets of two Hilbert spaces H1 and H2, respectively, and let
A : H → H be a bounded linear mapping. The split feasibility problem (SFP) is the problem of finding a
point with the property

x∗ ∈ C and Ax∗ ∈ Q. (4.1)

The SFP (4.1) in finite-dimensional Hilbert spaces was first introduced by Censor and Elfving [6] for
modeling inverse problems which arise in phase retrievals and in medical image reconstruction [4]. In [5, 7, 8],
it has been shown that the SPF (4.1) can also be used to model the intensity-modulated radiation therapy.

The following lemma appears implicitly in Xu [25].

Lemma 4.1. A point x∗ ∈ H solves SFP (4.1), if and only if x∗ is a fixed point of the operator PC(I −
γA∗(I − PQ)A).
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Lemma 4.2. For any γ ∈ R with 0 < γ < 2
‖A‖2 , the operator PC(I − γA∗(I − PQ)A) is nonexpansive.

Theorem 4.3. Let C and Q be nonempty closed convex subsets of two Hilbert spaces H1 and H2, respectively.
Let A : H1 → H2 be a bounded linear mapping and S : C → C be a 2-generalized hybrid mapping. Moreover,
let f : C → C be a contraction with coefficient α ∈ [0, 1). Denote the set of SFP (4.1) by Ω and assume
Ω ∩ Fix(S) 6= ∅. For arbitrarily given x1 ∈ C, let {xn} be the sequence generated iteratively by

xn+1 = αnf(xn) + βnxn + γnPC(I − γA∗(I − PQ)A)

(
δn
n

n−1∑
k=0

Skxn + (1− δn)xn+1

)
, n ≥ 1,

where {αn}, {βn}, {γn} and {δn} are real number sequences in [0, 1] satisfying the conditions (i)-(iv) in
Theorem 3.1 and γ is a positive number satisfying γ ∈ (0, 2

‖A‖2 ). Then {xn} converges strongly to a point

p ∈ Ω ∩ Fix(S), where p = PΩ∩Fix(S)f(p).

Theorem 4.4. Let C and Q be nonempty closed convex subsets of two Hilbert spaces H1 and H2, respectively.
Let A : H1 → H2 be a bounded linear mapping and S : C → C be a nonexpansive mapping. Denote the
set of SFP (4.1) by Ω and assume Ω ∩ Fix(S) 6= ∅. For arbitrarily given x1 ∈ C, let {xn} be the sequence
generated iteratively by:

xn+1 = βnxn + γnPC (I − γA∗(I − PQ)A) (δnSxn + (1− δn)xn+1), n ≥ 1, (4.2)

where {βn}, {γn} and {δn} are real number sequences in [0, 1] and γ is a positive number satisfying the
conditions

(i) limn→∞(1− βn − γn) = 0 and
∑∞

n=1(1− βn − γn) =∞;

(ii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;

(iii) 0 < lim infn→∞ δn ≤ lim supn→∞ δn < 1;

(iv) γ ∈ (0, 2
‖A‖2 ).

Then {xn} converges strongly to a point p ∈ Ω ∩ Fix(S). Moreover, this point p is the minimum common
norm solution of the split feasibility problem (4.1) and fixed point problem of nonexpansive mapping S.

Proof. If we take f = 0 and T = PC (I − γA∗(I − PQ)A), then (3.28) reduces to (4.2). Thus, xn → p which
satisfies

〈−p, q − p〉 ≤ 0, ∀q ∈ Ω ∩ Fix(S).

Therefore, ‖p‖2 ≤ 〈p, q〉 ≤ ‖p‖ ‖q‖ , which implies ‖p‖ ≤ ‖q‖ for all q ∈ Ω ∩ Fix(S). This completes the
proof.

5. Numerical examples

The purpose of this section is to give two numerical examples supporting Theorem 3.1.

Example 5.1. Let T, f : [0, 2] → [0, 2] be defined by Tx = 1
2x and f(x) = 1

3x, respectively. Let S be the
same as Example 2.2. Let sequence {xn} be generated iteratively by (3.1), where αn = 1

n+1 , βn = δn = 1
4

and γn = 3
4 −

1
n+1 . Then, sequence {xn} converges strongly to 0.

Solution: It can be observed that all the assumptions of Theorem 3.1 are satisfied. And it is also easy to
check

Fix(T ) ∩ Fix(S) = {0}.
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We rewrite (3.1) as follows

xn+1 =
24n2 + 65n− 3

3n(23n+ 5)
xn +

3n− 1

23n+ 5
Sxn. (5.1)

By using the algorithm (5.1) and choosing x1 = 2, we see that numerical results in Table 1 and Figure 1
demonstrate Theorem 3.1.

Table 1: The values of the sequence {xn}.

n xn
1–5 2.000000000000 0.954022988506 0.917695473251 0.394138440435 0.164069177567
6–10 0.066721465543 0.026648182357 0.010491588802 0.004082723801 0.001573479503
11–15 0.000601502799 0.000228348285 0.000086169519 0.000032347354 0.000012087219
16–20 0.000004498248 0.000001667939 0.000000616450 0.000000227161 0.000000083485
21–25 0.000000030607 0.000000011196 0.000000004087 0.000000001489 0.000000000542
26–30 0.000000000197 0.000000000071 0.000000000026 0.000000000009 0.000000000003

0 10 20 30 40 50 60 70 80 90 100

n

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x
n

Figure 1: The convergence of {xn} with initial values x1 = 2.

Next, we present a numerical example in R3 that also supports our result.

Example 5.2. Let an inner product 〈·, ·〉 : R3×R3 → R be defined by 〈x,y〉 = x ·y = x1 ·y1 +x2 ·y2 +x3 ·y3

and a usual norm ‖·‖ : R3 → R defined by ‖x‖ =
√
x2

1 + x2
2 + x2

3 for all x = (x1, x2, x3), y = (y1, y2, y3) ∈ R3.
Let C = {x ∈ R3 : ‖x‖ ≤ 2} and T, f : C → C be defined by Tx = 1

2x and f(x) = 1
3x, respectively. Let

S : C → C be defined as

Sx =

{
(0, 0, 0), x ∈ {x ∈ R3 : ‖x‖ < 2};
(1, 0, 0), x ∈ {x ∈ R3 : ‖x‖ = 2}.

Let sequence {xn} be generated iteratively by (3.1), where αn = 1
n+1 , βn = δn = 1

4 and γn = 3
4−

1
n+1 . Then,

sequence {xn} converges strongly to (0,0,0).

Solution: It can be observed that all the assumptions of Theorem 3.1 are satisfied. It is also easy to check
Fix(T ) ∩ Fix(S) = {(0, 0, 0)}. We rewrite (3.1) as follows

xn+1 =
24n2 + 65n− 3

3n(23n+ 5)
xn +

3n− 1

23n+ 5
Sxn. (5.2)

By utilizing the algorithm (5.2) and choosing x1 = (
√

2,
√

5
8 ,
√

11
8 ), we report the numerical results in

Table 2. In addition, Figure 2 also demonstrates Theorem 3.1.
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Figure 2: The convergence of {xn} with initial values x1 = (
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Table 2: The values of the sequence {xn}.

n x1
n x2

n x3
n

1 1.414213562373095 0.790569415042095 12.000000000000000
2 0.674596124580269 0.377110697979850 2.000000000000000
3 0.654935301640607 0.354617556541516 1.482539682539682
4 0.281286315448209 0.152303694155651 0.947402160129433
5 0.117091888792877 0.063399910480541 0.614609008256618
...

...
...

...
10 0.001122951243861 0.000608026816108 0.000901849510747
...

...
...

...
15 8.626332460955843×10−6 4.670765084056447×10−6 6.927864189991733×10−6

...
...

...
...

20 5.958106411228669×10−8 3.226042529501134×10−8 4.784994345318513×10−8

...
...

...
...

25 3.865693355959523×10−10 2.093096415470645×10−10 3.104563693951749×10−10

...
...

...
...

30 2.406823664130327×10−12 1.303185100363625×10−12 1.932935873944464×10−12

...
...

...
...

36 0.522463890075058×10−14 0.282890336824844×10−14 0.419594177594879×10−14

37 0.187408074983236×10−14 0.101472914134002×10−14 0.150508654456355×10−14

38 0.067171073725230×10−14 0.036370068883204×10−14 0.053945529965437×10−14

39 0.024057745143698×10−14 0.013026170336804×10−14 0.019320932948891×10−14

40 0.008610366797317×10−14 0.004662120406309×10−14 0.006915042060785×10−14
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