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Abstract

In this paper, we prove some new fixed point theorems for multi-valued mappings under new contrac-
tions by proposing a new class of functions. The results of this paper improve several results in the litera-
tures. And we extend the results into metric-like spaces, which expand the application range of the results.
c©2016 All rights reserved.

Keywords: F-contraction, fixed point, multi-valued mappings, partial metric space.
2010 MSC: 47H10, 54H25, 47H04.

1. Preliminaries

In 1992, Matthews [13] proposed the concept of partial metric space on the basis of metric space, and
studied the Banach contraction mapping principle in partial metric space. Then, the scholars have enriched
the partial metric and established the partial metric theory. In 1996, O’Neill [18] used R instead of R+ in
Matthews’s result and proved the theorems. Oltra and Valero [17] combined the both sides of the Banach
contractive condition with the absolute value and generalized the results of the predecessors. In 2011,
Karapinar and Erhan [11] gave a new mapping called orbitally continuous operator in partial metric space
and proved the related fixed point theorems. After that, Abdeljawad et al. [1] denoted a general form of the
weak φ-contraction and proved the common fixed point theorem with such mapping. Moradi and Farajzadeh
[15] proved the fixed point theorems for (ψ,ϕ)-weak and generalized (ψ,ϕ)-weak contraction mappings in
partial metric spaces. In 2012, Huang et al. [9] proved some fixed point theorems for expanding mapping
in partial metric spaces.
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Throughout the whole paper, the letters R,R+, N and N∗ will denote the set of all real numbers, the
set of all nonnegative real numbers, the set of all nonnegative integer numbers and the set of all positive
integer numbers, respectively.

Recently, Wardowski (with Van Dung) [21] introduced the notion of an f -weak contraction mapping
which improved his work in 2012 (see [20]) and proved the existence of fixed points with such mapping. The
results of Wardowski [21] extended and unified several fixed point results in the literature.

Definition 1.1 ([21]). Let F be the family of all functions F : (0,∞)→ R such that

(F1) F is strictly increasing, i.e., for all x, y ∈ R+ such that x < y, F (x) < F (y);

(F2) for each sequence {αn}∞n=1 of positive numbers, limn→∞ αn = 0, if and only if limn→∞ F (αn) = −∞;

(F3) there exists k ∈ (0, 1) such that limα→0 α
kF (α) = 0.

Definition 1.2 ([21]). Let (X, d) be a metric space. A mapping T : X → X is said to be a F -contraction
on (X, d), if there exist F ∈ F and τ > 0 such that

d(Tx, Ty) > 0⇒ τ + F (d(Tx, Ty)) ≤ F (d(x, y)), (1.1)

where x, y ∈ X.

Remark 1.3. From (F1) and (1.1), it is easy to see that F -contraction is continuous.

In 2012, Piri [19] extended the results of Wardowski by using the following condition instead of (F3):

(F3′) F is continuous on (0,∞).

Piri denoted by F the set of all functions satisfying the conditions (F1), (F2) and (F3′). Piri denoted the
F -Suzuki contraction as follows.

Definition 1.4 ([19]). Let (X, d) be a metric space. A mapping T : X → X is said to be an F -Suzuki
contraction, if there exists τ > 0 such that for all x, y ∈ X with Tx 6= Ty,

1

2
d(x, Tx) < d(x, y)⇒ τ + F (d(Tx, Ty)) ≤ F (d(x, y)),

where F ∈ F.

Karapinar and Kutbi [12] introduced the notion of a conditionally F -contraction in the setting of complete
metric-like spaces and proved the fixed point theorems.

Definition 1.5 ([12]). Let (X, d) be a metric-like space. A mapping T : X → X is said to be a conditionally
F -contraction of type (A), if there exist F ∈ F and τ > 0 such that for all x, y ∈ X with d(Tx, Ty) > 0,

1

2
d(x, Tx) < d(x, y)⇒ τ + F (d(Tx, Ty)) ≤ F (MT (x, y)),

where

MT (x, y) = max{d(x, y), d(x, Tx), d(y, Ty),
d(x, Ty) + d(y, Tx)

4
}.

Definition 1.6 ([12]). Let (X, d) be a metric-like space. A mapping T : X → X is said to be a conditionally
F -contraction of type (B) if there exists F ∈ F and τ > 0 such that, for all x, y ∈ X with d(Tx, Ty) > 0,

1

2
d(x, Tx) < d(x, y)⇒ τ + F (d(Tx, Ty)) ≤ F (max{d(x, y), d(x, Tx), d(y, Ty)}).
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Definition 1.7 ([12]). Let (X, d) be a metric-like space. A mapping T : X → X is said to be a conditionally
F -contraction of type (C), if there exist F ∈ F and τ > 0 such that for all x, y ∈ X with d(Tx, Ty) > 0,

1

2
d(x, Tx) < d(x, y)⇒ τ + F (d(Tx, Ty)) ≤ F (d(x, y)).

The notion of a partial metric space was introduced by Matthews [13] in 1992. The partial metric space
is a generalization of the usual metric space in which d(x, x) is no longer necessarily zero.

Let X be a nonempty set. A function p : X ×X → R+ is said to be a partial metric on X, if for every
x, y, z ∈ X, the following conditions hold:

(P1) p(x, x) = p(y, y) = p(x, y), if and only if x = y;

(P2) p(x, x) ≤ p(x, y);

(P3) p(x, y) = p(y, x);

(P4) p(x, z) ≤ p(x, y) + p(y, z)− p(y, y).

Then the pair (X, p) is called a partial metric space.

Remark 1.8. If p(x, y) = 0, then (P1) and (P2) imply that x = y. But the converse is not true.

Each partial metric p on X generates a T topology τp on X which has a base of the family open p-balls
{Bp(x, ε) : x ∈ X, ε > 0}, where B(x, ε) = {y ∈ X : p(x, y) < p(x, x) + ε}, for all x ∈ X and ε > 0. And in
the work of Matthews [14], we can find that a sequence {xn} in a partial metric space (X, p) converges to a
point x ∈ X, with respect to τp, if and only if p(x, x) = limn→∞ p(x, xn).

If p is a partial metric on X, then the function p∗ : X × X → R+ defines a metric on X, where
p∗(x, y) = 2p(x, y)− p(x, x)− p(y, y). Even more, a sequence {xn} in (X, p∗) converges to a point x ∈ X, if
and only if

lim
n,m→∞

p(xn, xm) = lim
n→∞

p(xn, x) = p(x, x). (1.2)

Definition 1.9 ([14]). Let (X, p) be a partial metric space.

(1) A sequence {xn} ∈ X is said to be a Cauchy sequence, if limn,m→∞ p(xn, xm) exists and is finite.

(2) (X, p) is said to be complete, if every Cauchy sequence {xn} ∈ X converges to a point x ∈ X with
respect to τp such that limn→∞ p(xn, x) = p(x, x). Then, we say that the partial metric p is complete.

Lemma 1.10 ([14]). Let (X, p) be a partial metric space. Then:

(1) A sequence {xn} ∈ X is said to ba a Cauchy sequence in (X, p), if and only if it is a Cauchy sequence
in metric space (X, p∗).

(2) A partial metric space (X, p) is complete, if and only if the metric space (X, p∗) is complete.

In 1941, Kakutani [10] proved the fixed point theorem for the set-valued mapping. Then some fixed
point theorems for the multifunction on metric space are given in [4, 3, 8, 16, 22]. Aleomraninejad et al.
[2] gave a new way to prove the common fixed point of a multifunction on partial metric space by denoting
two classes of functions called R1 and R2.

We denote the family of all nonempty subsets of X by 2X , the family of all closed and bounded subsets
of X by CB(X). Let T : X → 2X be a multi-valued function. We say that x ∈ X is a fixed point of T , if
x ∈ Tx. Consistent with other literatures, the following definitions and results will be needed in the sequel.

Definition 1.11 ([6]). Let (X, p) be a partial metric space. For all A,B ∈ CB(X), define

Hp(A,B) = max{sup
a∈A

p(a,B), sup
b∈B

p(b, A)},

where p(x,A) = infa∈A p(x, a).
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It is known that Hp is a partial Hausdorff distance on CB(X) introduced by Aydi et al. [6].

Lemma 1.12 ([6]). Let (X, p) be a partial metric space. For A,B ∈ CB(X), we have

(a) Hp(A,B) = 0⇒ A = B. The converse is not true.

(b) There exists h > 1. For any a ∈ A, there exists b = b(a) ∈ B such that

p(a, b) ≤ hHp(A,B).

(c) Hp(A,B) ≤ Hp(A,C) +Hp(C,B)− infc∈C p(c, c).

Lemma 1.13 ([5]). Let (X, p) be a partial metric space, A ⊆ X, and x ∈ X. Then x ∈ A, if and only if
p(x,A) = p(x, x).

In this paper, we introduce a new type of F -contraction with some weaker condition and prove the fixed
point theorems of multi-valued mappings in partial metric space, and we extend the results into metric-like
spaces, which expand the application range of the results.

2. Main results

In this paper, we use the following condition instead of the condition (F3) in Definition 1.1:

(F∗) For every sequence {βn}∞n=1 of positive numbers, limn→∞ βn =∞ implies F (βn) exists and is finite.

We denote the set of all functions satisfying the conditions (F1), (F2) and (F∗) by F .

Example 2.1. Let F1(x) = − 1
x , F2(x) = 1− 1

x , F3(x) = − 1
[x] . Then F1, F2, F3 ∈ F .

Remark 2.2. Notice that the conditions (F3) and (F∗) work independently of each other. Indeed, for any
p ≥ 1 and 0 < α < +∞, F (x) = α − 1

xp satisfies the condition (F∗), but it does not satisfy the condition
(F3). Therefore F  F . If we take F (x) = lnx. It is easy to see that F (x) satisfies the condition (F3), not
the condition (F∗). Therefore, F  F . Also, if we take F (x) = 1− 1

lnx , then F ∈ F and F ∈ F . Therefore,
F
⋂

F 6= ∅.
Remark 2.3. The conditions (F3′) and (F∗) work independently of each other. Indeed, if we take F (x) =
x− 1

x . It is easy to see that F (x) satisfies the condition (F3′), not (F∗). Therefore F  F . Then, if we take
F (x) = 1− 1

[x] , it satisfies the condition (F ∗), not the condition (F3′). So F  F. But if F (x) = 1− 1
x , then

F ∈ F and F ∈ F. Therefore, F
⋂

F 6= ∅.
In view of Remarks 2.2 and 2.3, it is meaningful to consider the result of Wardowski [21] and the result

of Piri [19] with the mapping F ∈ F instead F ∈ F and F ∈ F. Also, we define Fw-contraction as follows.

Definition 2.4. Let (X, p) be a partial metric space. A multi-valued mapping T : X → CB(X) is said to
be an Fw-contraction of type (A), if there exists τ > 0 such that for all x, y ∈ X with Hp(Tx, Ty) 6= 0,

1

2
p(x, Tx) < p(x, y)⇒ τ + F (Hp(Tx, Ty)) ≤ F (M(x, y)),

where F ∈ F and M(x, y) = max{p(x, y), p(x, Tx), p(y, Ty), p(x,Ty)+p(y,Tx)4 }.

Remark 2.5. From (F1) and (1.1) it is easy to conclude that every Fw-contraction is a continuous mapping.

Now, we are ready to present our main results.

Theorem 2.6. Let (X, p) be a complete partial metric space and let T : X → CB(X) be an Fw-contraction
of type (A), then T has a fixed point x∗ ∈ X.
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Proof. Let x0 ∈ X and {xn} be a sequence as follows

xn ∈ Txn−1 and p(xn, xn+1) < hHp(Txn−1, Txn), where h > 1.

If there exists n ∈ N such that Hp(Txn−1, Txn) = 0, then xn is a fixed point which completes the proof.
So we assume that, for every n ∈ N ,

Hp(Txn−1, Txn) > 0.

Hence, by the definition of p(a,B) which B is a nonempty set, we have for all n ∈ N∗,

1

2
p(xn, Txn) < p(xn, xn+1).

Since T is an Fw-contraction, from Definition (2.4), we have

τ + F (Hp(Txn, Txn+1)) ≤ F (max{p(xn, xn+1), p(xn, Txn), p(xn+1, Txn+1),

p(xn, Txn+1) + p(xn+1, Txn)

4
})

≤ F (max{p(xn, xn+1), p(xn, Txn), p(xn+1, Txn+1),

Hp(Txn−1, Txn+1) +Hp(Txn, Txn)

4
})

≤ F (max{p(xn, xn+1), Hp(Txn−1, Txn), p(xn+1, Txn+1),

Hp(Txn, Txn+1) +Hp(Txn−1, Txn) +Hp(Txn, Txn)

4
})

≤ F (max{p(xn, xn+1), Hp(Txn−1, Txn), Hp(Txn, Txn+1)})
≤ F (max{hHp(Txn−1, Txn), Hp(Txn−1, Txn), Hp(Txn, Txn+1)})
≤ F (max{hHp(Txn−1, Txn), Hp(Txn, Txn+1)}).

(2.1)

If max{hHp(Txn−1, Txn), Hp(Txn, Txn+1)} = Hp(Txn, Txn+1), then (2.1) becomes

τ + F (Hp(Txn, Txn+1)) ≤ F (Hp(Txn, Txn+1)),

which is a contradiction. Thus, we conclude that

max{hHp(Txn−1, Txn), Hp(Txn, Txn+1)} = hHp(Txn−1, Txn),

for all n ∈ N∗. Hence, (2.1) turns into

F (Hp(Txn, Txn+1)) ≤ F (hHp(Txn−1, Txn))− τ,

for all n ∈ N∗. By iteration, we obtain

F (Hp(Txn, Txn+1)) ≤ F (hHp(Txn−1, Txn))− τ
≤ F (h2Hp(Txn−1, Txn))− 2τ

...

≤ F (hnHp(Tx0, Tx1))− nτ.

From limn→∞ h
nHp(Tx0, Tx1) = ∞, we obtain the limitation of F (hnHp(Tx0, Tx1)) is finite. So we have

limn→∞ F (Hp(Txn, Txn+1)) = −∞, which together with (F2) gives

lim
n→∞

Hp(Txn, Txn+1) = 0.
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It’s obvious that for any ε > 0, there exists N1 ∈ N∗ such that Hp(Txn, Txn+1) <
ε
h when n > N1. By the

construction of {xn}, we have

p(xn+1, xn+2) < hHp(Txn, Txn+1) < h · ε
h

= ε,

which implies that

lim
n→∞

p(xn+1, xn+2) = 0. (2.2)

Now, we claim that limn,m→∞ p(xn, xm) = 0.
We assume that there exists σ > 0, and two sequences {a(n)}∞n=1 and {b(n)}∞n=1 of natural numbers such

that

a(n) > b(n) > n, p(xa(n), xb(n)) ≥ σ, p(xa(n)−1, xb(n)) < σ, Hp(Txa(n), Txb(n)) > σ, (2.3)

for all n ∈ N∗. From (P4), we have

σ ≤ p(xa(n), xb(n)) ≤ p(xa(n), xa(n)−1) + p(xa(n)−1, xb(n))

≤ p(xa(n), xa(n)−1) + σ,
(2.4)

for all n ∈ N∗. Thus from (2.2), (2.4) and the Sandwich Theorem, we get

lim
n→∞

p(xa(n), xb(n)) = σ. (2.5)

By (P4), for all n ∈ N∗, we have

p(xa(n), xb(n)) ≤ p(xa(n), xa(n)+1) + p(xa(n)+1, xb(n)+1) + p(xb(n)+1, xb(n)), (2.6)

and

p(xa(n)+1, xb(n)+1) ≤ p(xa(n)+1, xa(n)) + p(xa(n), xb(n)) + p(xb(n), xb(n)+1). (2.7)

By letting n→∞ in (2.6) and (2.7), and by using (2.2) and (2.5), we get

lim
n→∞

p(xa(n)+1, xb(n)+1) = σ.

From (2.2) and (2.3), there exists N2 ∈ N∗ such that 1
2p(xa(n), Txa(n)) <

σ
2 < p(xa(n), xb(n)), for all

n > N2.
From (2.3), for n ≥ N3 ≥ N2, we have Hp(Txa(n), Txb(n)) > σ. Since T is an Fw-contraction of type (A),

we have

τ + F (p(xa(n)+1, xb(n)+1)) < τ + F (Hp(Txa(n), Txb(n)))

≤ F (max{p(xa(n), xb(n)), p(xa(n), Txa(n)), p(xb(n), Txb(n)),
p(xa(n), Txb(n)) + p(xb(n), Txa(n))

4
})

≤ F (max{p(xa(n), xb(n)), p(xa(n), Txa(n)), p(xb(n), Txb(n)),
p(xa(n), Txb(n)) + p(xb(n), Txa(n)) + 2p(xa(n), xb(n))

4
})

≤ F (max{p(xa(n), xb(n)), p(xa(n), Txa(n)), p(xb(n), Txb(n))})
≤ F (max{p(xa(n), xb(n)), p(xa(n), xa(n)+1), p(xb(n), xb(n)+1)}).

(2.8)



Q. W. Yu, C. X. Zhu, Z. Q. Wu, J. Nonlinear Sci. Appl. 9 (2016), 6396–6407 6402

By letting n→∞ in (2.8), and by using (2.2) and (2.5) we find that

τ + F (σ) ≤ F (σ),

which is a contradiction since τ > 0. Hence limn,m→∞ p(xn, xm) = 0.
By the definition of p∗, we get p∗(xn, xm) ≤ 2p(xn, xm). Thus limn,m→∞ p

∗(xn, xm) = 0. This implies that
{xn} is a Cauchy sequence in (X, p∗). Since (X, p) is complete, (X, p∗) is a complete metric space. Therefore,
the sequence {xn} converges to some x∗ ∈ X with respect to the metric p∗, that is limn→∞ p

∗(xn, x
∗) = 0.

From (1.2), we have
p(x∗, x∗) = lim

n→∞
p(xn, x

∗) = lim
n→∞

p(xn, xn) = 0.

Notice that

p(x∗, Tx∗) ≤ p(x∗, xn+1) + p(xn+1, Tx
∗)

≤ p(x∗, xn+1) + p(xn+1, x
∗) + p(x∗, Tx∗)

= 2p(x∗, xn+1) + p(x∗, Tx∗).

By the Sandwich Theorem, we get limn→∞[p(x∗, xn+1) + p(xn+1, Tx
∗)] = p(x∗, Tx∗), which implies that

lim
n→∞

p(xn+1, Tx
∗) = p(x∗, Tx∗). (2.9)

Now we prove that, for every n ∈ N∗,

1

2
p(xn, Txn) < p(xn, x

∗), or
1

2
Hp(Txn, T

2xn) < Hp(Txn, x
∗). (2.10)

By the contradiction, we assume that there exists m ∈ N∗ such that

1

2
p(xm, Txm) ≥ p(xm, x∗), and

1

2
Hp(Txm, T

2xm) ≥ Hp(Txm, x
∗).

Now from (2.1) and (F1), we obtain Hp(Txm, T
2xm) < Hp(xm, Txm). Thus

Hp(xm, Txm) ≤ Hp(xm, x
∗) +Hp(x

∗, Txm)

≤ p(xm, x∗) +
1

2
Hp(Txm, T

2xm)

<
1

2
p(xm, Txm) +

1

2
Hp(xm, Txm)

≤ 1

2
Hp(xm, Txm) +

1

2
Hp(xm, Txm) = Hp(xm, Txm),

which is a contradiction. Hence (2.10) holds.
Suppose p(x∗, Tx∗) > 0 and part (1) of (2.10) is satisfied. Then from our assumption, we have

τ + F (Hp(Txn, Tx
∗)) ≤ F (max{p(xn, x∗), p(xn, Txn), p(x∗, Tx∗),

p(xn, Tx
∗) + p(x∗, Txn)

4
})

≤ F (max{p(xn, x∗), p(xn, Txn+1), p(x
∗, Tx∗)})

≤ F (p(x∗, Tx∗)).

Now xn+1 ∈ Txn gives that

p(xn+1, Tx
∗) ≤ Hp(Txn, Tx

∗). (2.11)
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From (2.11), we obtain τ + F (p(xn+1, Tx
∗)) ≤ τ + F (Hp(Txn, Tx

∗)) ≤ F (p(x∗, Tx∗)). With (F1), we have
p(xn+1, Tx

∗) < p(x∗, Tx∗) which is a contradiction when n → ∞. Suppose p(x∗, Tx∗) > 0 and part (2) of
(2.10) is satisfied. Then from our assumption, we have

τ + F (Hp(xn+2, Tx
∗)) ≤ τ + F (Hp(Txn+1, Tx

∗))

≤ F (max{p(xn+1, x
∗), p(xn+1, Txn+1), p(x

∗, Tx∗),

p(xn+1, Tx
∗) + p(x∗, Txn+1)

4
}).

From (2.2) and (2.9), there exists N4 ∈ N∗ such that for all n > N4,

max{p(xn+1, x
∗), p(xn+1, Txn+1), p(x

∗, Tx∗),
p(xn+1, Tx

∗) + p(x∗, Txn+1)

4
} = p(x∗, Tx∗).

Then, we get

lim
n→∞

[τ + F (Hp(xn+2, Tx
∗))] = τ + F (Hp(x

∗, Tx∗)) ≤ F (p(x∗, Tx∗)),

which is a contradiction. Thus, p(x∗, Tx∗) = 0 = p(x∗, x∗). From Lemma 1.13, we obtain x∗ ∈ Tx∗ = Tx∗.
This completes the proof.

Definition 2.7. Let (X, p) be a complete partial metric space. A mapping T : X → X is said to be an
Fw-contraction of type (B), if there exist F ∈ F and τ > 0 such that for all x, y ∈ X with Hp(Tx, Ty) 6= 0,

1

2
p(x, Tx) < p(x, y)⇒ τ + F (Hp(Tx, Ty)) ≤ F (max{p(x, y), p(x, Tx), p(y, Ty)}).

Definition 2.8. Let (X, p) be a complete partial metric space. A mapping T : X → X is said to be an
Fw-contraction of type (C), if there exist F ∈ F and τ > 0 such that for all x, y ∈ X with Hp(Tx, Ty) 6= 0,

1

2
p(x, Tx) < p(x, y)⇒ τ + F (Hp(Tx, Ty)) ≤ F (p(x, y)).

Theorem 2.9. Let (X, p) be a complete partial metric space and let T : X → CB(X) be an Fw-contraction
of type (B), then T has a fixed point x∗ ∈ X.

Proof. By following the proof in Theorem 2.6, we can conclude the result.

Theorem 2.10. Let (X, p) be a complete partial metric space and let T : X → CB(X) be an Fw-contraction
of type (C), then T has a fixed point x∗ ∈ X.

Proof. It is easy to conclude the result by following the proof of Theorem 2.6.

3. Application

Now we consider an example to illustrate our main result. We consider a mapping T which is not
continuous, so not an F -contraction but it is an Fw-contraction of type (A).

Example 3.1. Consider X = {0, 1, 2}. Let p : X ×X → [0,∞) be a mapping defined by

p(0, 0) = p(1, 1) = 0, p(2, 2) =
5

2
, p(0, 2) = p(2, 0) = 2,

p(1, 2) = p(2, 1) = 3, p(0, 1) = p(1, 0) =
3

2
.
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It is clear that p is a partial metric. Since p(2, 2) 6= 0, so p is not a metric. Thus, (X, p) is a complete
partial metric space. Let T : X → CB(X) be given by

T0 = 0 = T1, and T2 = {0, 1}.

Suppose that F (x) = 1 − 1
[x] ∈ F and τ ∈ (0, 12). Since T is not continuous, T is not an F -contraction

by Remark 1.3.
We will consider the inequality

1

2
p(x, Tx) < p(x, y), (3.1)

where x, y ∈ X with Hp(Tx, Ty) 6= 0 and the inequality

τ + F (Hp(Tx, Ty)) ≤ F (max{p(x, y), p(x, Tx), p(y, Ty),
p(x, Ty) + p(y, Tx)

4
}), (3.2)

for all x, y ∈ X with Hp(Tx, Ty) 6= 0 which satisfy (2.1).

Case 1: Let x = 0.
Now Hp(T0, T0) = Hp(T0, T1) = p(0, 0) = 0, so we need only consider the case y = 2 in (3.1) and (3.2).

Now (3.1) is true since
1

2
p(0, T0) = 0 < p(0, 2) = 3.

We also find

Hp(T0, T2) =
3

2
< max{p(0, 2), p(0, T0), p(2, T2),

p(0, T2) + p(2, T0)

4
} = max{2, 0, 2, 1

2
} = 2.

Now (3.2) is satisfied since

τ + F (Hp(T0, T2)) = τ + 1− 1

[32 ]
= τ

≤ F (max{p(0, 2), p(0, T0), p(2, T2),
p(0, T2) + p(2, T0)

4
})

≤ F (2) = 1− 1

2
=

1

2
.

Case 2: Let x = 1.
We need only consider the case y = 2, since Hp(T0, T1) = Hp(T1, T1) = p(0, 0) = 0. Now (3.1) is true

since
1

2
p(1, T1) =

3

2
< 3 = p(1, 2).

We also know

Hp(T1, T2) =
3

2
< max{p(1, 2), p(1, T1), p(2, T2),

p(1, T2) + p(2, T1)

4
} = max{3, 3

2
, 2,

1

2
} = 3.

And the inequality (3.2) is true since

τ + F (Hp(T1, T2)) = τ + 1− 1

[32 ]
= τ

≤ F (max{p(1, 2), p(1, T1), p(2, T2),
p(1, T2) + p(2, T1)

4
})

≤ F (3) = 1− 1

3
=

2

3
.
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Case 3: Let x = 2.
We need to consider the case y ∈ {0, 1}, since Hp(T2, T2) = 0. Note that

1

2
p(2, T2) = 1 < 2 = p(2, 0),

and
1

2
p(2, T2) = 1 < 3 = p(2, 1).

It is easy to check that

Hp(T0, T2) =
3

2
< max{p(0, 2), p(0, T0), p(2, T2),

p(0, T2) + p(2, T0)

4
} = max{2, 0, 2, 1

2
} = 2,

and

Hp(T1, T2) =
3

2
< max{p(1, 2), p(1, T1), p(2, T2),

p(1, T2) + p(2, T1)

4
} = max{3, 3

2
, 2,

1

2
} = 3.

The inequality (3.2) is true since

τ + F (Hp(T0, T2)) ≤ F (max{p(0, 2), p(0, T0), p(2, T2),
p(0, T2) + p(2, T0)

4
}),

in Case 1 and

τ + F (Hp(T1, T2)) ≤ F (max{p(1, 2), p(1, T1), p(2, T2),
p(1, T2) + p(2, T1)

4
}),

in Case 2. Hence T is an Fw-contraction. Obviously, the fixed point of T is 0.

Notice that if we replace the condition (P4) with

p(x, y) ≤ p(x, z) + p(z, y),

then (X, p) turns to be a metric-like space. So based on the definition, it is easily to know that every partial
metric is metric-like.

Definition 3.2. Let X be a non-empty set. A mapping d : X ×X −→ R+ is said to be a metric-like on X,
if for all x, y, z ∈ X the following conditions are satisfied:

(D1) if d(x, y) = 0 then x = y;

(D2) d(x, y) = d(y, x);

(D3) d(x, y) ≤ d(x, z) + d(z, y).

Then we call (X, d) a metric-like space.

Let (X, d) be a metric-like space. A sequence {xn}∞n=1 ∈ X converges to x ∈ X, if limn→∞ d(xn, x) =
d(x, x). If limn,m→∞ d(xn, xm) exists and is finite, we call it a Cauchy sequence in (X, d), and a metric-like
space (X, d) is said to be complete, if and only if every Cauchy sequence {xn}∞n=1 in X converges to x ∈ X
so that limn,m→∞ d(xn, xm) = limn→∞ d(xn, x) = d(x, x).

Now we derive the result of Theorem 2.6 in the context of metric-like spaces.

Theorem 3.3. Let (X, d) be a complete metric-like space and let T : X −→ CB(X) be an Fw-contraction
of type (A), then T has a fixed point x∗ ∈ X.
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Proof. Notice that we only need the partial metric p satisfies the condition

p(x, y) ≤ p(x, z) + p(z, y)− p(z, z) ≤ p(x, z) + p(z, y),

which is clearly satisfied in metric-like spaces. Hence, following the proof in Theorem 2.6 yields the existence
of a fixed point of T .

The following two theorems can be obtained easily by repeating the steps in the proof of Theorem 2.6.

Theorem 3.4. Let (X, d) be a complete metric-like space and let T : X −→ CB(X) be an Fw-contraction
of type (B), then T has a fixed point x∗ ∈ X.

Theorem 3.5. Let (X, d) be a complete metric-like space and let T : X −→ CB(X) be an Fw-contraction
of type (C), then T has a fixed point x∗ ∈ X.

4. Conclusions

The author uses the condition (F∗) instead of the condition (F3) and defines a new type of F -contraction
called Fw-contraction. Consequently, the related fixed point theorems are proved and an example is given
in the end. The paper provides a new method to prove the fixed point theorem for multi-valued mappings
in partial metric spaces. And we extend the results into metric-like spaces, which expand the application
range of the results.
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