
Available online at www.tjnsa.com
J. Nonlinear Sci. Appl. 9 (2016), 6382–6395

Research Article

Characterizations of solution sets of set-valued
generalized pseudoinvex optimization problems

Lu-Chuan Cenga, Abdul Latifb,∗

aDepartment of Mathematics, Shanghai Normal University, Shanghai 200234, China.
bDepartment of Mathematics, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia.

Communicated by Y. H. Yao

Abstract

We study the Stampacchia equilibrium-like problems in terms of normal subdifferential for set-valued
maps and study their relations with set-valued optimization problems by the scalarization method.
Characterizations of the solution sets of generalized pseudoinvex extremum problems are established.
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1. Introduction

Vector variational inequalities (VVIs) have become important research directions in vector optimization
problems. The concept of vector variational inequality (VVI) in finite-dimensional spaces was proposed and
studied by Giannessi [11]. Then VVIs, generalizations and applications have been extensively considered and
studied. Several authors have investigated the relationships between the VVI and one of vector optimization
problem (VOP), vector complementarity problem, vector equilibrium problem, etc. For details we refer to
the references [4–9, 29]. In [26] Santos et al. considered scalarized variational-like inequalities defined in
terms of Clarke’s generalized directional derivative using the scalarization method and proved that each
of their solutions is a weak efficient solution of a vector optimization problem (VOP). Alshahrani et al.
[1] extended the results in [26] and got some existence results for solutions of nonsmooth variational-like
inequalities under dense pseudomonotonicity.
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Characterizations of the solution set are useful for knowing better the behavior of solution methods for
programs that have multiple optimal solutions. We note that Mangasarian [17] initially presented several
characterizations of the solution set of differentiable convex extremum problem and applied them to study
monotonic linear complementarity problem. Jeyakumar and Yang [13] extended the above results to the case
of differentiable pseudolinear programs. Furthermore, Yang [27] studied the minimization of a differentiable
pseudoinvex function and presented some characterizations of the solution sets of pseudoinvex extremum
problem. Liu et al. [16] established similar results for pseudoinvex programs with Dini directional deriva-
tive. Then, Ansari and Rezaie [2] derived some properties of a class of generalized pseudolinear functions
and presented some characterizations of the solution set of a generalized pseudolinear optimization problem.
Recently, Zhao et al. [31] provided a characterization for the solution sets of nondifferentiable optimization
problems in terms of the basic properties of locally Lipschitz pseudoinvex functions by modifying some results
in [18]. Huang and Yao [12] established several characterizations of the nonemptiness and compactness for
the weakly efficient solution set of a convex vector set-valued optimization problem. Furthermore, by using
the scalarization method, Oveisiha and Zafarani [24] considered Stampacchia variational-like inequalities in
terms of normal subdifferential for set-valued maps and established their relationships with set-valued opti-
mization problems. Also, they derived some characterizations of the solution sets of pseudoinvex extremum
problems. Further some interesting results can be found in [3, 14, 15, 19, 22, 23].

In this present paper, we study the scalarized Stampacchia equilibrium-like problems (SELPs) and set-
valued optimization problems. We will study Stampacchia equilibrium-like problems in terms of normal
subdifferential for set-valued maps and study their relationships with set-valued optimization problems
by employing this scalarized method. Characterizations of the solution set for optimization problem of a
generalized K-pseudoinvex set-valued map will be presented. The paper is organized as follows. In Section
2, we give some basic definitions and preliminary results. In Section 3, we study the relationship between
scalarized Stampacchia equilibrium-like problems (SELPs) and scalarized optimization problems (SOPs).
In the final section, we will establish some characterizations of the solution set of set-valued generalized
K-pseudoinvex and generalized K-pseudoconvex programs.

2. Preliminaries

Let X be a Banach space and x∗ its topological dual space. The norm in X and x∗ will be denoted
by ‖ · ‖. We denote by 〈·, ·〉, [x, y], and (x, y) the duality pairing between X and x∗, the line segment for
x, y ∈ X, and the interior of [x, y], respectively. Furthermore, we define [x, y) and (x, y] to be (x, y) ∪ {x}
and (x, y) ∪ {y}, respectively. Next, we recall some concepts of subdifferentials and coderivatives that we
will need in the following sections.

Definition 2.1. Let X be a normed vector space, Ω be a nonempty subset of X, x ∈ Ω and ε > 0. The
set of ε-normals to Ω at x is

N̂ε(x; Ω) := {x∗ ∈ X∗ : lim sup
u

Ω→x

〈x∗, u− x〉
‖u− x‖

≤ ε},

where u
Ω→ x means that u strongly converges to x with u ∈ Ω .

If ε = 0, the above set is denoted by N̂(x; Ω) and called regular normal cone to Ω at x. Let x̄ ∈ Ω , the
basic normal cone to Ω at x̄ be

N(x̄; Ω) := lim sup
x→x̄,ε↓0

N̂ε(x; Ω).

Let f : X → R be finite at x̄ ∈ X. The regular (Fréchet) subdifferential and basic (limiting) subdifferential
due to [24] of f at x̄ is defined by the following:

∂̂f(x̄) := {x∗ ∈ X∗ : (x∗,−1) ∈ N̂((x̄, f(x̄)); epif)},
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∂Lf(x̄) := {x∗ ∈ X∗ : (x∗,−1) ∈ N(x̄, f(x̄); epif)}.

If the Banach spaceX is Asplund, i.e., every continuous convex function defined onX is Fréchet differentiable
on a dense set of points, we have

∂Lf(x̄) = lim sup

x
f→x̄

∂̂f(x),

where x
f→ x̄ means that x→ x̄ with f(x)→ f(x̄).

We remark that Mean-value theorems are important and useful tools in nonsmooth analysis. We have
the following mean-value theorem for limiting subdifferential.

Theorem 2.2 ([21]). Let X be an Asplund space and f be Lipschitz continuous on an open set containing
[x, y] in X. Then there exist c ∈ [x, y) and x∗ ∈ ∂Lf(c) such that

〈x∗, y − x〉 ≥ f(y)− f(x).

Let Ω ⊆ X be a nonempty set. The map η : Ω × Ω → X is said to be skew if for all x, y ∈ Ω ,

η(x, y) + η(y, x) = 0.

Definition 2.3. Let x be an arbitrary point of Ω . The set Ω is said to be invex at x w.r.t. η if for all y ∈ Ω ,

x+ tη(y, x) ∈ K for all t ∈ [0, 1].

Ω is said to be invex w.r.t. η if Ω is invex at every point x ∈ Ω w.r.t. η.

Throughout this section, unless otherwise specified, we assume that Ω ⊆ X is an invex set w.r.t. η :
Ω × Ω → X. Inspired by Theorem 2.2, we give the following definition of the mean-value condition for
limiting subdifferential ∂Lf w.r.t. φ.

Definition 2.4. Let X be an Asplund space, Ω ⊆ X be invex w.r.t. η and φ : X∗×Ω ×Ω → R. Let x and
y be points in Ω and suppose that f : Ω → R is Lipschitz continuous on an open set containing the line
segment [x, y]. Then f is said to satisfy the mean-value condition for limiting subdifferential ∂Lf w.r.t. φ if
there exist z ∈ [x, y) and ξ∗ ∈ ∂Lf(z) such that

φ(ξ∗, x, y) ≥ f(y)− f(x).

A set-valued mapping F : X → 2Y between Banach spaces with the range space Y partially ordered by
a nonempty, closed and convex cone K is given. Denoting the ordering relation on Y by “≤K”, we have

y1 ≤K y2 if and only if y2 − y1 ∈ K.

Let domF := {x ∈ X : F (x) 6= ∅}, grF := {(x, y) : x ∈ domF, y ∈ F (x)}, and epiF := {(x, y) : x ∈ X, y ∈
F (x) +K}.

Definition 2.5 ([21]). Let F : X → 2Y be a set-valued mapping between Banach spaces and (x̄, ȳ) ∈ grF .
Then the Fréchet coderivative of F at (x̄, ȳ) is the set-valued mapping D̂∗F (x̄, ȳ) : Y ∗ → 2X

∗
given by

D̂∗F (x̄, ȳ)(y∗) := {x∗ ∈ X∗ : (x∗,−y∗) ∈ N̂((x̄, ȳ); grF )},

and furthermore, the normal coderivative of F at (x̄, ȳ) is the set-valued mapping D∗NF (x̄, ȳ) : Y ∗ → 2X
∗

given by
D∗NF (x̄, ȳ)(y∗) := {x∗ ∈ X∗ : (x∗,−y∗) ∈ N((x̄, ȳ); grF )}.
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If F = f : X → Y is single-valued, we denote its Fréchet and normal coderivatives at (x̄, f(x̄)) by D̂∗f(x̄)
and D∗Nf(x̄), respectively.

By employing the coderivative of the epigraphical multifunction, Bao and Mordukhovich [3] defined
appropriate extensions of the subdifferential notion from extended-real-valued functions to vector-valued
and set-valued maps with values in partially ordered spaces.

Definition 2.6 ([3]). Let F : X → 2Y be a set-valued mapping. Then the epigraphical multifunction
EF : X → 2Y is defined by

EF (x) := {y ∈ Y : y ∈ F (x) +K}.

The Fréchet and normal subdifferentials of F at the point (x̄, ȳ) ∈ epiF in the direction y∗ ∈ Y ∗ are defined,
respectively, by

∂̂F (x̄, ȳ)(y∗) := D̂∗EF (x̄, ȳ)(y∗),

∂F (x̄, ȳ)(y∗) := D∗NEF (x̄, ȳ)(y∗).

Definition 2.7. Let F : Ω ⊆ X → 2Y with domF 6= ∅ and BY be the closed unit ball of Y .

(i) F is said to be K-invex w.r.t. η if for any x, y ∈ Ω and any t ∈ [0, 1] one has

(1− t)F (x) + tF (y) ⊆ F (x+ tη(y, x)) +K.

In particular, a single-valued function F : Ω → Y is said to be K-invex w.r.t. η if for any x, y ∈ Ω and
any t ∈ [0, 1],

F (x+ tη(y, x)) ≤K (1− t)F (x) + tF (y).

(ii) F is said to be Lipschitz around x̄ ∈ domF [25] if there are a neighborhood U of x̄ and ` ≥ 0 such that

F (x) ⊆ F (u) + `‖x− u‖BY for all x, u ∈ Ω ∩ U.

(iii) F is said to be epi-Lipschitz around x̄ ∈ domF [25] if EF is Lipschitz around this point.

Let K be a closed and convex pointed cone in Y , then we define K+ by

K+ := {y∗ ∈ Y ∗ : 〈y∗, k〉 ≥ 0 ∀k ∈ K}.

We associate with F and y∗ ∈ Y ∗ the marginal function

fy∗(x) := inf{y∗(y) : y ∈ F (x)},

and the minimum set
My∗(x) := {y ∈ F (x) : fy∗(x) = y∗(y)}.

Throughout the rest of this paper, we assume that grF is closed, and for all x ∈ domF and y∗ ∈ K+, My∗(x)
is nonempty.

Lemma 2.8 ([23]). Suppose that F : Ω ⊆ X → 2Y is a set-valued map and x̄ ∈ domF . If F is epi-Lipschitz
around x̄ and y∗ ∈ K+, then the scalar-function fy∗ is locally Lipschitz at x̄.

Theorem 2.9 ([23]). Let X,Y be Asplund spaces, F : X → 2Y and y∗ ∈ K+. Suppose that x̄ ∈ domF and
ȳ ∈My∗(x̄).

(i) If F is Lipschitz around x̄, then ∂Lfy∗(x̄) ⊆ D∗NF (x̄, ȳ)(y∗).

(ii) If F is epi-Lipschitz around x̄, then ∂Lfy∗(x̄) ⊆ ∂F (x̄, ȳ)(y∗).

Definition 2.10. Let φ : X∗ × Ω × Ω → R be a function, and f : Ω → R be a locally Lipschitz function.
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(a) f is said to be generalized pseudoinvex w.r.t. φ on Ω if for any x, y ∈ Ω and any ξ ∈ ∂Lf(x), one has

φ(ξ, x, y) ≥ 0 ⇒ f(y) ≥ f(x).

(b) ∂Lf is said to be invariant pseudomonotonic w.r.t. φ on Ω if for any x, y ∈ Ω and any ζ ∈ ∂Lf(x), ξ ∈
∂Lf(y), one has

φ(ζ, x, y) ≥ 0 ⇒ φ(ξ, y, x) ≤ 0.

(c) f is said to be prequasiinvex w.r.t. η on Ω if for any x, y ∈ Ω and any t ∈ [0, 1], one has

f(x+ tη(y, x)) ≤ max{f(x), f(y)}.

Remark 2.11. If we put φ(ξ, x, y) = 〈ξ, η(y, x)〉 for all (ξ, x, y) ∈ X∗ × Ω × Ω , then Definition 2.10 (a) and
(b) reduce to Definition 2.6 in [24], i.e., the pseudoinvexity of f w.r.t. η and invariant pseudomonotonicity
of ∂Lf w.r.t. η, respectively.

Inspired by Condition C in [19], we introduce the new one, which will be used in the sequel.

Condition C. Let Ω ⊆ X be an invex set w.r.t. η : Ω × Ω → X. Then η is said to satisfy Condition C
w.r.t. φ : X∗ × Ω × Ω → R if for all x, y ∈ Ω and t ∈ [0, 1],

(a) η(x, x+ tη(y, x)) = −tη(y, x) and φ(ξ, x+ tη(y, x), x) = −tφ(ξ, x, y), ∀ξ ∈ X∗;

(b) η(y, x+ tη(y, x)) = (1− t)η(y, x) and φ(ξ, x+ tη(y, x), y) = (1− t)φ(ξ, x, y), ∀ξ ∈ X∗.

Remark 2.12. Obviously, if we put η(y, x) = y−x and φ(ξ, x, y) = 〈ξ, η(y, x)〉 for all (ξ, x, y) ∈ X∗×Ω ×Ω ,
then η satisfies Condition C w.r.t. φ, where 〈·, ·〉 denotes the duality pairing between X∗ and X. Moreover,
it can be easily seen that

η(x+ tη(y, x), x) = tη(y, x) for all t ∈ [0, 1] and all x, y ∈ Ω .

Let H be a Hausdorff metric on the collection CB(X) of all nonempty, closed and bounded subsets of a
normed space X, induced by a metric d in terms of d(a, b) = ‖a− b‖, which is defined by

H(A,B) = max{sup
a∈A

inf
b∈B
‖a− b‖, sup

b∈B
inf
a∈A
‖a− b‖}

for A and B in CB(X). Note that (see [22]) if A and B are compact sets in X, then for each a ∈ A, there
exists b ∈ B such that ‖a− b‖ ≤ H(A,B).

Definition 2.13. Let X and Y be two real Banach spaces and K ⊆ X be an invex set w.r.t. η. A compact-
valued multifunction T : K → 2L(X,Y ) is said to be H-hemicontinuous if the mapping t 7→ T (x + tη(y, x))
is continuous at 0+, where L(X,Y ) is the collection of all continuous linear operators of X into Y and
CB(L(X,Y )) is equipped with the metric topology induced by H.

Motivated by Theorem 2.3 in [24], we now state and prove the following result.

Theorem 2.14. Let X be an Asplund space, η : Ω ×Ω → X be continuous in the second variable such that
Condition C w.r.t. φ holds, and f : Ω → R be locally Lipschitz and pre-quasiinvex w.r.t. η. Suppose the
following conditions are satisfied:

(i) f satisfies the mean-value condition for limiting subdifferential ∂Lf w.r.t. φ;

(ii) ∂Lf : Ω → 2X
∗

is H-hemicontinuous with compact values;

(iii) for each y ∈ Ω, φ(·, ·, y) : X∗ × Ω → R is continuous.

If f is generalized pseudoinvex w.r.t. φ, then ∂Lf is invariant pseudomonotonic w.r.t. φ.
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Proof. We first claim that for any x, y ∈ Ω , x 6= y and any ζ ∈ ∂Lf(x),

φ(ζ, x, y) > 0 ⇒ f(y) > f(x).

Indeed, let φ(ζ, x, y) > 0 for all ζ ∈ ∂Lf(x). Then, we choose sequences {xn} ⊆ Ω and {tn} ⊂ (0, 1) such
that xn → x and tn → 0+. Utilizing the mean-value condition of f for limiting subdifferential ∂Lf w.r.t. φ,
from Condition C we know that for each tn ∈ (0, 1), there exist t′n ∈ (0, tn] and ξ∗n ∈ ∂Lf(xn + t′nη(y, xn))
such that

tnφ(ξ∗n, xn, y) = φ(ξ∗n, xn, xn + tnη(y, xn)) ≤ f(xn + tnη(y, xn))− f(xn). (2.1)

Also, by Nadler’s result [26], there exists ζn ∈ ∂Lf(x) such that

‖ξ∗n − ζn‖ ≤ H(∂Lf(xn + t′nη(y, xn)), ∂Lf(x)).

Since η : Ω × Ω → X is continuous in the second variable and ∂Lf : Ω → 2X
∗

is H-hemicontinuous with
nonempty compact values, we know that

‖xn + t′nη(y, xn)− x‖ ≤ ‖xn − x‖+ t′n‖η(y, xn)‖ → 0 as n→∞,

and hence

‖ξ∗n − ζn‖ ≤ H(∂Lf(xn + t′nη(y, xn)), ∂Lf(x))→ 0 as n→∞. (2.2)

From the compactness of ∂Lf(x), without loss of generality we may assume that ζn → ζ∗ ∈ ∂Lf(x).
So, from (2.2) it follows that ξ∗n → ζ∗, which together with φ(ζ, x, y) > 0 for all ζ ∈ ∂Lf(x), leads to
φ(ζ∗, x, y) > 0. Note that xn → x and ξ∗n → ζ∗. Since φ(·, ·, y) : X∗ ×Ω → R is continuous, we deduce that
{φ(ξ∗n, xn, y)} converges to φ(ζ∗, x, y), and thus there exists n0 ∈ N such that for all n ≥ n0, φ(ξ∗n, xn, y) > 0.
Consequently, by using (2.1) we obtain f(xn + tnη(y, xn)) > f(xn) for all n ≥ n0. The pre-quasiinvexity of
f w.r.t. η together with the previous inequality implies that for any t ∈ (0, 1), we have

f(xn + tη(y, xn)) ≤ max{f(y), f(xn)} = f(y).

Hence, by the continuity of f and the function x 7→ η(y, x), we conclude that f(x+ tη(y, x)) ≤ f(y), for all
t ∈ (0, 1). Again in terms of Condition C, for each t ∈ (0, 1) there exist θt ∈ (0, t] and ξ∗t ∈ ∂Lf(x+θtη(y, x))
such that

tφ(ξ∗t , x, y) = φ(ξ∗t , x, x+ tη(y, x)) ≤ f(x+ tη(y, x))− f(x).

By using the argument similar to that of φ(ξ∗n, xn, y) > 0 for all n ≥ n0, we can deduce that φ(ξ∗t , x, y) > 0
for t ∈ (0, 1) sufficiently small. Consequently, we have

0 < tφ(ξ∗t , x, y) = φ(ξ∗t , x, x+ tη(y, x)) ≤ f(x+ tη(y, x))− f(x) ≤ f(y)− f(x),

which immediately yields f(y) > f(x).
Next assume to the contrary that there exist x, y ∈ K, ζ ∈ ∂Lf(x) and ξ ∈ ∂Lf(y) such that

φ(ζ, x, y) ≥ 0 but φ(ξ, y, x) > 0. (2.3)

Since f is generalized pseudoinvex w.r.t. φ, by using the first inequality in (2.3), we have f(y) ≥ f(x). On
the other hand, using the above proven assertion and the second inequality in (2.3), we get f(x) > f(y),
which is a contradiction. Therefore, ∂Lf is invariant pseudomonotone w.r.t. φ.

Theorem 2.15. Suppose conditions (ii), (iii) in Theorem 2.14 are replaced by the following ones:

(ii) ∂Lf : Ω → 2X
∗

is locally bounded and has closed graph;
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(iii) for any y ∈ Ω, φ(·, ·, y) : X∗ × Ω → R is continuous in the product topology w∗ × τ , where w∗ is the
weak∗ topology in X∗ and τ is the norm topology in X.

If other conditions in Theorem 2.14 are not changed, then ∂Lf is invariant pseudomonotonic w.r.t. φ.

Proof. Repeating the same argument as in the proof of Theorem 2.14, we deduce that (2.1) holds. Since
∂Lf is locally bounded, there exist a neighborhood of x and a constant ` > 0 such that, for each z in
this neighborhood and ξ ∈ ∂Lf(z), we have ‖ξ‖ ≤ `. Since η : Ω × Ω → X is continuous in the second
variable, xn → 0 and t′n ≤ tn → 0 as n → ∞, we know that xn + t′nη(y, xn) → x as n → ∞. This means

that for n sufficiently large ‖ξ∗n‖ ≤ `. Hence, we may assume, without loss of generality, that ξ∗n
w∗
→ ζ∗.

Since the set-valued mapping ∂Lf(·) has closed graph, we get ζ∗ ∈ ∂Lf(x). Note that for any y ∈ Ω ,
φ(·, ·, y) : X∗ × Ω → R is continuous in the product topology w∗ × τ . So, from φ(ζ, x, y) > 0 for all
ζ ∈ ∂Lf(x), it follows that

lim
n→∞

φ(ξ∗n, xn, y) = φ(ζ∗, x, y) > 0.

Since the rest of the proof is the same as in the proof of Theorem 2.14, and we omit it.

3. Some relations between SELPs and SOPs

In this section, we will establish some relations between Stampacchia equilibrium-like problems and
scalarized set-valued optimization problems.

Let F : X → 2Y be a set-valued map between Banach spaces. We consider the following set-valued
optimization problem

minF (x), x ∈ Ω ⊆ X. (3.1)

Definition 3.1 ([10]). A point x̄ is said to be a weakly efficient solution of problem (3.1) if there exists
ȳ ∈ F (x̄) such that

(F (Ω)− ȳ) ∩ −intK = ∅.

We consider the concept of scalarized solution of problem (3.1).

A vector x̄ is said to be a scalarized solution of problem (3.1) (x̄ is a solution of the SOP) if, for any
y∗ ∈ K+ \ {0}, there exists ȳ ∈ F (x̄) such that

y∗(ȳ) ≤ y∗(y) for all y ∈ F (Ω).

Next, we consider the following scalarized Stampacchia equilibrium-like problem (SELP) which is to find a
vector x̄ ∈ Ω such that, for any x ∈ Ω and y∗ ∈ K+ \ {0}, there exist ȳ ∈ My∗(x̄) and x∗ ∈ ∂F (x̄, ȳ)(y∗)
such that

φ(x∗, x̄, x) ≥ 0,

where φ : X∗ × Ω × Ω → R.
Particularly, if we put φ(ξ, x, y) = 〈ξ, η(y, x)〉 for all (ξ, x, y) ∈ X∗ × Ω × Ω , then the SELP reduces to

the SVLI considered in [24]. In this case, if F = f : X → Y is a vector-valued function, this nonsmooth
variational-like inequality was studied by Santos et al. [26] and Alshahrani et al. [1].

Definition 3.2. Suppose that F : Ω ⊆ X → 2Y . F is said to be generalized K-pseudoinvex w.r.t. φ :
X∗×Ω×Ω → R if, for any x1, x2 ∈ Ω , y∗ ∈ K+\{0}, y1 ∈My∗(x1), y2 ∈My∗(x2), and ξ1 ∈ ∂F (x1, y1)(y∗),
one has

φ(ξ1, x1, x2) ≥ 0 ⇒ y∗(y2) ≥ y∗(y1).
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Remark 3.3.

(i) If F = f : Ω ⊆ X → R is a real-valued function and K = R+, then the generalized K-pseudoinvexity
w.r.t. φ reduces to the generalized pseudoinvexity w.r.t. φ in Definition 2.10. In addition, if we put
φ(ξ, x, y) = 〈ξ, η(y, x)〉 for all (ξ, x, y) ∈ X∗ × Ω × Ω , then Definition 3.2 reduce to Definition 3.2 in
[7], i.e., the K-pseudoinvexity w.r.t. η.

(ii) If F : Ω ⊆ X → 2Y is epi-Lipschitz and generalized K-pseudoinvex w.r.t. φ, then Theorem 2.9 implies
that, for any y∗ ∈ K+ \ {0}, fy∗ is generalized pseudoinvex w.r.t. φ.

(iii) If we put φ(ξ, x, y) = 〈ξ, y − x〉 for all (ξ, x, y) ∈ X∗ × Ω × Ω , then F is said to be K-pseudoinvex.

Lemma 3.4 ([24]). Every solution of the SOP is a weakly efficient solution of problem (3.1).

The following result shows that a solution of the SELP is also a weakly efficient solution of problem
(3.1).

Proposition 3.5. Let F : Ω ⊆ X → 2Y be generalized K-pseudoinvex w.r.t. φ. If x̄ is a solution of the
SELP, then it is a solution of the SOP and hence, a weakly efficient solution of problem (3.1).

Proof. Suppose that x̄ is a solution of the SELP, but not a solution of the SOP. Then there exists y∗ ∈
K+ \ {0} such that, for any ȳ ∈ F (x̄),

y∗(y) < y∗(ȳ) for some y ∈ F (x), x ∈ Ω . (3.2)

Since x̄ ∈ Ω is a solution of the SELP, there exist ȳ and x∗ such that ȳ ∈My∗(x̄), x∗ ∈ ∂F (x̄, ȳ)(y∗) and

φ(x∗, x̄, x) ≥ 0 for all x ∈ Ω , y∗ ∈ K+ \ {0}.

Now, the generalized K-pseudoinvex of F w.r.t. φ implies that

y∗(y) ≥ y∗(ȳ) for all y ∈My∗(x).

Therefore, we obtain
y∗(y) ≥ y∗(ȳ) for all y ∈ F (x),

which contradicts (3.2). Hence, x̄ is a solution of the SOP, and from Lemma 3.4 we deduce that x̄ is a
weakly efficient solution of (3.1).

Theorem 3.6. Let X,Y be Asplund spaces and F : Ω ⊆ X → 2Y be epi-Lipschitz. Let η : Ω × Ω → X be
continuous in the second variable such that Condition C w.r.t. φ holds. Suppose the following conditions
are satisfied:

(i) for each y∗ ∈ K+\{0}, fy∗ satisfies the mean-value condition for limiting subdifferential ∂Lfy∗ w.r.t. φ;

(ii) ∂Lfy∗(·) : Ω → 2X
∗

is H-hemicontinuous with compact values;

(iii) for each y ∈ Ω, φ(·, ·, y) : X∗ × Ω → R is continuous.

If x̄ is a solution of the SOP, then it is a solution of the SELP.

Proof. For any x ∈ Ω fixed and λ ∈ (0, 1], set x(λ) = x̄ + λη(x, x̄). Since x̄ is a solution of the SOP, for
any y∗ ∈ K+ \ {0}, there exists ȳ ∈ F (x̄) such that y∗(ȳ) ≤ y∗(y) for all y ∈ F (z) and z ∈ Ω . Therefore,
fy∗(x̄) ≤ fy∗(z). Since F is epi-Lipschitz, by Lemma 2.8, for any y∗ ∈ K+ \ {0}, fy∗ is Lipschitz continuous
on Ω . Also, since η satisfies Condition C w.r.t. φ and fy∗ satisfies the mean-value condition for limiting
subdifferential ∂Lfy∗ w.r.t. φ, there exist t ∈ [0, λ) and ξt ∈ ∂Lfy∗(x(t)) such that

λφ(ξt, x̄, x) = φ(ξt, x̄, x(λ)) ≥ fy∗(x(λ)− fy∗(x̄) ≥ 0.

Again from Condition C we get
φ(ξt, x(t), x) = (1− t)φ(ξt, x̄, x),
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and hence

φ(ξt, x(t), x) ≥ 0. (3.3)

Since ∂Lfy∗(·) : Ω → 2X
∗

is compact-valued, by Nadler’s result we know that for each ξt ∈ ∂Lfy∗(x(t)) there
exists ξ̃t ∈ ∂Lfy∗(x̄) such that

‖ξt − ξ̃t‖ ≤ H(∂Lfy∗(x(t)), ∂Lfy∗(x̄)).

Since x(t)→ x̄ as t→ 0 and ∂Lfy∗(·) : Ω → 2X
∗

is H-hemicontinuous, it follows that

‖ξt − ξ̃t‖ ≤ H(∂Lfy∗(x(t)), ∂Lfy∗(x̄))→ 0 as t→ 0.

Note that the net {ξ̃t} lies in the compact set ∂Lfy∗(x̄). So, we may assume, without loss of generality, that
ξ̃t → ξ̄ ∈ ∂Lfy∗(x̄) as t → 0. This together with ‖ξt − ξ̃t‖ → 0, implies that ξt → ξ̄ ∈ ∂Lfy∗(x̄) as t → 0.
Since φ(·, ·, x) : X∗ × Ω → R is continuous, ξt → ξ̄ and x(t)→ x̄ as t→ 0, we conclude from (3.3) that

φ(ξ̄, x̄, x) ≥ 0.

Now, by Theorem 2.9 we obtain ξ̄ ∈ ∂F (x̄, ȳ)(y∗) and therefore, x̄ is a solution of the SELP.

Theorem 3.7. Suppose conditions (ii), (iii) in Theorem 2.14 are replaced by the one:

(ii) for any y ∈ Ω, φ(·, ·, y) : X∗ ×Ω → R is continuous in the w∗ × τ -topology (see Theorem 2.14). Assume
other conditions in Theorem 3.6 are not changed. If x̄ is a solution of the SOP, then it is a solution of the
SELP.

Proof. Repeating the same argument as in the proof of Theorem 3.6, we deduce that (3.3) holds. Since
∂Lfy∗(·) is locally bounded (due to Corollary 1.81 in [21]), there exists a neighborhood of x̄ and a constant
` > 0 such that, for each z in this neighborhood and ξ ∈ ∂Lfy∗(z), we have ‖ξ‖ ≤ `. Since x(t) → x̄ as

t→ 0, for t sufficiently small ‖ξt‖ ≤ `; hence, without loss of generality we may assume that ξt
w∗
→ ξ̄. Since

the set-valued mapping ∂Lfy∗(·) has closed graph, we have ξ̄ ∈ ∂Lfy∗(x̄). Since φ(·, ·, x) : X∗ × Ω → R is
continuous in the product topology w∗ × τ , from (3.3) we get

φ(ξ̄, x̄, x) ≥ 0.

Now, by Theorem 2.9 we obtain ξ̄ ∈ ∂F (x̄, ȳ)(y∗) and therefore, x̄ is a solution of the SELP.

If we let F = f : X → Rn, K = Rn
+ and fi : X → R, the components of f which are non-differentiable

functions. The definition of limiting subdifferential can be extended to real vector-valued functions. The
generalized limiting subdifferential of f at x ∈ X is the set

∂Lf(x) = ∂Lf1(x)× ∂Lf2(x)× · · · × ∂Lfn(x).

In the rest of this section, let Ω ⊆ X be invex w.r.t. η : Ω × Ω → X and f : Ω → Rn. Let Φ :
L(X,Rn)×Ω×Ω → Rn be an equilibrium-like function, that is, Φ(u, x, y)+Φ(u, y, x) = 0 for all (u, x, y) ∈
L(X,Rn)× Ω × Ω , where L(X,Rn) denotes the family of all continuous linear operators from X into Rn.

In the following theorems, we derive similar results for real vector-valued functions.

Theorem 3.8. Let X be an Asplund space and Ω ⊆ X be invex w.r.t. η that is continuous in the second
variable and satisfies Condition C w.r.t. each φi, i = 1, ..., n, where Φ(ξ, x, y) = (φ1(ξ1, x, y), ..., φn(ξn, x, y))
for all (ξ, x, y) ∈ L(X,Rn)× Ω × Ω with ξ = (ξ1, ..., ξn). Let f = (f1, ..., fn) : Ω → Rn be locally Lipschitz
on Ω and suppose for i = 1, ..., n that

(i) each fi satisfies the mean-value condition for limiting subdifferential ∂Lfi w.r.t. φi;

(ii) each ∂Lfi : Ω → 2X
∗

is H-hemicontinuous with compact values;
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(iii) φi(·, ·, y) : X∗ × Ω → R is continuous for each y ∈ Ω.

If x̄ is a weakly efficient solution to problem (3.1), then, for any x ∈ Ω, one has

Φ(∂Lf(x̄), x̄, x) 6⊆ −intK.

Proof. For any x ∈ Ω fixed and λ ∈ (0, 1], set x(λ) = x̄+ λη(x, x̄). Since x̄ is a weakly efficient solution to
problem (3.1), we can find sequence λj ↓ 0+ and i ∈ {1, ..., n} such that

fi(x(λj)) ≥ fi(x̄) for all j ∈ N.

Now, by the similar argument to that in the proof of Theorem 3.6, we can obtain a ξ̄i ∈ ∂Lfi(x̄) for all
i ∈ {1, ..., n} such that φi(ξ̄i, x̄, x) ≥ 0. Hence, Φ(∂Lf(x̄), x̄, x) 6⊆ −intK.

Theorem 3.9. Suppose conditions (ii), (iii) in Theorem 3.8 are replaced by the following ones:

(ii) each ∂Lfi : Ω → 2X
∗

is locally bounded and has closed graph;

(iii) φi(·, ·, y) : X∗ × Ω → R is continuous in the w∗ × τ -topology for each y ∈ Ω.

Assume other conditions in Theorem 3.8 are not changed. If x̄ is a weakly efficient solution to problem (3.1),
then, for any x ∈ Ω, one has

Φ(∂Lf(x̄), x̄, x) 6⊆ −intK.

Proof. Since the proof is similar to that of Theorem 3.8, we omit it.

Remark 3.10. Theorems 3.8 and 3.9 extend, improve and develop Theorem 3.2 in [24] for equilibrium-like
function and Condition C for η w.r.t. each φi. However, Theorem 3.2 in [24] improves Theorem 5.2 in [25]
for limiting subdifferential without any generalized convexity.

4. Some characterizations of the solution sets

In this final section, we consider that S̄ to be the set of all scalarized solutions of problem (3.1) and assume
that S̄ is nonempty. We will derive some characterizations of the solution sets of generalized K-pseudoinvex
program.

Theorem 4.1. Let X,Y be Asplund spaces and F : Ω ⊆ X → 2Y be epi-Lipschitz. Let η : Ω × Ω → X be
continuous in the second variable such that Condition C w.r.t. φ holds. Suppose that for each y∗ ∈ K+ \{0},
fy∗ is pre-quasiinvex w.r.t. η and satisfies the mean-value condition for limiting subdifferential ∂Lfy∗ w.r.t.
φ and ∂Lfy∗(·) : Ω → 2X

∗
is H-hemicontinuous with compact values, and that for each y ∈ Ω, φ(·, ·, y) :

X∗×Ω → R is continuous. If F is generalized K-pseudoinvex w.r.t. φ and x1, x2 are solutions of the SOP,
then, for any y∗ ∈ K+ \ {0}, there exist yi ∈My∗(xi) and ξi ∈ ∂F (xi, yi)(y

∗), i = 1, 2, such that

φ(ξ1, x1, x2) = φ(ξ2, x2, x1) = 0.

Proof. Since x1, x2 are solutions of the SOP, by the proof of Theorem 3.6, for any y∗ ∈ K+ \{0}, there exist
yi ∈My∗(xi) and ξi ∈ ∂Lfy∗(xi) ⊆ ∂F (xi, yi)(y

∗), i = 1, 2 such that

φ(ξ1, x1, x2) ≥ 0 and φ(ξ2, x2, x1) ≥ 0. (4.1)

Now, by Remark 3.3, generalized K-pseudoinvexity of F w.r.t. φ implies that for any y∗ ∈ K+ \ {0}, fy∗ is
generalized pseudoinvex w.r.t. φ. Thus, from Lemma 2.8 and Theorem 2.14, we can deduce that ∂Lfy∗ is
invariant pseudomonotonic. Therefore,

φ(ξ, x1, x2) ≤ 0 and φ(ξ′, x2, x1) ≤ 0, (4.2)

for all ξ ∈ ∂Lfy∗(x1) and ξ′ ∈ ∂Lfy∗(x2). Hence, by relations (4.1) and (4.2) and using this fact that
∂Lfy∗(xi) ⊆ ∂F (xi, yi)(y

∗), i = 1, 2, we can obtain the result.
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Theorem 4.2. Let X,Y be Asplund spaces and F : Ω ⊆ X → 2Y be epi-Lipschitz and K-invex w.r.t. η.
Let η be continuous in the second variable such that Condition C w.r.t. φ holds. Suppose that for each
y∗ ∈ K+ \ {0}, fy∗ satisfies the mean-value condition for limiting subdifferential ∂Lfy∗ w.r.t. φ, and that for
each y ∈ Ω, φ(·, ·, y) : X∗×Ω → R is continuous in the w∗× τ -topology. If F is generalized K-pseudoinvex
w.r.t. φ and x1, x2 are solutions of the SOP, then, for any y∗ ∈ K+ \ {0}, there exist yi ∈ My∗(xi) and
ξi ∈ ∂F (xi, yi)(y

∗), i = 1, 2, such that

φ(ξ1, x1, x2) = φ(ξ2, x2, x1) = 0.

Proof. We first show that for any y∗ ∈ K+ \ {0}, fy∗ is pre-quasiinvex w.r.t. η. As a matter of fact, since
F is K-invex w.r.t. η, we know that for any x, y ∈ Ω and t ∈ [0, 1],

(1− t)F (x) + tF (y) ⊆ F (x+ tη(y, x)) +K.

So, it follows that for any y∗ ∈ K+ \ {0},

fy∗(x+ tη(y, x)) = inf{y∗(w) : w ∈ F (x+ tη(y, x))}
= inf{y∗(w) : w ∈ F (x+ tη(y, x)) +K}
≤ inf{y∗(w) : w ∈ (1− t)F (x) + tF (y)}
≤ (1− t)fy∗(x) + tfy∗(y)

≤ max{fy∗(x), fy∗(y)}.

This means that fy∗ is pre-quasiinvex w.r.t. η. Since x1, x2 are solutions of the SOP, by the proof of Theorem
3.7, for any y∗ ∈ K+ \ {0}, there exist yi ∈ My∗(xi) and ξi ∈ ∂Lfy∗(xi) ⊆ ∂F (xi, yi)(y

∗), i = 1, 2 such that
(4.1) in the proof of Theorem 4.1 holds. Since the rest of the proof is the same as in the proof of Theorem
4.1, we omit it.

Theorem 4.3. Let X,Y be Asplund spaces and F : Ω ⊆ X → 2Y be epi-Lipschitz. Let η : Ω × Ω → X be
continuous in the second variable such that Condition C w.r.t. φ holds. Suppose that for each y∗ ∈ K+ \{0},
fy∗ is pre-quasiinvex w.r.t. η and satisfies the mean-value condition for limiting subdifferential ∂Lfy∗ w.r.t. φ
and ∂Lfy∗(·) : Ω → 2X

∗
is H-hemicontinuous with compact values, and that for each y ∈ Ω, φ(·, ·, y) :

X∗×Ω → R is continuous. If F is generalized K-pseudoinvex w.r.t. φ and x̄ ∈ S̄, then S̄ = S1 = S2, where

S1 = {x ∈ Ω : ∀y∗ ∈ K+ \ {0} ∃y ∈My∗(x) and ξ ∈ ∂F (x, y)(y∗); φ(ξ, x, x̄) = 0},
S2 = {x ∈ Ω : ∀y∗ ∈ K+ \ {0} ∃y ∈My∗(x) and ξ ∈ ∂F (x, y)(y∗); φ(ξ, x, x̄) ≥ 0}.

Proof. If x ∈ S̄, then from x̄ ∈ S̄ and Theorem 4.1, it follows that, for any y∗ ∈ K+ \ {0}, there exist
y ∈My∗(x) and ξ ∈ ∂F (x, y)(y∗) such that

φ(ξ, x, x̄) = 0.

That is, x ∈ S1. Hence S̄ ⊆ S1.
It is trivial that S1 ⊆ S2. Now, suppose that x ∈ S2. Hence, for any y∗ ∈ K+ \ {0}, there exist

y ∈My∗(x) and ξ ∈ ∂F (x, y)(y∗) such that

φ(ξ, x, x̄) ≥ 0.

Now, the generalized K-pseudoinvexity of F w.r.t. φ implies that

y∗(ȳ) ≥ y∗(y),

for all ȳ ∈ My∗(x̄). Since x̄ is a solution of the SOP, it shows that x is also a solution of the SOP and
therefore is in S̄, which completes the proof.
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Theorem 4.4. Let X,Y be Asplund spaces and F : Ω ⊆ X → 2Y be epi-Lipschitz and K-invex w.r.t. η.
Let η be continuous in the second variable such that Condition C w.r.t. φ holds. Suppose that for each
y∗ ∈ K+ \ {0}, fy∗ satisfies the mean-value condition for limiting subdifferential ∂Lfy∗ w.r.t. φ, and that for
each y ∈ Ω, φ(·, ·, y) : X∗×Ω → R is continuous in the w∗× τ -topology. If F is generalized K-pseudoinvex
w.r.t. φ and x̄ ∈ S̄, then S̄ = S1 = S2, where

S1 = {x ∈ Ω : ∀y∗ ∈ K+ \ {0} ∃y ∈My∗(x) and ξ ∈ ∂F (x, y)(y∗); φ(ξ, x, x̄) = 0},
S2 = {x ∈ Ω : ∀y∗ ∈ K+ \ {0} ∃y ∈My∗(x) and ξ ∈ ∂F (x, y)(y∗); φ(ξ, x, x̄) ≥ 0}.

Proof. Since the proof is similar to that of Theorem 4.3, we omit it.

Remark 4.5. Theorems 4.1–4.2 and Theorems 4.3–4.4 extend, improve and develop Theorem 4.1 and The-
orem 4.2 in [24] for equilibrium-like function and Condition C for η w.r.t. each φi, respectively. However,
Theorem 4.2 in [24] extends Theorem 1 in [17], Theorem 3.1 in [13] and Theorem 3.1 in [27].

As applications of Theorems 4.3 and 4.4, we obtain the following Corollaries 4.6–4.7 and Corollaries
4.8–4.9, which extend and improve Corollary 4.1 and Corollary 4.2 in [24], respectively. Here it is worth
pointing out that Corollaries 4.1 and 4.2 in [24] are the one for K-pseudoconvex set-valued maps and the
second one extending partially Theorem 4.1 of [32].

Corollary 4.6. Let X,Y be Asplund spaces, Ω ⊆ X be convex and F : Ω → 2Y be epi-Lipschitz. Let
η(y, x) = y−x, for all x, y ∈ Ω such that Condition C w.r.t. φ holds. Suppose that for each y∗ ∈ K+\{0}, fy∗
is pre-quasiconvex w.r.t. η and satisfies the mean-value condition for limiting subdifferential ∂Lfy∗ w.r.t. φ
and ∂Lfy∗(·) : Ω → 2X

∗
is H-hemicontinuous with compact values, and that for each y ∈ Ω, φ(·, ·, y) :

X∗ × Ω → R is continuous. If F is generalized K-pseudoconvex w.r.t. φ and x̄ ∈ S̄, then

S̄ = S1 = S2.

Corollary 4.7. Let X,Y be Asplund spaces, Ω ⊆ X be convex and η(y, x) = y − x, for all x, y ∈ Ω such
that Condition C w.r.t. φ holds. Let F : Ω ⊆ X → 2Y be epi-Lipschitz and K-convex. Suppose that for each
y∗ ∈ K+ \ {0}, fy∗ satisfies the mean-value condition for limiting subdifferential ∂Lfy∗ w.r.t. φ, and that for
each y ∈ Ω, φ(·, ·, y) : X∗×Ω → R is continuous in the w∗×τ -topology. If F is generalized K-pseudoconvex
w.r.t. φ and x̄ ∈ S̄, then

S̄ = S1 = S2.

Corollary 4.8. Let X be an Asplund space and f : Ω ⊆ X → R be locally Lipschitz. Let η : Ω × Ω → X
be continuous in the second variable such that Condition C w.r.t. φ holds. Suppose that f is pre-quasiinvex
w.r.t. η and satisfies the mean-value condition for limiting subdifferential ∂Lf w.r.t. φ and ∂Lf(·) : Ω → 2X

∗

is H-hemicontinuous with compact values, and that for each y ∈ Ω, φ(·, ·, y) : X∗ × Ω → R is continuous.
If f is generalized pseudoinvex w.r.t. φ and x̄ ∈ S̄, then S̄ = S1 = S2, where

S1 = {x ∈ Ω : ∃ξ ∈ ∂Lf(x); φ(ξ, x, x̄) = 0},
S2 = {x ∈ Ω : ∃ξ ∈ ∂Lf(x); φ(ξ, x, x̄) ≥ 0}.

Proof. It is enough to apply Theorem 4.3 for F = f : Ω ⊆ X → R and K = R+.

Corollary 4.9. Let X be an Asplund space and f : Ω ⊆ X → R be locally Lipschitz and K-invex w.r.t. η.
Let η be continuous in the second variable such that Condition C w.r.t. φ holds. Suppose that f is pre-
quasiinvex w.r.t. η and satisfies the mean-value condition for limiting subdifferential ∂Lf w.r.t. φ, and ∂Lf
is locally bounded and has closed graph, and that for each y ∈ Ω, φ(·, ·, y) is continuous in the w∗×τ -topology.
If f is generalized pseudoinvex w.r.t. φ and x̄ ∈ S̄, then S̄ = S1 = S2, where

S1 = {x ∈ Ω : ∃ξ ∈ ∂Lf(x); φ(ξ, x, x̄) = 0},
S2 = {x ∈ Ω : ∃ξ ∈ ∂Lf(x); φ(ξ, x, x̄) ≥ 0}.
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Proof. It is enough to apply Theorem 4.4 for F = f : Ω ⊆ X → R and K = R+.

For real vector-valued functions, we have the following results.

Theorem 4.10. Let X be an Asplund space and Ω ⊆ X be invex w.r.t. η that is continuous in the second
variable and satisfies Condition C w.r.t. each φi, i = 1, ..., n, where Φ(ξ, x, y) = (φ1(ξ1, x, y), ..., φn(ξn, x, y))
for all (ξ, x, y) ∈ L(X,Rn)× Ω × Ω with ξ = (ξ1, ..., ξn). Let f = (f1, ..., fn) : Ω → Rn be locally Lipschitz
on Ω and suppose for i = 1, ..., n that

(i) each fi is pre-quasiinvex w.r.t. η and generalized pseudoinvex w.r.t. φi;

(ii) each fi satisfies the mean-value condition for limiting subdifferential ∂Lfi w.r.t. φi;

(iii) each ∂Lfi : Ω → 2X
∗

is H-hemicontinuous with compact values;

(iv) φi(·, ·, y) : X∗ × Ω → R is continuous for each y ∈ Ω.

If x0, y0 are weakly efficient solutions to problem (3.1), then one has

Φ(∂Lf(x0), x0, y0) 6⊆ −intK and Φ(∂Lf(x0), x0, y0) 6⊆ intK.

Proof. From Theorems 2.14 and 3.8 we can get the proof.

Theorem 4.11. Suppose conditions (iii), (iv) in Theorem 4.10 are replaced by the following ones:

(iii) each ∂Lfi is locally bounded and has closed graph;

(iv) φi(·, ·, y) is continuous in the w∗ × τ -topology for each y ∈ Ω.

Assume other conditions in Theorem 4.10 are not changed. If x0, y0 are weakly efficient solutions to problem
(3.1), then one has

Φ(∂Lf(x0), x0, y0) 6⊆ −intK and Φ(∂Lf(x0), x0, y0) 6⊆ intK.

Proof. From Theorems 2.14 and 3.9 we can get the proof.
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