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Abstract

In this literature, the calculation of generalized center conditions is addressed for resonant infinity of a
polynomial vector field in C2. The technique is taking resonant infinity into elementary resonant origin by
a homeomorphism. Afterwards, an algorithm to compute generalized singular point quantities is developed,
which is a good approach to find the necessary conditions of generalized center for any rational resonance
ratio. Finally, the necessary and sufficient conditions of generalized center for resonant infinity are obtained.
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1. Introduction

The classical problem of center is invariably restricted to the following polynomial real planar vector
fields

ẋ = −y + P (x, y), ẏ = x+Q(x, y), (1.1)

with x, y, t ∈ R, P and Q are polynomials belonging to some natural class (e.g. of degree ≤ n, homogeneous
of degree n). One has to find conditions, on the coefficients of P and Q, under which a neighborhood of the
origin is covered by periodic solution of the system (1.1).

The above problem was completely solved only in the following two general situations:
(i) When P and Q are homogeneous polynomials of degree 2 (by Dulac and Kapteyn);
(ii) When P and Q are homogeneous polynomials of degree 3 (by Sibirskĭi [9, 10]).
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The mentioned center problem is the subject of much work (see monographs [5, 13]), here we do not cite
many more concrete literatures.

When we treat (1.1) as a system in the complex plane (with complex time), then after a simple change
of variable it is equivalent to

ẋ = x+ · · · , ẏ = −y + · · · , (1.2)

i.e. to a 1 : −1 resonant saddle. The existence of a center is equivalent to the existence of a local analytic
first integral of the form H = xy+ · · · (Equivalent condition: absence of the resonant terms (xy)k(x∂x+y∂y)
in the normal form).

On the other hand, to our notice, a natural generalization of the center problem is proposed in [14] to
consider the case of a polynomial vector field in C2 with p : −q resonant elementary singular point

ẋ = px+ P (x, y), ẏ = −qy +Q(x, y), (1.3)

with p, q ∈ Z+. The only way to get necessary conditions for a center is to compute the p : −q resonant
focus numbers, the analogues of the Poincaré-Lyapunov focus quantities. If p and q coprimes, then one can
calculate the successive terms in the Taylor expansion of the supposed first integral and the p : −q resonant
focus numbers gk are the coefficients of the obstacles to its existence:

H = xqyp + · · · , Ḣ =
∑

gk(x
qyp)k+1. (1.4)

The g′ks are polynomials in the coefficients of the system and can be calculated algorithmically.
Looking for conditions for the existence of a local analytic first integral H = xqyp + · · · (i.e. for the

existence of a p : −q resonant center) for system (1.3) has stimulated a great deal of effort from then on.
Equivalent condition for the mentioned problem is the absence of the resonant terms (xqyp)k(px∂x + qy∂y)
in the normal form. For the 1 : −2 resonant singular point the integrability problem is completely solved in
[3, 14] where necessary and sufficient conditions (20 cases) are given. Lotka-Volterra systems of the form

ẋ = x+ ax2 + bxy, ẏ = −λy + cxy + dy2 (λ > 0) (1.5)

is sufficiently general to give important information on the organization of strata in families of polynomial
systems. One can find parameters such that system (1.5) is normalizable, normalizable but not integrable,
integrable but not linearizable. Necessary and sufficient conditions for integrability and linearizability are
already known in [2, 14] for the case λ ∈ N, that is the 1 : −n resonant cases. In [4], some sufficient
conditions are given in the case of general λ. For the case λ = p

2 or 2
p , p ∈ N+, necessary and sufficient

conditions for integrable and linearizable systems are given. They have proven that, in the case λ = p
2 or

2
p , p ∈ N+, if a = d = 0, bc 6= 0 then system (1.5) is integrable but not linearizable, and raised the question
for general rational λ, other open problems are also suggested. In [6], some sufficient conditions for the
systems (1.5) with 3 : −q resonance were given, and the integrability of the particular cases of 3 : −4 and
3 : −5 resonances were investigated.

Y. Wu and C. Zhang ([11]) explored the problems of generalized center conditions and integrability of
resonant infinity for the following complex polynomial differential system

dz
dT = pzn+1wn +

2n∑
α+β=0

aαβz
αwβ,

dw
dT = −qwn+1zn −

2n∑
α+β=0

bαβw
αzβ,

(1.6)

where z, w, T, aαβ, bαβ ∈ C, p, q ∈ Z+, (p, q) = 1, n ∈ N. A new recursive algorithm for computing generalized
singular point quantities at resonant singular point was derived. Compared with the above results, by using
the method of integrating factor method, we develop a parallel recursive algorithm to the calculation of
generalized singular point quantities at resonant infinity in this paper.
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The organization of this paper is as follows. Sec. 2 is a section of generalities: we give the definitions
of generalized singular point quantity, generalized complex center, algebraic equivalence, etc., which we will
use in this paper. In Sec. 3 we state and prove the main result. In Sec. 4, as for the experimental part of
our study, we specialize to a class of cubic systems and discuss the conditions under which resonant infinity
can be a generalized complex center.

2. Generalized singular point quantity and integrability

First of all, we need to clarify the main notation as well as the definitions, lemmas and theorems.
Consider the complex polynomial differential system with the form

dz
dT = pz +

∞∑
α+β=2

aαβz
αwβ = Z(z, w),

dw
dT = −qw −

∞∑
α+β=2

bαβw
αzβ = −W (z, w).

(2.1)

Lemma 2.1 ([1, 4]). For system (2.1), we can derive uniquely the following formal series

ξ = z +
∞∑

k+j=2

ckjz
kwj , η = w +

∞∑
k+j=2

dkjw
kzj , (2.2)

where p0 = q0 = 1, ck+1,k = dk+1,k = 0, k = 1, 2, · · · , such that system (2.1) can be transformed into its
normal form

dξ

dT
= pξ

∞∑
i=0

pi(ξ
qηp)i,

dη

dT
= −qη

∞∑
i=0

qi(ξ
qηp)i. (2.3)

Definition 2.2. For system (2.1), the quantity µk = pk−qk is called the generalized singular point quantity
of order k of the origin. If µ1 = µ2 = · · · = µk−1 = 0, µk 6= 0, then the origin is called a fine singular point
of order k. If for all k, µk = 0, then the origin is called a generalized complex center.

Remark 2.3. If system (2.1) is a real system, then ”µk” defined in Definition 2.2 is ”the saddle quantity of
order k” defined in [14].

Lemma 2.4 ([12]). The origin of system (2.1) is a generalized complex center if and only if system (2.1)
has a regular first integral at the origin.

Definition 2.5 ([7]). For system (1.6)p=q=1 and any positive integer k, if there exist ζ1, ζ2, · · · , ζk−1 which
are polynomials in aαβ, bαβ, such that

µk + ζ1µ1 + ζ2µ2 + · · ·+ ζk−1µk−1 = λk, (2.4)

we say that µk and λk are algebraic equivalence denoted by µk ∼ λk.

Lemma 2.6 ([8]). For system (2.1), we can derive successively the following formal series

M(z, w) =

∞∑
α+β=p+q−2

cαβz
αwβ = zq−1wp−1 + h.o.t., (2.5)

where ckq,kp = 0, k = 1, 2, 3, · · · , h.o.t. stands for high order terms, such that

∂(MZ)

∂z
− ∂(MW )

∂w
= zq−1wp−1

∞∑
m=1

(m+ 1)λm(zqwp)m. (2.6)

If λ1 = λ2 = · · · = λm−1 = 0, λm 6= 0, then µ1 = µ2 = · · · = µm−1 = 0, µm 6= 0, and λm ∼ pqµm, m =
1, 2, · · · , where ” ∼ ” is the symbol of algebraic equivalence.
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Theorem 2.7 ([11]). Infinity of system (1.6) is a generalized complex center if and only if there exist a
non-zero real number s and a first integral

G(z, w) = (z−qw−p)s
∞∑
k=0

g(2n+1)k(z, w)

(zw)(n+1)k
. (2.7)

3. The algorithm

By means of transformation

z =
z1

(z1w1)n+1
, w =

w1

(z1w1)n+1
, dT = (2n+ 1)(z1w1)

n(2n+1)dT1 (3.1)

and renaming (z1, w1, T1) by (z, w, T ), system (1.6) is brought to

dz
dT = p∗z +

2n∑
α+β=0

[naαβ + (n+ 1)bβ+1,α−1]z
α+1wβ+1(zw)(2n−α−β)(n+1) = Z̃(z, w),

dw
dT = −q∗w −

2n∑
α+β=0

[nbαβ + (n+ 1)aβ+1,α−1]w
α+1zβ+1(zw)(2n−α−β)(n+1) = −W̃ (z, w),

(3.2)

where
p∗ = np+ (n+ 1)q, q∗ = nq + (n+ 1)p. (3.3)

Accordingly, infinity of system (1.6) becomes the origin of system (3.2). Note that transformation (3.1) is a
homeomorphism, thus the study of infinity of system (1.6) is equivalent to the study of the origin of system
(3.2). The origin is an elementary p∗ : −q∗ resonant singular point of system (3.2).

Remark 3.1. For system (3.2), the functions on the right hand side have the following peculiarities:
(i) There exist two complex straight line solutions z = 0 and w = 0.
(ii) The degree of every monomial higher than one is (2n+ 1− α− β)(2n+ 1) + 1, α+ β = 0, 1, · · · , 2n.
From Lemma 2.6, we have

Theorem 3.2. For system (3.2), we can derive successively the following formal series

M̃(z, w) =

∞∑
α+β=p∗+q∗−2

c̃αβz
αwβ = zq

∗−1wp
∗−1 + h.o.t., (3.4)

where c̃kq∗,kp∗ = 0, k = 1, 2, 3, · · · , such that

∂(M̃Z̃)

∂z
− ∂(M̃W̃ )

∂w
= zq

∗−1wp
∗−1

∞∑
m=1

(m+ 1)λ̃m(zq
∗
wp

∗
)m, (3.5)

and λ̃m ∼ p∗q∗µm,m = 1, 2, · · · .
The coefficients c̃αβ and λ̃m above are determined as follows: for ∀(α, β), when p∗(α + 1) = q∗(β + 1),

c̃αβ are arbitrary; when p∗(α+ 1) 6= q∗(β + 1),

c̃αβ =
1

q∗(β + 1)− p∗(α+ 1)

2n+1∑
k+j=1

{[nα− (n+ 1)β − 1]ak,j−1 − [nβ − (n+ 1)α− 1]bj,k−1}

× c̃α+nk+(n+1)j−(2n+1)(n+1),β+nj+(n+1)k−(2n+1)(n+1).

(3.6)

For any positive integer m,

λ̃m = (2n+ 1)
2n+1∑
k+j=1

(pbj,k−1 − qak,j−1)c̃q∗(m+1)+nk+(n+1)j−(2n2+3n+2),p∗(m+1)+nj+(n+1)k−(2n2+3n+2). (3.7)
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In expressions (3.6) and (3.7), for p∗ + q∗ − 2 ≤ α+ β ≤ p∗ + q∗ + 2n− 2, we have already let

c̃αβ =

{
1, α = q∗ − 1, β = p∗ − 1,
0, for other (α, β)

(3.8)

and if α < 0 or β < 0, let aαβ = bαβ = c̃αβ = 0.

Proof. System (3.2) can also be expressed as

dz

dT
= p∗z +

2n+1∑
k+j=1

[nak,j−1 + (n+ 1)bj,k−1]z
k+1+(2n+1−k−j)(n+1)wj+(2n+1−k−j)(n+1) = Z̃(z, w),

dw

dT
= −q∗w −

2n+1∑
k+j=1

[nbj,k−1 + (n+ 1)ak,j−1]z
k+(2n+1−k−j)(n+1)wj+1+(2n+1−k−j)(n+1) = −W̃ (z, w).

(3.9)

Taking partial derivative of M̃Z̃ and M̃W̃ with respect to z and w, we have

∂(M̃Z̃)

∂z
− ∂(M̃W̃ )

∂w
= (

∂M̃

∂z
Z̃ − ∂M̃

∂w
W̃ ) + (

∂Z̃

∂z
− ∂W̃

∂w
)M̃

=
∞∑

α+β=p∗+q∗−2
αc̃αβz

α−1wβ{p∗z +
2n+1∑
k+j=1

[nak,j−1 + (n+ 1)bj,k−1]

× zk+1+(2n+1−k−j)(n+1)wj+(2n+1−k−j)(n+1)}

−
∞∑

α+β=p∗+q∗−2
βc̃αβz

αwβ−1{q∗w +
2n+1∑
k+j=1

[nbj,k−1 + (n+ 1)ak,j−1]

× zk+(2n+1−k−j)(n+1)wj+1+(2n+1−k−j)(n+1)}

+
∞∑

α+β=p∗+q∗−2
c̃αβz

αwβ{(p∗ − q∗) +
2n+1∑
k+j=1

{[k + 1 + (2n+ 1− k − j)(n+ 1)][nak,j−1 + (n+ 1)bj,k−1]

− [j + 1 + (2n+ 1− k − j)(n+ 1)][nbj,k−1 + (n+ 1)ak,j−1]}zk+(2n+1−k−j)(n+1)wj+(2n+1−k−j)(n+1)}

=

∞∑
α+β=p∗+q∗−2

[p∗(α+ 1)− q∗(β + 1)]c̃αβz
αwβ

+

∞∑
α+β=p∗+q∗−2

2n+1∑
k+j=1

{α[nak,j−1 + (n+ 1)bj,k−1]− β[nbj,k−1 + (n+ 1)ak,j−1]}

× c̃αβzα+k+(2n+1−k−j)(n+1)wβ+j+(2n+1−k−j)(n+1)

+
∞∑

α+β=p∗+q∗−2

2n+1∑
k+j=1

{[k + 1 + (2n+ 1− k − j)(n+ 1)][nak,j−1 + (n+ 1)bj,k−1]

− [j + 1 + (2n+ 1− k − j)(n+ 1)][nbj,k−1 + (n+ 1)ak,j−1]}

× c̃αβzα+k+(2n+1−k−j)(n+1)wβ+j+(2n+1−k−j)(n+1)

=

∞∑
α+β=p∗+q∗−2

[p∗(α+ 1)− q∗(β + 1)]c̃αβz
αwβ
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+
∞∑

α+β=p∗+q∗−2

2n+1∑
k+j=1

{[nα− (n+ 1)β + (2n+ 1)k − (2n2 + 3n+ 2)]ak,j−1

− [nβ − (n+ 1)α+ (2n+ 1)j − (2n2 + 3n+ 2)]bj,k−1}

× c̃αβzα+k+(2n+1−k−j)(n+1)wβ+j+(2n+1−k−j)(n+1).

For p∗ + q∗ − 2 ≤ α+ β ≤ p∗ + q∗ + 2n− 2, let c̃αβ be a piecewise constant function, such that

c̃αβ =

{
1, α = q∗ − 1, β = p∗ − 1,
0, for other (α, β).

(3.10)

So

∞∑
α+β=p∗+q∗−2

[p∗(α+ 1)− q∗(β + 1)]c̃αβz
αwβ =

∞∑
α+β=p∗+q∗+2n−1

[p∗(α+ 1)− q∗(β + 1)]c̃αβz
αwβ. (3.11)

By calling the new variables

α′ = α+ k + (2n+ 1− k − j)(n+ 1), β′ = β + j + (2n+ 1− k − j)(n+ 1), (3.12)

we have
α′ + β′ = α+ β + (2n+ 2− k − j)(2n+ 1) ≥ p∗ + q∗ + 2n− 1. (3.13)

We preserve the notation (α, β) for (α′, β′), then

∞∑
α+β=p∗+q∗−2

2n+1∑
k+j=1

{
[nα− (n+ 1)β + (2n+ 1)k − (2n2 + 3n+ 2)]ak,j−1

− [nβ − (n+ 1)α+ (2n+ 1)j − (2n2 + 3n+ 2)]bj,k−1
}

× c̃αβzα+k+(2n+1−k−j)(n+1)wβ+j+(2n+1−k−j)(n+1)

=
∞∑

α+β=p∗+q∗+2n−1

2n+1∑
k+j=1

{[nα− (n+ 1)β − 1]ak,j−1 − [nβ − (n+ 1)α− 1]bj,k−1}

× c̃α−k−(2n+1−k−j)(n+1),β−j−(2n+1−k−j)(n+1)z
αwβ.

(3.14)

Furthermore,

∂(M̃Z̃)

∂z
− ∂(M̃W̃ )

∂w
=

∞∑
α+β=p∗+q∗+2n−1

{[p∗(α+ 1)− q∗(β + 1)]c̃αβ

+
2n+1∑
k+j=1

{[nα− (n+ 1)β − 1]ak,j−1 − [nβ − (n+ 1)α− 1]bj,k−1}

× c̃α+nk+(n+1)j−(2n+1)(n+1),β+nj+(n+1)k−(2n+1)(n+1)}zαwβ.

(3.15)

Denote that

∇αβ =

2n+1∑
k+j=1

{[nα− (n+ 1)β − 1]ak,j−1 − [nβ − (n+ 1)α− 1]bj,k−1}

× c̃α+nk+(n+1)j−(2n+1)(n+1),β+nj+(n+1)k−(2n+1)(n+1).

(3.16)
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When p∗(α+ 1)− q∗(β+ 1) 6= 0, let [p∗(α+ 1)− q∗(β+ 1)]c̃αβ +∇αβ = 0, from expressions (3.15) and (3.16),

one can obtain c̃αβ =
∇αβ

q∗(β+1)−p∗(α+1) , namely, formula (3.6). When p∗(α + 1) − q∗(β + 1) = 0, comparing

(3.5) with (3.15), one obtains (m+ 1)λ̃m = ∇q∗(m+1)−1,p∗(m+1)−1, namely, formula (3.7).

This theorem gives a recurrent way to compute the generalized singular point quantities at resonant
infinity of system (1.6) in terms of its coefficients.

4. An illustrative example

In this section, we present a class of concrete systems of the form (1.6) to illustrate the validity of the
theoretical results obtained in the previous section.

Consider the cubic complex polynomial differential system as follows:

dz

dT
= a20z

2 + a11zw + z2w,

dw

dT
= −b20w2 − b11wz − 2w2z.

(4.1)

Theorem 4.1. Consider system (4.1), the following assertions hold.

(i) Computing with the recursive formulae in Theorem 3.1 of [11], we summarize the first three generalized
singular point quantities at resonant infinity as follows:

λ1 = −3

2
b20(2a20a11 + a11b11 − b20b11),

λ2 =
1

4
b20(2a11a20 + a11b11 − b11b20)(46a211a20 + 42a211b11 + 99a11a20b20 − 108a11b11b20

− 67a20b
2
20 + 48b11b

2
20),

λ3 = − 1

960
b20(2a11a20 + a11b11 − b11b20)(861216a411a

2
20 − 617136a411a20b11 + 339120a411b

2
11

− 1553120a311a
2
20b20 + 2384780a311a20b11b20 − 1236870a311b

2
11b20 + 2403420a211a

2
20b

2
20

− 3937820a211a20b11b
2
20 + 1677465a211b

2
11b

2
20 − 1728280a11a

2
20b

3
20 + 2567800a11a20b11b

3
20

− 958230a11b
2
11b

3
20 + 406524a220b

4
20 − 563224a20b11b

4
20 + 194715b211b

4
20).

(4.2)

(ii) Computing with the recursive formulae (3.6) and (3.7), we summarize the first three generalized sin-
gular point quantities at resonant infinity as follows:

λ̃1 = −3

2
b20(2a20a11 + a11b11 − b20b11),

λ̃2 = −1

4
b20(2a11a20 + a11b11 − b11b20)(46a211a20 + 54a211b11 + 87a11a20b20 − 132a11b11b20

− 43a20b
2
20 + 48b11b

2
20),

λ̃3 = − 1

960
b20(2a11a20 + a11b11 − b11b20)(861216a411a

2
20 − 1020336a411a20b11 + 646920a411b

2
11

− 1149920a311a
2
20b20 + 2842880a311a20b11b20 − 1955970a311b

2
11b20 + 1637520a211a

2
20b

2
20

− 3941120a211a20b11b
2
20 + 2303865a211b

2
11b

2
20 − 1005880a11a

2
20b

3
20 + 2153500a11a20b11b

3
20

− 1130130a11b
2
11b

3
20 + 194424a220b

4
20 − 391324a20b11b

4
20 + 194715b211b

4
20).

(4.3)

On the basis of Theorem 4.1, it is easy to check that the following equalities are satisfied:

λ1 = λ̃1,

λ2 = λ̃2 + 2(2b20 − a11)(a20b20 − a11b11)λ̃1,

λ3 = λ̃3 +
5

24
(a20b20 − a11b11)(−1344a311a20 + 1026a311b11 + 2553a211a20b20 − 2397a211b11b20

− 2408a11a20b
2
20 + 2088a11b11b

2
20 + 707a20b

3
20 − 573b11b

3
20)λ̃1,

(4.4)
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which suggest that λm ∼ λ̃m,m = 1, 2, 3. And so we can obtain the same integrable conditions at resonant
infinity as those in Theorem 5.2 of [11].
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