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Abstract

In this paper, a pair of generalized nonlinear mappings are introduced. Sufficient conditions for the existence
of common fixed points for a pair of generalized nonlinear mappings in convex metric spaces are obtained
and Krasnoselskii type iterations are used to approximate common fixed points. Our results generalize and
extend various known results. c©2016 All rights reserved.
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1. Introduction and Preliminaries

In the past few decades, fixed point theorems for contractive type mappings have been extensively studied
by many authors in the framework of Banach spaces and metric spaces [2, 4, 5, 8, 14]. If the domain is a
closed convex subset, some common fixed point theorems for generalized contractive mappings in uniformly
convex Banach spaces are proved in [1]. In 1984, Wang et al. [13] gave some fixed point theorems for
expansive type mappings which correspond to some contractive type mappings. Later, Daffer and Kaneko
[3] defined a pair of expansive type mappings and prove some common fixed point theorems for two mappings
in metric spaces. In metric spaces, Takahashi [9] introduced a convex structure:

∗Corresponding author
Email addresses: wangchaosx@126.com (Chao Wang), ztz@nuist.edu.cn (Taizhong Zhang)

Received 2015-2-12



C. Wang, T. Z. Zhang, J. Nonlinear Sci. Appl. 9 (2016), 1–7 2

A convex structure in a metric space (X, d) is a mapping W : X ×X × [0, 1] → X satisfying, for each
x, y, u ∈ X and λ ∈ [0, 1],

d(u,W (x, y;λ)) ≤ λd(u, x) + (1− λ)d(u, y).

A metric space (X, d) together with a convex structure W is called a convex metric space (X, d,W ). More-
over, a nonempty subset K of X is said to be convex if W (x, y;λ) ∈ K for all (x, y;λ) ∈ K ×K × [0, 1].

In fact, every normed space and its convex subset are special examples of convex metric spaces. Many
authors ([6, 7, 10, 11, 12]) have considered some existence and convergence theorems for fixed points of
contractive type mappings in convex metric spaces.

Inspired and motived by the above results, we first define a pair of generalized nonlinear mappings (which
include many contractive type and expansive type mappings), if the domain is a closed convex subset of a
convex metric space, we study some sufficient conditions for existence of common fixed points for a pair of
generalized nonlinear mappings and use Krasnoselskii type iterations to approximate common fixed points.
Our results generalize and improve the corresponding results in [1, 2, 3, 4, 5, 6, 7, 8, 10, 13, 14].

Definition 1.1. Let K be a nonempty subset of a metric space (X, d). Two mappings T, S : K → K are
said to be a pair of generalized nonlinear mappings if there exist k, a, b, c such that

kd(Tx, Sy) ≤ ad(x, y) + b[d(x, Tx) + d(y, Sy)] + c[d(x, Sy) + d(y, Tx)] (1.1)

for all x, y ∈ K.

It is easy to see that contractive and expansive type mappings considered in [1, 2, 3, 4, 5, 6, 8, 10, 13, 14]
can be obtain from a pair of generalized nonlinear mappings (1.1) by suitably choosing the mappings T, S
and the coefficients (k, a, b, c). For example, let T = S and k = 1, a ≥ 0, b ≥ 0, c ≥ 0, a pair of generalized
nonlinear mappings (1.1) change into the generalized contractive mapping in [2, 4, 8, 10].

We need the following notations for a pair of generalized nonlinear mappings (1.1):

Γ1 =
⋃

λ∈[0,1)

Aλ, Γ2 =
⋃

λ∈[0,1)

Bλ, Γ3 =
⋃

λ∈[0,1)

Cλ, Γ4 =
⋃

λ∈[0,1)

Dλ,

where

Aλ = {(k, a, b, c)| b+ |c| ≤ a+ 2b+ c+ |c|+ (|k| − a)λ < k},
Bλ = {(k, a, b, c)| b+ c ≤ a+ 2b+ c+ |c|+ (|k|+ c− |c| − a)λ < k},
Cλ = {(k, a, b, c)| b+ |c| ≤ a+ 2b+ c+ |c| − (k + a)λ < −|k|},
Dλ = {(k, a, b, c)| b+ c ≤ a+ 2b+ c+ |c| − (k + a+ |c| − c)λ < −|k|}.

Note that if c ≥ 0, then Γ1 = Γ2 and Γ3 = Γ4. And if k ≤ 0, then Γ1 = Γ3 and Γ2 = Γ4.

2. Main results

For the proof of our main results, we require the following lemma in [9].

Lemma 2.1. Let (x, d,W ) be a convex metric space, then the following statements hold:

(i) d(x, y) = d(x,W (x, y;λ)) + d(y,W (x, y;λ)),

(ii) d(x,W (x, y;λ)) = (1− λ)d(x, y), d(y,W (x, y;λ)) = λd(x, y), for all x, y ∈ X and λ ∈ [0, 1].

Now, we give our main results.

Theorem 2.2. Let (X, d,W ) be a complete convex metric space, and K be a nonempty, closed and con-
vex subset of X. Suppose T, S : K → K is a pair of generalized nonlinear mappings (1.1) such that
(k, a, b, c) ∈ Γρ, for any ρ ∈ {1, 2, 3, 4}. Then, T and S have at least one common fixed point in K.
Furthermore, if a+ 2c < k, then T and S have a unique common fixed point in K.
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Proof. For any given point λ ∈ [0, 1), let x0 ∈ K, define the sequence {xn}λ by{
x2n+1 = W (x2n, Tx2n;λ),

x2n+2 = W (x2n+1, Sx2n+1;λ),
(2.1)

for all n ≥ 0.
Claim I. There exists θ ∈ [0, 1) such that for all n ≥ 0,

d(x2n+1, x2n+2) ≤ θd(x2n, x2n+1).

From Lemma 2.1 and (2.1), we get

d(x2n+1, x2n+2) = d(x2n+1,W (x2n+1, Sx2n+1;λ)) = (1− λ)d(x2n+1, Sx2n+1), (2.2)

d(x2n, x2n+1) = d(x2n,W (x2n, Tx2n;λ)) = (1− λ)d(x2n, Tx2n), (2.3)

for all n ≥ 0. Now, substituting x with x2n and y with x2n+1 in (1.1), we obtain

kd(Tx2n, Sx2n+1) ≤ ad(x2n, x2n+1) + b[d(x2n, Tx2n) + d(x2n+1, Sx2n+1)]

+ c[d(x2n, Sx2n+1) + d(x2n+1, Tx2n)]. (2.4)

By (2.1), Lemma 2.1 and (2.3), we get

d(x2n+1, Tx2n) = d(W (x2n, Tx2n;λ), Tx2n) = λd(x2n, Tx2n) =
λ

1− λ
d(x2n, x2n+1). (2.5)

By the triangle inequality for d(Tx2n, Sx2n+1), we have
d(Tx2n, Sx2n+1) ≤ d(Tx2n, x2n+1) + d(x2n+1, Sx2n+1),

d(Tx2n, Sx2n+1) ≥ −d(Tx2n, x2n+1) + d(x2n+1, Sx2n+1),

d(Tx2n, Sx2n+1) ≥ d(Tx2n, x2n+1)− d(x2n+1, Sx2n+1).

Therefore, it follows from (2.2) and (2.5) that

kd(Tx2n, Sx2n+1) ≥
−|k|λ
1− λ

d(x2n, x2n+1) +
k

1− λ
d(x2n+1, x2n+2), (2.6)

kd(Tx2n, Sx2n+1) ≥
kλ

1− λ
d(x2n, x2n+1)−

|k|
1− λ

d(x2n+1, x2n+2). (2.7)

Similarly, by the triangle inequality for d(x2n, Sx2n+1), we have
d(x2n, Sx2n+1) ≤ d(x2n, x2n+1) + d(x2n+1, Sx2n+1),

d(x2n, Sx2n+1) ≥ d(x2n, x2n+1)− d(x2n+1, Sx2n+1),

d(x2n, Sx2n+1) ≥ −d(x2n, x2n+1) + d(x2n+1, Sx2n+1).

Therefore, it follows from (2.2) that

cd(x2n, Sx2n+1) ≤ cd(x2n, x2n+1) +
|c|

1− λ
d(x2n+1, x2n+2), (2.8)

cd(x2n, Sx2n+1) ≤ |c|d(x2n, x2n+1) +
c

1− λ
d(x2n+1, x2n+2). (2.9)
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Case 1 : by (2.2)-(2.5), (2.6) and (2.8), we have

k

1− λ
d(x2n+1, x2n+2)−

|k|λ
1− λ

d(x2n, x2n+1) ≤ad(x2n, x2n+1) +
b

1− λ
d(x2n, x2n+1)

+
b

1− λ
d(x2n+1, x2n+2) +

cλ

1− λ
d(x2n, x2n+1)

+ cd(x2n, x2n+1) +
|c|

1− λ
d(x2n+1, x2n+2).

This implies that

k − b− |c|
1− λ

d(x2n+1, x2n+2) ≤
a+ b+ c+ (|k| − a)λ

1− λ
d(x2n, x2n+1).

Case 2 : as Case 1, by (2.2)-(2.5), (2.6) and (2.9), we have

k − b− c
1− λ

d(x2n+1, x2n+2) ≤
a+ b+ |c|+ (|k|+ c− a− |c|)λ

1− λ
d(x2n, x2n+1).

Case 3 : as Case 1, by (2.2)-(2.5), (2.7) and (2.8), we have

−|k| − b− c
1− λ

d(x2n+1, x2n+2) ≤
a+ b+ c− (k + a)λ

1− λ
d(x2n, x2n+1).

Case 4 : as Case 1, by (2.2)-(2.5), (2.7) and (2.9), we have

−|k| − b− c
1− λ

d(x2n+1, x2n+2) ≤
a+ b+ |c| − (k + a+ |c| − c)λ

1− λ
d(x2n, x2n+1).

The four above cases and (k, a, b, c) ∈ Γρ imply that Claim I holds.
Claim II. There exists θ ∈ [0, 1) such that for all n ≥ 1,

d(x2n, x2n+1) ≤ θd(x2n−1, x2n).

From Lemma 2.1 and (2.1), we also have

d(x2n+1, x2n) = d(W (x2n, Tx2n;λ), x2n) = (1− λ)d(x2n, Tx2n), (2.10)

d(x2n−1, x2n) = d(x2n−1,W (x2n−1, Sx2n−1;λ)) = (1− λ)d(x2n−1, Sx2n−1), (2.11)

for all n ≥ 1. Now, substituting x with x2n and y with x2n−1 in (1.1), we obtain

kd(Tx2n, Sx2n−1) ≤ ad(x2n, x2n−1) + b[d(x2n, Tx2n) + d(x2n−1, Sx2n−1)]

+c[d(x2n, Sx2n−1) + d(x2n−1, Tx2n)]

By the same method as Claim I, we can prove Claim II.
Claim III. {xn} is a Cauchy sequence in K.
From Claim I and Claim II, for any positive integer n ≥ 1, we have

d(xn+1, xn) ≤ θd(xn, xn−1),

where θ ∈ [0, 1). Thus, d(xn+1, xn) ≤ θnd(x1, x0), where x1 = W (x0, Tx0;λ). For any m > n, we have

d(xm, xn) ≤ [θn + θn+1 + · · ·+ θm−1]d(x1, x0) ≤
θn

1− θ
d(x1, x0).
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Hence, {xn} is a Cauchy sequence in K. Since K is a closed convex subset in X, there exists x∗ ∈ K such
that lim

n→∞
xn = x∗.

Claim V. x∗ is a common fixed point for a pair of generalized nonlinear mappings (1.1).
Letting n → ∞ in (2.2) and (2.11), we get that lim

n→∞
Sxn = x∗. By substituting x with x∗ and y with

xn in (1.1), we have

kd(Tx∗, Sxn) ≤ ad(x∗, xn) + b[d(x∗, Tx∗) + d(xn, Sxn)] + c[d(x∗, Sxn) + d(xn, Tx
∗)]

for all n ∈ N. Letting n→∞ in the above inequality, we have

kd(Tx∗, x∗) ≤ (b+ c)d(Tx∗, x∗).

Since (k, a, b, c) ∈ Γρ, it follows that d(Tx∗, x∗) = 0. Hence, x∗ = Tx∗. On the other hand, letting n → ∞
in (2.3) and (2.10), we get that lim

n→∞
Txn = x∗. By substituting x with x∗ and y with xn in (1.1), we have

kd(Txn, Sx
∗) ≤ ad(xn, x

∗) + b[d(xn, Txn) + d(x∗, Sx∗)] + c[d(xn, Sx
∗) + d(x∗, Txn)]

for all n ∈ N. Letting n→∞ in the above inequality, we have

kd(x∗, Sx∗) ≤ (b+ c)d(x∗, Sx∗).

Since (k, a, b, c) ∈ Γρ, it follows that x∗ = Sx∗. Therefore, Claim V holds.
Claim VI. If (k, a, b, c) ∈ Γρ and a+ 2c < k, then x∗ is the unique common fixed point of T and S.
Assume that there exist x1, x2 ∈ K such that Tx1 = Sx1 = x1, Tx2 = Sx2 = x2. Substituting x with

x1 and y with x2 in (1.1), we have

kd(Tx1, Sx2) ≤ ad(x1, x2) + b[d(x1, Tx1) + d(x2, Sx2)] + c[d(x1, Sx2) + d(x2, Tx1)].

That is
kd(x1, x2) ≤ (a+ 2c)d(x1, x2).

This implies that x1 = x2. We conclude that Claim VI holds.

Remark 2.3. (i) Instead of Picard iterations considered in [1, 2, 3, 4, 5, 8, 13, 14], we use Krasnoselskii type
iterations (2.1) to converge common fixed points for a pair of generalized nonlinear mappings (1.1) in convex
metric space.

(ii) From Theorem 2.2, we can also study some sufficient conditions for existence of common fixed points
for the following two mappings in convex metric space:

kd(Tx, Sy) ≤ a1d(x, y) + a2d(x, Tx) + a3d(y, Sy) + a4d(x, Sy) + a5d(y, Tx).

Now, we give a special example to illustrate the results of Theorem 2.2.

Example 2.4. Let X = R (the set of real numbers) with the usual metric, K = [0,∞) and T, S : K → K
be given by

Tx =

{
x
4 , x ∈ U = [0, 12);
x
8 , x ∈ V = [12 ,∞).

Sx =

{
x
8 , x ∈ U = [0, 12);
x
4 , x ∈ V = [12 ,∞).

Then we have the following statements:

(i) T and S has a unique common fixed point 0;

(ii) T and S are a pair of generalized nonlinear mappings (1.1) with k = 1, a = 1
4 , b = 1

3 , c = 0 and
λ ∈ [0, 19) (which satisfy (k, a, b, c) ∈ Γ2 and a+ 2c < 1 ). In fact, let M(x, y) = ad(x, y) + b[d(x, Tx) +
d(y, Ty)] + c[d(x, Ty) + d(y, Tx)], we know that
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Case 1: For x, y ∈ U ,

d(Tx, Sy) = |x
4
− y

8
| ≤x

4
+
y

8
≤ 1

4
|x− y|+ 1

3
[
3

4
x+

7

8
y] + 0[|x− y

8
|+ |y − x

4
|] = M(x, y),

Case 2: For x, y ∈ V ,

d(Tx, Sy) = |x
8
− y

4
| ≤x

8
+
y

4
≤ 1

4
|x− y|+ 1

3
[
7

8
x+

3

4
y] + 0[|x− y

4
|+ |y − x

8
|] = M(x, y),

Case 3: For x ∈ U, y ∈ V ,

d(Tx, Sy) = |x
4
− y

4
| ≤1

4
|x− y|+ 1

3
[|x− x

4
|+ |y − y

4
|] + 0[|x− y

4
|+ |y − x

4
|] = M(x, y),

Case 4: For x ∈ V, y ∈ U ,

d(Tx, Sy) = |x
8
− y

8
| ≤1

4
|x− y|+ 1

3
[|x− x

8
|+ |y − y

8
|] + 0[|x− y

8
|+ |y − x

8
|] = M(x, y);

(iii) Let k = 1, a = 1
4 , b = 1

3 , c = 0, for λ ∈ [0, 19) , a family iterations {xn} defined by{
x2n+1 = W (x2n, Tx2n;λ),

x2n+2 = W (x2n+1, Sx2n+1;λ),

converge to the unique fixed point 0.

Let k = 1 and λ = 0 in Theorem 2.2, we get the following result for a pair of generalized contractive
type mappings.

Corollary 2.5. Let (X, d,W ) be a complete convex metric space, and K be a nonempty, closed and convex
subset of X. Suppose T, S : K → K such that

d(Tx, Sy) ≤ ad(x, y) + b[d(x, Tx) + d(y, Sy)] + c[d(x, Sy) + d(y, Tx)] (2.12)

where b + c ≤ a + 2b + c + |c| < 1. Then, T and S have a common fixed point in K. Furthermore, if
a+ 2c < 1, then T and S have a unique common fixed point in K.

Proof. It follows from k = 1 and λ = 0 that

Γ3 ⊆ Γ4 ⊆ Γ2, Γ3 ⊆ Γ1 ⊆ Γ2,

where Γ2 = {(1, a, b, c)| b+ c ≤ a+ 2b+ c+ |c| < 1}. Therefore, by Theorem 2.2, the result follows.

Remark 2.6. Corollary 2.5 extends the results in [1, 2, 4, 5, 8, 14] to convex metric spaces and generalized
the corresponding results in [2, 4, 6, 8, 10] as a pair of generalized contractive type mappings (2.12).

Let k = −1 and λ = 0 in Theorem 2.2, we get the following result for generalized expansive type
mappings.

Corollary 2.7. Let (X, d,W ) be a complete convex metric space, and K be a nonempty, closed and convex
subset of X. Suppose T, S : K → K such that

d(Tx, Sy) ≥ a′d(x, y) + b′[d(x, Tx) + d(y, Sy)] + c′[d(x, Sy) + d(y, Tx)] (2.13)

where 1 < a′ + 2b′ + c′ − |c′| ≤ b′ + c′. Then, T and S have a common fixed point in K. Furthermore, if
a′ + 2c′ > 1, then T and S have a unique common fixed point in K.
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Proof. It follows from k = −1 and λ = 0 that

Γ3 = Γ1 ⊆ Γ2 = Γ4,

where Γ2 = {(−1, a, b, c)| b+ c ≤ a+ 2b+ c+ |c| < −1}. Let a′ = −a, b′ = −b, c′ = −c, from Theorem 2.2,
the result follows.

Remark 2.8. If the domain is a closed convex subset of convex metric spaces, we give a sufficient condition for
existence of common fixed points for a pair of generalized expansive type mappings (2.13). Hence Corollary
2.7 improves the corresponding results in [3, 13].

Theorem 2.9. Let (X, d,W ) be a complete convex metric space, and K be a nonempty, closed and convex
subset of X. Suppose T, S : K → K, there exist positive integer p, q such that

kd(T px, Sqy) ≤ ad(x, y) + b[d(x, T px) + d(y, Sqy)] + c[d(x, Sqy) + d(y, T px)]

where (k, a, b, c) ∈ Γρ, for any ρ ∈ {1, 2, 3, 4}. If a + 2c < k, then T and S have a unique common fixed
point in K.

Proof. Let T ′ = T p and S′ = Sq, from Theorem 2.2, we know that T ′ and S′ have a unique common fixed
point u ∈ K. Since

T p(Tu) = T (T pu) = Tu, Sq(Su) = S(Squ) = Su,

it follows that Tu = Su = u. Hence T and S have a unique common fixed point u ∈ K.

Remark 2.10. As Corollary 2.5 and Corollary 2.7, we can also get some corollaries for Theorem 2.9.
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