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Abstract

In this paper, a new kind of repairable system with repairman vacation and warning device is discussed,
in which the delayed vacation rate and failure rates are functions related to system working time. The
system model is established by using probability analysis method, which then is translated into a initial
value problem of a class of abstract semi-linear evolution equation in a suitable Banach space for further
study. The conditions of the existence and uniqueness of the system solution as well as system stability is
analyzed by using C0-semigroup theory. Some steady-state reliability indexes are studied by using Laplace
transformation. In the end, numerical examples are presented to compare some indexes of the systems with
and without warning device. c©2016 All rights reserved.

Keywords: Repairable system, delayed-multiple vacations, semi-linear evolution system, C0-semigroup
theory, well-posedness, stability, sensitivity analysis.
2010 MSC: 47H10, 54H25.

1. Introduction

Repairable systems can be found in a variety of areas, such as aviation, aerospace, defense, finance and
network communications. The well understanding of this type of systems is of both theoretical significance
and real applications. From the perspective of rational use of human resources, the models with repairman’s
vacation makes repairable systems more realistic and flexible. The concept of repairman vacation originally
occurred in queueing systems, which has been well studied in the past three decades and successfully
applied in many areas such as manufacturing/service and computer/communication network systems. For
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excellent works, one can refer to [2, 7, 16, 17]. In the early twentieth century, inspired by the vacation
queueing models, researchers, such as Jain, Rakhee & Singh [5], Ke & Wang [6], Liu, Tang & Luo [13], et
al., introduced the concept of repairman vacation into repairable systems, including delayed vacation, single
vacation and multiple vacations. However, to the authors’ best knowledge, most of available references about
repairable systems with repairman vacation are interested in the system steady-state behaviors. Moreover,
the failure rates in all available references are either constants or at most, are related to the age of a system
(for detailed information, on can refer to [11, 12]), but not related to the working time of a system. But in
practice, the failure rate of a unit is generally dependent on the working time of the system. For example,
the failure rate can be increased with the system running. Then it will be decreased with the measures such
as preventive maintenance, periodic detection and periodic maintenance. For this reason, we are dedicated
to studying a repairable system with repairman vacation in which the failure rate of all the units are related
to the working time of the system.

As Mobley [14] pointed out, one third of all maintenance costs were wasted as the result of unnecessary
or improper maintenance activities. Today, the role of maintenance tends to be a “profit contributor”. Much
more profit probably be produced when different repairs are considered according to the extent of damages
of a system. In practice, in the light of maintenance content, technical requirements and workload size,
equipment repair work can be divided into three categories, namely, overhaul, moderate repair and minor
repair. Overhaul is the largest planned maintenance work. To achieve the goal of complete elimination of
defects prior to repair as well as restoration of specified function and precision, during the process of overhaul,
all or most of the equipment components are disassembled and all defective parts are either repaired or
replaced. Moderate repair is applied to the equipment when the states of the components of equipment
are deteriorated to not able to reach the production process requirements. During the process of moderate
repair, a portion of equipment components are generally disassembled and inspected. Then, failed parts
are, if necessary, either repaired or replaced to restore their precision and performance. Moderate repair has
characteristics of flexible arrangements, strong pertinence, short downtime, low maintenance costs, meeting
production needs in a timely manner, and avoiding excess maintenance. For large equipment or single key
equipment, moderate repair can be arranged in production gap time (holidays) to ensure normal production
based on the issues found in the daily inspection and/or monitoring. Minor repair is the minimal scheduled
maintenance. The content for minor repairs is to adjust, replace or repair of failed parts to restore the
normal function of the equipment according to the problems found in routine inspection, periodic inspection
and condition monitoring diagnostic problems. For the periodic maintenance of the equipment, the main
content of minor repair is to replace or repair the parts which are going to be out of work in the maintenance
interval period to ensure the normal function of the equipment based on the mastered law of wearing.

Warning systems emerged in the background of repairable systems are stepping into the times of requiring
of both advanced warning and real-time fault detection. The so-called warning system is able to send
emergency signals and report dangerous situations prior to disasters, catastrophes and/or other dangers
need to watch out based on previous experiences and or observed possible omens. Real-time warning
systems play an important role in fault management in banking, telecommunications, securities, electric
power and other industries. If the warning prompts during system operation, operating staff can choose
whether to shut down the system, operate carefully, or repair the system. Warning systems can help users
to achieve the 24-hour uninterrupted real-time monitoring and alerting during running of various types of
network infrastructure sand application services. Accordingly, the study of repairable systems with warning
device is important both in theory and in practice. However, repairable systems with warning device are
seldom reported in the current literatures.

To this end, this paper considers a simple repairable system with a warning device which can send an
alarm when the system is not in good condition and a repairman who follows delayed-multiple vacations
policy and carries out overhaul or minor repair for the system according to the defects. In this paper, we are
devoted to studying the transient and asymptotic behavior of the system by semigroup theory, and make
comparisons of indices (such as reliability, availability, and the probability of the repairman’ vacation) and
profit of the two systems with and without warning device.
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The rest of the paper is arranged as follows. In the following section, the system model is established by
using probability analysis method and then is translated into a initial value problem of a class of abstract
semi-linear evolution equation in a Banach space. In Section 3, some properties of the system operator are
discussed, thereby the existence and uniqueness, and the continuous dependence of the system solution for
the initial value are derived by using C0-semigroup theory. In Section 4, we derive some of reliability indexes,
such as steady-state availability, steady-state failure frequency, and steady-state probability of repairman
on vacation by using Laplace transform method. Section 5 does numerical analysis. And a brief conclusion
is presented in Section 6 at the end of the paper.

2. System formulation

The system model considered in this paper is an one-unit repairable system with a repairman and a
warning device. The system is described specifically as follows: at the initial time t = 0, the unit is new, the
system begins to work and the repairman starts to prepare for vacation. That is the repairman will not leave
for a vacation immediately if there is no component failed. However, there is a stochastic vacation-preparing
period in which if a failed component appears he will stop the vacation preparing and serve it immediately;
otherwise he will take a rest on the end of the vacation-preparing period. The warning device can send
an alarm once the system fails. And we assume that the warning device is sensitive enough to send only
true alarms which need to repair. If the warning device sends an alarm in the delayed-vacation period, the
repairman will stay in the system until the unit fails. Whenever the repairman returns from a vacation,
he either prepares for the next vacation if the unit is working or deals with the failed unit immediately, or
stays in the system if the warning device has sent an alarm. That is the repairman follows delayed-multiple
vacation policy. And we assume that the time repairman returning to the system can not be late than the
time warning device sending next alarm. The system may go for minor repair or overhaul from its warning
state with probability λ1(t) or λ2(t) respectively. The repair facility is neither failed nor deteriorated. The
unit is repaired as good as new.

Set all possible states of the system at time t as follows.

0 the system is working and the repairman is preparing for the vacation.;

1 the system is working and the repairman is on vacation;

2 the system is warning and the repairman is in the system;

21 the unit is minor repaired by the repairman;

22 the unit is overhauled by the repairman;

3 the system is warning and the repairman is on vacation;

31 the unit needs to be minor repaired while the repairman is on vacation;

32 the unit needs to be overhauled while the repairman is on vacation.

Then with the probability analysis method, the system model can be described as follows.[
d

dt
+ ε(t) + α0

]
P0(t) =

∫ ∞
0

r(x)P1(t, x)dx+

2∑
i=1

∫ ∞
0

µi(y)P2i(t, y)dy (2.1)[
∂

∂t
+

∂

∂x
+ α0 + r(x)

]
P1(t, x) = 0 (2.2)[

d

dt
+ λ1(t) + λ2(t)

]
P2(t) = α0P0(t) +

∫ ∞
0

r(x)P3(t, x)dx (2.3)[
∂

∂t
+

∂

∂x
+ λ1(t) + λ2(t) + r(x)

]
P3(t, x) = α0P1(t, x) (2.4)[

∂

∂t
+

∂

∂y
+ µi(y)

]
P2i(t, y) = 0, i = 1, 2 (2.5)[

∂

∂t
+

∂

∂x
+ r(x)

]
P3i(t, x) = λi(t)P3(t, x), i = 1, 2 (2.6)
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The boundary conditions are

P1(t, 0) = ε(t)P0(t); (2.7)

P3(t, 0) = P3i(t, 0) = 0, i = 1, 2; (2.8)

P2i(t, 0) = λi(t)P2(t) +

∫ ∞
0

r(x)P3i(t, x)dx, i = 1, 2. (2.9)

The initial conditions are

P0(0) = 1, the others equal to 0. (2.10)

Here Pi(t) represents the probability that the system is in state i at time t, i = 0, 2. Pj(t, x)dx represents
the probability that the system is in state j with elapsed vacation time lying in [x, x + dx) at time t,
j = 1, 3, 31, 32. Pk(t, y)dy represents the probability that the system is in state k with elapsed repair time
lying in [y, y + dy) at time t, k = 21, 22. ε(t) denotes the delayed vacation rate function, r(x) denotes the
vacation rate function, µ1(y) and µ2(y) denote the minor and overhaul repair rate functions, respectively.

Concerning the practical background, we can assume that ε(t), λi(t), r(x), µi(y) are all nonnegative
bounded functions satisfying ε(t) → ε ≥ 0, λi(t) → λi ≥ 0 (t → ∞), r(x), µi(y) ∈ L[0, T ] (0 < T < ∞) and∫∞
0 r(x)dx =

∫∞
0 µi(y)dy =∞, i = 1, 2.

For further study, we will translate the system (2.1)-(2.10) into an initial value problem of a class of
abstract semi-linear evolution system in a Banach space.

Choose the state space X as below

X = {P = (P0, P1, P2, P3, P21, P22, P31, P32)T|Pi ∈ R, Pj ∈ L1(R+),

‖P‖ =
∑
i=0,2

|Pi|+
∑

j=1,3,21,22,31,32

‖Pj‖ <∞},

where R+ represents the set of nonnegative real numbers. Obviously, X is a Banach space.
Define operator A : D(A) ⊂ X → X as follows.

A(P0, P1(x), P2, P3(x), P21(y), P22(y), P31(x), P32(x))T

=

(∫ ∞
0

r(x)P1(x)dx+

2∑
i=1

∫ ∞
0

µi(y)P2i(y)dy,−P
′

1(x)− r(x)P1(x),∫ ∞
0

r(x)P3(x)dx,−P
′

3(x)− r(x)P3(x),−P
′

21(y)− µ1(y)P21(y),

− P
′

22(y)− µ2(y)P22(y),−P
′

31(x)− r(x)P31(x),−P
′

32(x)− r(x)P32(x)

)T

with

D(A) =

 P = (P0, P1, P2, P3, P21, P22, P31, P32)T ∈ X|
Pj are differentiable in R+ and P ′j ∈ L1(R+),

j = 1, 3, 21, 22, 31, 32

 .

Let f(t, P ) : [0,∞)×X → X be

f(t, P ) = (− [ε(t) + α0]P0(t),−α0P1(t, x),−[λ1(t) + λ2(t)]P2(t) + α0P0(t),

− [λ1(t) + λ2(t)]P3(t, x) + α0P1(t, x), 0, 0, λ1(t)P3(t, x), λ2(t)P3(t, x))T.

Then the system (2.1)-(2.10) can be translated into an initial value problem of a class of abstract semi-
linear evolution system in Banach space X:

dP (t, ·)
dt

= AP (t, ·) + f(t, P (t, ·)) t ≥ 0,

P (t, ·) = (P0(t), P1(t, x), P2(t), P3(t, x), P21(t, y), P22(t, y), P31(t, x), P32(t, x))T,

P (0, ·) = (1, 0, 0, 0, 0, 0, 0, 0)T.

(2.11)
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3. Existence and uniqueness of system solution

The unique existence of the solution of initial value problem of abstract semi-linear evolution equations,
has been studied by few researchers (for detailed information, one can refer to [8, 9, 10, 18]). But in
repairable systems, to the authors’ best knowledge, this problem has not been discussed. In this section,
we mainly study the unique existence of the mild solution of system (2.11) because of its limitation of the
physical condition, by using C0-semigroup theory. To this end, we first present some properties of the system
operator.

Lemma 3.1. The system operator A is densely defined in X.

Proof. For any F = (f0, f1, f2, f3, f21, f22, f31, f32)T ∈ X, then fj ∈ L1(R+), j = 1, 3, 2i, 3i, i = 1, 2. Thus for
any η > 0, there exist positive numbers Gj and δj such that

∫ ∞
Gk

|fk(x)|dx < η

12
,

∫ δk

0
|fk(x)|dx < η

24
,

∫ ∞
G2i

|f2i(ξ)|dξ <
η

24
,

∫ δ2i

0
|f2i(ξ)|dξ <

η

48
, k = 1, 3, i = 1, 2.

Let

δ = min

{
δ1, δ3, δ21, δ22, δ31, δ32,

2η

12
{
ε|f0|+

2∑
i=1

[λi|f2|+
∫∞
0
r(x)|f3i(x)|dx]

}
+ ηr

}
,

where r = supx≥0 r(x). Take P0 = f0, P2 = f2 and

P1(x) =


εP0, 0 ≤ x < δ

g1(x), δ ≤ x ≤ G1

0, G1 < x <∞
P3(x) =


0, 0 ≤ x < δ

g3(x), δ ≤ x ≤ G3

0, G3 < x <∞

P2i(y) =


λiP2 +

∫∞
0
r(x)P3i(x)dx, 0 ≤ y < δ

g2i(y), δ ≤ y ≤ G2i

0, G2i < y <∞
P3i(x) =


0, 0 ≤ x < δ

g3i(x), δ ≤ x ≤ G3i

0, G3i < x <∞.

Here, gj are continuously differentiable functions satisfying gj(Gj) = 0, g1(δ) = εP0, g3(δ) = 0,

g2i(δ) = λiP2 +
∫∞
0
r(x)P3i(x)dx, g3i(δ) = 0 and

∫ Gk

δ
|fk(x) − Pk(x)|dx < η

12 ,
∫ G2i

δ
|f2i(y) − P2i(y)|dy < η

24 ,

k = 1, 3, i = 1, 2. Then Pj are continuously differentiable functions and P ′j ∈ L1(R+). Thus P =

(P0, P1, P2, P3, P21, P22, P31, P32)
T ∈ D(A). Furthermore, it can be easily proved that ‖F − P‖ < η. There-

fore, D(A) is dense in X.

Lemma 3.2. {ξ|ξ > ε} ⊂ ρ(A), where ρ(A) is the resolvent set of system operator A. And there exists a
constant W > 0, such that for any ξ > W ,

‖R(ξ;A)‖ ≤ 1

ξ −W
,

where R(ξ;A) = (ξI −A)−1.

Proof. For any F = (f0, f1, f2, f3, f21, f22, f31, f32)T ∈ X, consider the operator equation (ξI − A)P = F .
That is

ξP0 −
∫ ∞
0

r(x)P1(x)dx−
2∑
i=1

∫ ∞
0

µi(y)P2i(y)dy = f0 (3.1)

P
′

1(x) + [ξ + r(x)]P1(x) = f1(x) (3.2)

ξP2 −
∫ ∞
0

r(x)P3(x)dx = f2 (3.3)
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P
′

3(x) + [ξ + r(x)]P3(x) = f3(x) (3.4)

P
′

2i(y) + [ξ + µi(y)]P2i(y) = f2i(y), i = 1, 2 (3.5)

P
′

3i(x) + [ξ + r(x)]P3i(x) = f3i(x), i = 1, 2 (3.6)

P1(0) = εP0 (3.7)

P3(0) = P3i(0) = 0, i = 1, 2 (3.8)

P2i(0) = λiP2 +

∫ ∞
0

r(x)P3i(x)dx, i = 1, 2. (3.9)

Solving equations (3.2)-(3.6) with the help of (3.7)-(3.9) derives

P1(x) = εP0e
−

∫ x
0
[ξ+r(s)]ds + Y1(x), P3(x) = Y3(x), P3i(x) = Y3i(x) (3.10)

P2i(y) =

[
λiP2 +

∫ ∞
0

r(x)P3i(x)dx

]
e−

∫ y
0
[ξ+µi(s)]ds + Y2i(y) (3.11)

P2 =
1

ξ

[
f2 +

∫ ∞
0

r(x)Y3(x)dx

]
, (3.12)

where Yj(x) =
∫ x
0
fj(s)e

−
∫ x
s
[ξ+r(τ)]dτds, Y2i(y) =

∫ y
0
f2i(s)e

−
∫ y
s
[ξ+µi(τ)]dτds, j = 1, 3, 3i; i = 1, 2. Substituting

(3.10)-(3.12) into (3.1) yields

(ξ − εM)P0 =f0 +

∫ ∞
0

r(x)Y1(x)dx+

2∑
i=1

∫ ∞
0

µi(y)Y2i(y)dy

+
1

ξ

[
f2 +

∫ ∞
0

r(x)Y3(x)dx

]
(

2∑
i=1

λiNi) +

2∑
i=1

Ni

∫ ∞
0

r(x)Y3i(x)dx,

where M =
∫∞
0
r(x)e−

∫ x
0
[ξ+r(s)]dsdx, Ni =

∫∞
0
µi(y)e−

∫ y
0
[ξ+µi(s)]dsdy, i = 1, 2. It is easy to know M < 1 for

ξ > 0. Then ξ − εM > ξ − ε > 0, for ξ > ε. Thus

P0 =
1

ξ − εM

[
f0 +

∫ ∞
0

r(x)Y1(x)dx+

2∑
i=1

∫ ∞
0

µi(y)Y2i(y)dy

+
1

ξ

[
f2 +

∫ ∞
0

r(x)Y3(x)dx

]
(

2∑
i=1

λiNi) +

2∑
i=1

Ni

∫ ∞
0

r(x)Y3i(x)dx

]
. (3.13)

So, it is easy to deduce that for any ξ > ε, equations (3.1)-(3.9) have a unique solution P = (P0, P1, P2, P3,

P21, P22, P31, P32)T ∈ D(A). This means that (ξI − A) is surjective. Because (ξI − A) is closed and D(A) is
dense in X, then (ξI −A)−1 exists and is bounded by Inverse operator theorem, for any ξ > ε.

Furthermore, from equations (3.10)-(3.13), it is not hard to derive the following estimation. That is
there exists a constant W > 0, such that

‖P‖ =
∑
i=0,2

|Pi|+
∑

j=3,21,22,31,32

‖Pj‖ <
1

ξ −W
‖F‖.

This means that for any ξ > W , (ξI −A)−1 exits and ‖(ξI −A)−1‖ < 1
ξ−W .

According to Hille-Yosida Theorem [15] with lemmas 3.1 and 3.2, the following result is obvious.

Theorem 3.3. The system operator A generates a C0 semigroup T (t).

Lemma 3.4 ([15]). Let f : [t0, T ] × X → X be continuous about t on [t0, T ] and uniformly Lipschitz
continuous (with constant L) on X, if −A is the infinitesimal generator of a C0 semigroup T (t), t ≥ 0, on
X, then for every u0 ∈ X the initial value problem{

du(t)
dt

+Au(t) = f(t, u(t)), t > t0

u(t0) = u0
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has a unique mild solution u ∈ C([t0, T ] : X). Moreover, the mapping u0 → u is Lipschitz continuous from
X into C([t0, T ] : X).

Theorem 3.5. For any T > 0, assume ε(t) and λi(t) (i = 1, 2) are continuous on [0, T ]. Then for any
P1(t, x), P3(t, x) ∈ C([0, T ];L1(R+)), where P1, P3 are the second and forth components of P , the semi-linear
evolution system (2.11) has a unique mild solution P ∈ C([0, T ] : X). Moreover, the mapping P0 → P is
Lipschitz continuous from X into C([0, T ] : X).

Proof. For any T > 0, with the assumptions of the theorem, it is obvious that f(t, P ) is continuous about t
on [0, T ]. Furthermore, for any t ∈ [0, T ] and P, Q ∈ X, it is easy to know that

‖f(t, P )− f(t, Q)‖ =[ε(t) + 2α0]|P0 −Q0|+ 2α0‖P1 −Q1‖+ [λ1(t)

+ λ2(t)]|P2 −Q2|+ 2[λ1(t) + λ2(t)]‖P3 −Q3‖
≤L‖P −Q‖

where P0, P1, P2, P3 and Q0, Q1, Q2, Q3 are respectively the first, second, third and forth components of

P and Q, and L = 2 max

{
sup
t∈[0,T ]

ε(t) + α0, sup
t∈[0,T ]

[λ1(t) + λ2(t)]

}
. Therefore, the result of Theorem 3.5 is

obvious by using Lemma 3.4 combing Theorem 3.3.

4. Stability of system solution

In this section, we are dedicated to studying the asymptotic stability of the system solution by substitut-
ing the limit values ε and λi respectively for the delayed vacation rate ε(t) and the failure rate λi(t) (i = 1, 2)
in system (2.1)-(2.10). We first translate the system equations (2.1)-(2.10) into an abstract Cauchy problem
in a suitable Banach space. Then we present some spectrum properties of the system operator and its adjoint
operator. Thus the asymptotic stability of the system solution can be derived readily with the preparation.

We define system operator B in state space X which has been defined in Section 3 as below.

BP =



−(ε+ α0)P0 +
∫∞
0
r(x)P1(x)dx+

2∑
i=1

∫∞
0
µi(y)P2i(y)dy

−P ′

1(x)− [α0 + r(x)]P1(x)
α0P0 − (λ1 + λ2)P2 +

∫∞
0
r(x)P3(x)dx

α0P1(x)− P ′

3(x)− [λ1 + λ2 + r(x)]P3(x)

−P ′

21(y)− µ1(y)P21(y)

−P ′

22(y)− µ2(y)P22(y)

λ1P3(x)− P ′

31(x)− r(x)P31(x)

λ2P3(x)− P ′

32(x)− r(x)P32(x)


with domain

D(B) =

{
P = (P0, P1, P2, P21, P22, P3, P31, P32)T ∈ X : P ′j ∈ L1(R+) are absolutely

continuous functions satisfying P1(0) = εP0, P2i(0) = λiP2 +

∫ ∞
0

r(x)P3i(x)dx,

P3(0) = P3i(0) = 0, j = 1, 3, 2i, 3i, i = 1, 2

}
.

Then the system equations (2.1)-(2.10) can be rewritten as an abstract Cauchy problem in Banach space
X. 

dP (t, ·)
dt

= BP (t, ·), t ≥ 0

P (t, ·) = (P0(t), P1(t, x), P2(t), P3(t, x), P21(t, y), P22(t, y), P31(t, x), P32(t, x))T

P (0, ·) , P0 = (1, 0, 0, . . . , 0)T1×8.

(4.1)

In the following, we present some properties of system operator B including its spectrum distribution.
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Lemma 4.1. The system operator B is a densely closed dissipative operator.

Proof. Firstly, with the method in the proof of Lemma 3.1, we can obtain that D(B), the domain of operator
B is dense in X.

Next, we prove that B is a closed operator. Choose Pn = (Pn0 , P
n
1 , P

n
2 , P

n
3 , P

n
21, P

n
22, P

n
31, P

n
32)

T ∈ D(B).
Let Pn → P = (P0, P1, P2, P3, P21, P22, P31, P32)

T, BPn → Q = (Q0, Q1, Q2, Q3, Q21, Q22, Q31, Q32)
T, n →

∞. According to Proposition 1 ([4], II.2.10), the differential operator D is the infinitesimal generator of a
left translation semigroup {Tl(t)}t≥0 defined on

D(D) =

{
f ∈ L1(R+)

∣∣∣∣f is absolutely continuous satisfying f
′ ∈ L1(R+)

}
.

Then Pj ∈ D(D) due to D(D) is closed and Pnj ∈ D(D), which is equivalent to P
′
j ∈ L1(R+) are

absolutely continuous, j = 1, 3, 21, 22, 31, 32. Furthermore, Pn1 (0) = εPn0 → εP0 = P1(0), Pn2i(0) =
λiP

n
2 +

∫∞
0 r(x)Pn3i(x)dx → λiP2 +

∫∞
0 r(x)P3i(x)dx = P2i(0), n → ∞, i = 1, 2. Thus P ∈ D(B). Noting

the bounded measurable of r(x), µi(y), i = 1, 2, it is not hard to deduce that BP = Q. This implies that B
is a closed operator.

Finally, we prove that B is a dissipative operator. For any P = (P0, P1, P2, P3, P21, P22, P31, P32)
T ∈

D(B), set Qk = ‖P‖sgn(Pk), k = 0, 1, 2, 3, 21, 22, 31, 32 and take Q = (Q0, Q1, Q2, Q3, Q21, Q22, Q31, Q32)
T.

Clearly, Q ∈ X∗ = R× L∞(R+)× R× (L∞(R+))5, the duel space of X. Moreover, it is easy to know that
〈P,Q〉 = ‖P‖2 = ‖Q‖2 and 〈BP,Q〉 ≤ 0. This manifests that B is a dissipative operator.

Lemma 4.2. If γ is a complex number γ with positive real part or a pure imaginary number, then γ is a
regular point of the system operator B.

Proof. For any G ∈ X, it is not very hard to prove that the operator equation (γI −B)P = G has a unique
solution P ∈ D(B) if γ is a complex number satisfying conditions of the lemma. This implies that (γI−B)−1

exists and is bounded by using Banach Inverse Operator Theorem. Thus the proof is completed.

Lemma 4.3. 0 is an eigenvalue of the system operator B with algebraic multiplicity one.

Proof. Repeating the proof process of Lemma 4.2 with γ = 0 and G = 0, it can be yielded readily that 0 is
an eigenvalue of the system operator B with geometric multiplicity one. Then by recalling Ref.[3], it only
needs to prove that the algebraic index of eigenvalue 0 is one, which can be easily obtained by using the
reduction to absurdity.

In the following, we will present some properties of B∗, the adjoint operator of system operator B,
including its spectrum distribution.

First, the dual space ofX is: X∗ = R×L∞(R+)×R×(L∞(R+))5, with norm ‖Q‖ = sup{|Qi|, ‖Qj‖L∞(R+),
i = 0, 2, j = 1, 3, 21, 22, 31, 32}, for Q ∈ X∗. Then the adjoint operator B∗ can be obtained as presented
below with the equality 〈BP, Q〉 = 〈P, B∗Q〉 where P ∈ D(B) and Q ∈ X∗.

B∗Q =



−(ε+ α0)Q0 + εQ1(0) + α0Q2

Q
′

1(x)− [α0 + r(x)]Q1(x) + r(x)Q0 + α0Q3(x)
−(λ1 + λ2)Q2 + λ1Q21(0) + λ2Q22(0)

Q
′

3(x)− (λ1 + λ2)Q3(x) + λ1Q31(x) + λ2Q32(x) + r(x)[Q2 −Q3(x)]

Q
′

21(y)− µ1(y)Q21(y) + µ1(y)Q0

Q
′

22(y)− µ2(y)Q22(y) + µ2(y)Q0

Q
′

31(x)− r(x)Q31(x) + r(x)Q21(0)

Q
′

32(x)− r(x)Q32(x) + r(x)Q22(0)


, (C +D)Q,

D(B∗) =

{
Q = (Q0, Q1, Q2, Q3, Q21, Q22, Q31, Q32)T ∈ X∗ : Q′j ∈ L∞(R+) is an absolutely
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continuous function satisfying Qj(∞) <∞, j = 1, 3, 21, 22, 31, 32

}
.

Here

C = diag

(
− (ε+ α0),

d

dx
− [α0 + r(x)],−(λ1 + λ2),

d

dx
− [λ1 + λ2 + r(x)],

d

dy
− µ1(y),

d

dy
− µ2(y),

d

dx
− r(x),

d

dx
− r(x)

)

D =



0 εθ1(·) α0 0 0 0 0 0
r(x) 0 0 α0 0 0 0 0

0 0 0 0 λ1θ21(·) λ2θ22(·) 0 0
0 0 r(x) 0 0 0 λ1 λ2

µ1(y) 0 0 0 0 0 0 0
µ2(y) 0 0 0 0 0 0 0

0 0 0 0 0 r(x)θ21(·) 0 0
0 0 0 0 0 0 r(x)θ22(·) 0


and θk(·) : L∞(R+)→ C satisfying θk(f) = f(0), k = 1, 21, 22.

Lemma 4.4. If γ is a complex number satisfying

sup

{
ε+ α0

|γ + ε+ α0|
,

α0 +M

Reγ + α0 +M
,

λ1 + λ2
|γ + λ1 + λ2|

,
λ1 + λ2 +M

Reγ + λ1 + λ2 +M
,

M

Reγ +M

}
< 1, (4.2)

then γ is in the resolvent set of B∗. Here M = sup{r, µ1, µ2} and µi = supy≥0 µi(y), i = 1, 2.

Proof. For any W ∈ X∗, it is not hard to prove that the operator equation (γI −C)Q = DW has a unique
solution Q for a complex number γ satisfying (4.2), and ‖Q‖ < ‖W‖. This implies that ‖(γI−C)−1D‖ < 1.
Then [I− (γI−C)−1D] is invertible. Therefore γI−B∗ is invertible and (γI−B∗)−1 = [γI− (C+D)]−1 =
[I − (γI − C)−1D]−1(γI − C)−1.

The following result of eigenvalue 0 of B∗ can be obtained with the same method of Lemma 4.3.

Lemma 4.5. 0 is an eigenvalue of operator B∗ with algebraic multiplicity one.

With the above preparation and strongly continuous semigroup theory, we can deduce that the system
operator B generates a positive C0 semigroup of contraction T̂ (t). Then the system (4.1) has a unique
nonnegative time-dependent solution P (t, ·) which can be expressed by P (t, ·) = T̂ (t)P0 (t ∈ [0,∞)),where P0

is the initial value of the system (4.1). Moreover, the asymptotic stability of the system can be obtained as
follows.

Theorem 4.6. Let P̂ be the nonnegative eigenfunction corresponding to eigenvalue 0 of the system oper-
ator B satisfying ‖ P̂ ‖= 1 and Q∗ = (1, 1, 1, 1, 1, 1, 1, 1)T ∈ X∗, then the time-dependent solution P (t, ·) of
system (4.1) converges to the nonnegative steady-state solution P̂ . That is lim

t→∞
P (t, ·) = 〈P0, Q

∗〉P̂ = P̂ .

5. Reliability indexes

In Section 4, we have obtained the unique existence and stability of the solution of system (2.1)-(2.10).
So in this section we can study steady-state reliability indexes of the system with the method of Laplace
transformation because the premise of Laplace transformation needs the condition that the system solution
is unique existed and stable.

Applying the Laplace transformation to equations (2.1)-(2.9), we can obtain the following equations.

(s+ ε+ α0)P ∗0 (s) = 1 +

∫ ∞
0

r(x)P ∗1 (s, x)dx+

2∑
i=1

∫ ∞
0

µi(y)P ∗2i(s, y)dy (5.1)



L. N. Guo, M. M. Zhang, J. Nonlinear Sci. Appl. 9 (2016), 316–331 325

dP ∗1 (s, x)

dx
+ [s+ α0 + r(x)]P ∗1 (s, x) = 0 (5.2)

(s+ λ1 + λ2)P ∗2 (s) = α0P
∗
0 (s) +

∫ ∞
0

r(x)P ∗3 (s, x)dx (5.3)

dP ∗3 (s, x)

dx
+ [s+ λ1 + λ2 + r(x)]P ∗3 (s, x) = α0P

∗
1 (s, x) (5.4)

dP ∗2i(s, y)

dy
+ [s+ µi(y)]P ∗2i(s, y) = 0 (5.5)

dP ∗3i(s, x)

dx
+ [s+ r(x)]P ∗3i(s, x) = λiP

∗
3 (s, x) (5.6)

P ∗1 (s, 0) = εP ∗0 (s) (5.7)

P ∗2i(s, 0) = λiP
∗
2 (s) +

∫ ∞
0

r(x)P ∗3i(s, x)dx (5.8)

P ∗3 (s, 0) = P ∗3i(s, 0) = 0, (5.9)

where i = 1, 2. Solving equations (5.1)-(5.6) with the help of (5.7)-(5.9) follows

P ∗0 (s) =
(s+ λ1 + λ2)(α0 − λ1 − λ2)(λ1 + λ2)

sN(s)

P ∗1 (s, x) = εP ∗0 (s)e−
∫ x
0
[s+α0+r(τ)]dτ

P ∗2 (s) = α0P
∗
0 (s)

α0 − λ1 − λ2 + ε[(s+ α0)g(s)− (s+ λ1 + λ2)h(s)]

(α0 − λ1 − λ2)(s+ λ1 + λ2)

P ∗3 (s, x) =
α0εP

∗
0 (s)

α0 − λ1 − λ2

[
e−

∫ x
0
[s+λ1+λ2+r(τ)]dτ − e−

∫ x
0
[s+α0+r(τ)]dτ

]
P ∗2i(s, y) =

α0λiP
∗
0 (s)

α0 − λ1 − λ2

[ [1 + εg(s)](α0 − λ1 − λ2)

s+ λ1 + λ2
+ εs

[f(s)− g(s)

α0
− f(s)− h(s)

λ1 + λ2

]]
e−

∫ y
0
[s+µi(τ)]dτ

P ∗3i(s, x) =
α0ελiP

∗
0 (s)

α0 − λ1 − λ2

[e−α0x − 1

α0
− e−(λ1+λ2)x − 1

λ1 + λ2

]
e−

∫ x
0
[s+r(τ)]dτ .

Here

f(s) =

∫ ∞
0

e−
∫ x
0
(s+r(τ))dτdx, g(s) =

∫ ∞
0

e−
∫ x
0
(s+α0+r(τ))dτdx

h(s) =

∫ ∞
0

e−
∫ x
0
(s+λ1+λ2+r(τ))dτdx, ki(s) =

∫ ∞
0

e−
∫ y
0
(s+µi(τ))dτdy, i = 1, 2.

N(s) = (α0 − λ1 − λ2)
[
(s+ λ1 + λ2)[(λ1 + λ2)(1 + εg(s) + εf(s))− εf(s)s(k1λ1 + k2λ2)]

+ α0(λ1 + λ2)(1 + εg(s))(1 + k1λ1 + k2λ2)
]

+ ε(s+ λ1 + λ2)[λ1g(s) + λ2g(s)− α0h(s)](λ1 + λ2 − sk1λ1 − sk2λ2).

Then the steady state reliability indexes of the system (2.1)-(2.10) can be derived as follows.

Theorem 5.1. The stead-state availability of the system is

Av =
(1 + εg)(α0 + λ1 + λ2)(α0 − λ1 − λ2)

N
. (5.10)

Proof. The instantaneous availability of the system at time t is Av(t) = P0(t) +
∫∞
0
P1(t, x)dx + P2(t) +∫∞

0
P3(t, x)dx. According to Taubert theorem, the stead-state availability of the system can be obtained

readily. That is

Av = lim
t→∞

Av(t) = lim
s→0

sA∗v(s) = lim
s→0

s

[
P ∗0 (s) +

∫ ∞
0

P ∗1 (s, x)dx+ P ∗2 (s) +

∫ ∞
0

P ∗3 (s, x)dx

]
=

(1 + εg)(α0 + λ1 + λ2)(α0 − λ1 − λ2)

N
,
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where N = (α0−λ1−λ2)[(1 + εf + εg)(λ1 +λ2) +α0(1 + εg)(1 + k1λ1 + k2λ2)] + ε(λ1 +λ2)(λ1g+λ2g−α0h), and
f =

∫∞
0
e−

∫ x
0
r(s)dsdx, g =

∫∞
0
e−

∫ x
0
(α0+r(s))dsdx, h =

∫∞
0
e−

∫ x
0
(λ1+λ2+r(s))dsdx, ki =

∫∞
0
e−

∫ y
0
µi(s)dsdy, i = 1, 2.

Theorem 5.2. The stead-state probability of the repairman on vacation is

Pv =
εf(λ1 + λ2)(α0 − λ1 − λ2)

N
. (5.11)

Proof. The probability that the repairman is on vacation at time t is Pv(t) =
∫∞
0
P1(t, x)dx+

∫∞
0
P3(t, x)dx+

2∑
i=1

∫∞
0
P3i(t, x)dx. Then the stead-state probability of the repairman on vacation can be yielded by using

the limit theorem as below.

Pv = lim
t→∞

Pv(t) = lim
s→0

sP ∗v (s) = lim
s→0

s

[ ∫ ∞
0

P ∗1 (s, x)dx+

∫ ∞
0

P ∗3 (s, x)dx+

2∑
i=1

∫ ∞
0

P ∗3i(s, x)dx

]
=
εf(λ1 + λ2)(α0 − λ1 − λ2)

N
,

where f and N are defined in Theorem 5.1.

Theorem 5.3. The steady-state probability of the system in warning state is

Pw =
α0(1 + εg)(α0 − λ1 − λ2)

N
. (5.12)

Proof. The probability of the system in warning state at time t is Pw(t) = P2(t) +
∫∞
0
P3(t, x)dx. Then the

stead-state probability of the repairman on vacation can be yielded by using the limit theorem as below.

Pw = lim
t→∞

Pw(t) = lim
s→0

sP ∗w(s) = lim
s→0

s

[
P ∗2 (s) +

∫ ∞
0

P ∗3 (s, x)dx

]
=
α0(1 + εg)(α0 − λ1 − λ2)

N
,

where g and N are defined in Theorem 5.1.

Theorem 5.4. The stead-state failure frequency of the system is

Wf =
α0(λ1 + λ2)(1 + εg)(α0 − λ1 − λ2)

N
. (5.13)

Proof. According to Ref. [1] the instantaneous failure frequency of the system at time t is Wf (t) = (λ1 +

λ2)
[
P2(t) +

∫∞
0
P3(t, x)dx

]
. Applying the limit theorem and noting the result of Theorem 5.3, the result of

Theorem 5.4 can be yielded readily.

6. Numerical analysis

In this section, we mainly concentrate on that how the warning device will affect the system. We will
present some numerical examples to show the transient behavior of the system (2.1)-(2.10) with warning
device. And we compare some reliability indexes of systems with and without warning device, and give the
corresponding numerical examples. For simplicity, we assume that the times of overhaul and minor repair
the vacation time all follow exponential distributions. That is, r(x) ≡ r, µi(y) ≡ µi, where r and µi are
nonnegative constants, i = 1, 2.

Choose ε(t) = 2, λ1 = 1 and λ2 = 0.5 for t ∈ [0, 5), ε(t) = 1, λ1 = 0.5 and λ2 = 0.2 for t ∈ [5, 10), and
ε(t) = 0.2, λ1 = 0.2 and λ2 = 0.1 for t ∈ [10,∞). Figures 1-4 present the transient behaviors of the system
(2.1)-(2.10) with different α0. From the figures we can see that the system steady-state behavior will arrive
when ε(t) and λi(t) reach their limit values, i = 1, 2, and the transient availability and vacation probability
increase while the transient probabilities of the system in failure state and warning state decrease with the
decreasing of α0.
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Figures 1∼4

The steady-state indexes, specifically, the stable reliability Ãv, failure frequency W̃f and the probability

of repairman on vacation P̃v) of the system without warning device corresponding to system (2.1)-(2.10) are
presented as follows.

Ãv =
1 + εh

1 + εf + (1 + εh)(λ1k1 + λ2k2)
(6.1)

W̃f =
(λ1 + λ2)(1 + εh)

1 + εf + (1 + εh)(λ1k1 + λ2k2)
(6.2)

P̃v =
εf

1 + εf + (1 + εh)(λ1k1 + λ2k2)
. (6.3)

In the following, we will compare the above three reliability indexes of the two systems with and without
warning device.

(1) Set ε = λ1 = µ1 = 0.5, r = 0.2, α0 = 0.1, = 0.5. Figures 5, 7, 9 and Figures 6, 8, 10 present the
availabilities, failure frequencies and vacation probabilities of systems with and without warning device with
µ2 = 0.2 and λ2 = 0.5, 0.2, 0.05, respectively. From the figures we can deduce the following results.

(i) The availabilities and vacation probabilities of both systems are increasing with the decreasing of λ2.
The failure frequencies of both systems are first decreasing and then increasing with the decreasing of λ2.

(ii) The availabilities and vacation probabilities of the system with warning device are greater than those
of the system without warning device. While failure frequencies are just the opposite.

Figures 5∼10

(2) Set ε = λ1 = µ1 = 0.5, r = 0.2, α0 = 0.1, = 0.5. Figures 11, 13, 15 and Figures 12, 14, 16 present
the availabilities, failure frequencies and vacation probabilities of systems with and without warning device
with λ2 = 0.2 and µ2 = 0.5, 0.2, 0.08, respectively. From the figures we can deduce the following results.

(i) The availabilities, frequencies and vacation probabilities of both systems are decreasing with the
decreasing of µ2.

(ii) The availabilities and vacation probabilities of the system with warning device are greater than those
of the system without warning device. While failure frequencies are just the opposite.

Figures 11∼16

(3) Let c1 , c2 and c3 represent the income of the system for working unit per unit time, the loss of the
system for failed unit per unit time and the income of the system for the repairman vacation per unit time,

respectively. And let I and Ĩ respectively be the total profit of the system with and without warning device
in steady state. Then

I = c1Av − c2Wf + c3Pv, Ĩ = c1Ãv − c2W̃f + c3P̃v (6.4)

From the results of (1)(ii) and (2)(ii), it is easy to deduce that it can be assured the total profit of the
system with warning is greater than that of the system without warning device by adjusting c1 , c2 and c3 .

Therefore, by the results of (1)-(3), it can be yielded readily that the system with warning device is
superior to the system without warning device. Then warning device in a system is important and practical.

7. CONCLUSION

In this paper, a repairable system with warning device and a repairman is considered. The warning
device will send an alarm when the system is not working smoothly before it fails. The repairman follows
delayed-multiple vacations policy. The system will be overhauled or minor repaired by the repairman after
the warning device alarms. It is worth noting that the delayed vacation rate and failure rates of the system
are functions of the system working time. We first present the system model with a group of integro-
differential equations by using probability analysis method, and translate them into an abstract Cauchy
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problem of semi-linear evolution system by choosing a suitable Banach space. Then we give the conditions
of the unique existence, and even the continuous dependence on initial value of the system solution by using
strongly continuous semigroup theory. To study the asymptotic stability of system solution, we replace
the delayed vacation rate and failure rates with their limit values. Then by analyzing the properties and
spectrum distribution of the system operator, the stability of system solution is obtained. Because the
system solution is unique existent and stable, the stability reliability indexes can be obtained by Laplace
transformation. In the end, numerical examples of some indexes are presented, from which we can see
that the system is stable when the delayed vacation rate and failure rates all reach their limit values. We
also try to discuss the differences between the systems with and without warning device. Because too many
parameters are concerned, it is very hard to get exact analysis result. Thus we also present several numerical
examples to compare the indexes of system with and without warning device with different failure rates and
repair rates respectively. From these figures we can see that the availability and vacation probability of
system with warning device are greater than those of the system without warning device, while failure
frequency is just the opposite. Then the profit of system with warning device can be greater than that of
the system without warning device. Thus we can deduce that the system with warning device is superior to
the system without warning device. The exact analysis results of the two systems with and without warning
device will be our further work.

Figure 1:
Transient availabilities with different α0

Figure 2:
Transient failure probabilities with different α0

Figure 3:
Transient vacation probabilities with different α0

Figure 4:
Transient warning probabilities with different α0
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Figure 5:
System availabilities with warning device with

different λ2

Figure 6:
System availabilities without warning device with

different λ2

Figure 7:
System failure frequencies with warning device with

different λ2

Figure 8:
System failure frequencies without warning device

with different λ2

Figure 9:
Vacation probabilities of system with warning device

with different λ2

Figure 10:
Vacation probabilities of system without warning

device with different λ2
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Figure 11:
System availabilities with warning device with

different µ2

Figure 12:
System availabilities without warning device with

different µ2

Figure 13:
System failure frequencies with warning device with

different µ2

Figure 14:
System failure frequencies without warning device

with different µ2

Figure 15:
Vacation probabilities of system with warning device

with different µ2

Figure 16:
Vacation probabilities of system without warning

device with different µ2
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