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Abstract

The purpose of this paper is to study the solution set of the functional inclusion of n-th order of the following
form:

x(t) ∈ G(t, x(f1(t)), . . . , x(fn(t))), t ∈ X, (1)

where the function G : X × Y n −→ Pcl,cv(Y ) and f1, f2, ..., fn : X −→ X are given. The approach is based
on some fixed point theorems for multivalued operators, satisfying the nonlinear contraction condition, see
[V. L. Lazăr, Fixed Point Theory Appl., 2011 (2011), 12 pages]. c©2016 All rights reserved.
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1. Introduction

Let X be an arbitrary compact and Hausdorff topological space and (Y, ‖ · ‖) be a Banach space. Let
f1, . . . , fn : X → X be continuous mappings and G : X × Y n −→ Pcl,cv(Y ) be a multivalued operator.

The purpose of this paper is to study existence, uniqueness, data dependence, well-posedness, Ulam-
Hyers stability for the solutions of the following n-order functional inclusion

x(t) ∈ G(t, x(f1(t)), . . . , x(fn(t))), t ∈ X. (1.1)

The approach is based on some recent results (see Lazăr [1]) concerning the fixed point problem for mul-
tivalued operators, given in terms of multivalued ϕ-contractions. For related results concerning multivalued
nonlinear contractions, see [2], [5], [6] and [7].
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2. Preliminaries

Throughout this section we will recall some of the classical notations and notions in nonlinear analysis,
see, for example, [3], [4], and [7].

We consider next the following families of subsets of a metric space (X, d):
P (X) := {Y ∈ P(X)| Y 6= ∅}; Pb(X) := {Y ∈ P (X)| Y is bounded };
Pcp(X) := {Y ∈ P (X)| Y is compact}; Pcl(X) := {Y ∈ P (X)| Y is closed};
Pb,cl(X) := Pb(X) ∩ Pcl(X).

Let us define the following generalized functionals:

1. D : P (X)× P (X)→ R+ ∪ {∞},

D(A,B) =


inf{d(a, b), a ∈ A, b ∈ B}, if A 6= ∅ 6= B
0, if A = ∅ = B
+∞, if A = ∅ 6= B or A 6= ∅ = B.

D is called the gap functional between A and B. In particular, for x0 ∈ X, we denote by D(x0, B) =
D({x0}, B) the distance from the point x0 to the set B.

2. δ : P (X)× P (X)→ R+ ∪ {∞},

δ(A,B) =

{
sup{d(a, b), a ∈ A, b ∈ B}, if A 6= ∅ 6= B
0, otherwise .

3. ρ : P (X)× P (X)→ R+ ∪ {∞},

ρ(A,B) =


sup{D(a,B), a ∈ A}, if A 6= ∅ 6= B
0, if A = ∅
+∞, if A 6= ∅ = B.

ρ is called the excess functional of A over B.

4. H : P (X)× P (X)→ R+ ∪ {∞},

H(A,B) =


max{ρ(A,B), ρ(B,A)}, if A 6= ∅ 6= B
0, if A = ∅
+∞, if A 6= ∅ = B.

H is called the generalized Pompeiu-Hausdorff functional of A and B and it is well known that the
pair (Pb,cl(X), H) is a metric space.

Lemma 2.1. D(b, A) = 0 if and only if b ∈ Ā.

Lemma 2.2. Let (X, d) be a metric space. Then we have:

(i) Let Y,Z ∈ P (X) and q > 1. Then for each y ∈ Y there exists z ∈ Z such that d(y, z) ≤ qH(Y,Z).

(ii) If Y,Z ∈ Pcp(X) then for each y ∈ Y there exists z ∈ Z such that d(y, z) ≤ H(Y, Z).

(iii) Let Y,Z ∈ Pcl(X). Suppose that there exists η > 0 such that [for each y ∈ Y there exists z ∈ Z such
that d(y, z) ≤ η] and [for each z ∈ Z there exists y ∈ Y such that d(y, z) ≤ η]. Then, H(Y,Z) ≤ η.

(iv) Let (An)n∈N be a sequence in Pcl(X). Then An
H→ A∗ ∈ Pcl(X) as n→∞ if and only if H(An, A

∗)→ 0
as n→∞.

Theorem 2.3. If (X, d) is a complete metric space, then (Pb,cl(X), H) is a complete metric space.

Definition 2.4. Let X,Y be Hausdorff topological spaces and T : X → P (Y ) a multivalued operator. T is
said to be upper semi-continuous in x0 ∈ X (briefly u.s.c.) if and only if for each open subset U of Y with
T (x0) ⊂ U there exists an open neighborhood V of x0 such that for all x ∈ V we have T (x) ⊂ U .

T is u.s.c. on X if it is u.s.c in each x0 ∈ X.
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We present next the definition of lower semi-continuity.

Definition 2.5. Let X,Y be Hausdorff topological spaces and T : X → P (Y ) a multivalued operator. Then
T is said to be lower semi-continuous in x0 ∈ X (briefly l.s.c.) if and only if for each open subset U ⊂ Y
with T (x0)∩U 6= ∅ there exists an open neighborhood V of x0 such that for all x ∈ V we have T (x)∩U 6= ∅.

T is l.s.c. on X if it is l.s.c in each x0 ∈ X.

T is said to be continuous in x0 ∈ X if and only if it is l.s.c and u.s.c. in x0 ∈ X.

Definition 2.6. Let X,Y be two metric spaces and T : X → P (Y ) a multivalued operator. Then T is
called H-continuous in x0 ∈ X (briefly H-c.) if and only if for all it is H-l.s.c. and H-u.s.c. in x0 ∈ X.

Definition 2.7. Let (X, d) be a metric space. Then T : X → P (X) is a multivalued weakly Picard operator
(briefly MWP operator) if for each x ∈ X and each y ∈ T (x) there exists a sequence (xn)n∈N in X such
that:

(i) x0 = x, x1 = y;

(ii) xn+1 ∈ T (xn), for all n ∈ N;

(iii) the sequence (xn)n∈N is convergent and its limit is a fixed point of T .

Theorem 2.8 ([4]). Let (X, d) be a complete b-metric space. Suppose that T : X → Pcl(X) is a a-Lipschitz
with a ∈ [0, b−1[. Then T is a MWP operator.

Theorem 2.9 ([4], [5]). Let (X, d) be a complete generalized metric space in Perov’ sense (i.e. d(x, y) ∈ Rm
+ )

and T : X → Pcl(X) be a multivalued A-contraction, i.e. there exists a matrix A ∈ Mm,m(R) such that
An → 0, n→∞ and for each x, y ∈ X and each u ∈ T (x) there exists v ∈ T (y) such that d(u, v) ≤ Ad(x, y).

Then T is a MWP operator.

3. Some known results concerning multivalued ϕ-contractions

Further we present some results that will be used in the main section.

Theorem 3.1 ([1]). Let (X, d) be a complete metric space and T : X → Pcl(X) be a multivalued ϕ-
contraction. Then, we have:

(i) (existence and approximation of the fixed point) T is a MWP operator (see Wȩgrzyk [8]);

(ii) If additionally ϕ(qt) ≤ qϕ(t) for every t ∈ R+ (where q > 1), then T is a ψ-MWP operator, with

ψ(t) := t+ s(t), for each t ∈ R+ (where s(t) :=
∑∞

n=1
ϕn(t));

(iii) (Data dependence of the fixed point set) Let S : X → Pcl(X) be a multivalued ϕ-contraction and
η > 0 be such that H(S(x), T (x)) ≤ η, for each x ∈ X. Suppose that ϕ(qt) ≤ qϕ(t) for every

t ∈ R+ (where q > 1) and t = 0 is a point of uniform convergence for the series
∑∞

n=1
ϕn(t). Then,

H(FS , FT ) ≤ ψ(η);

(iv) (sequence of operators) Let T, Tn : X → Pcl(X), n ∈ N be multivalued ϕ-contractions such that Tn(x)
H→

T (x) as n→ +∞, uniformly with respect to each x ∈ X. Then, FTn

H→ FT as n→ +∞.

If, moreover T (x) ∈ Pcp(X), for each x ∈ X, then we additionally have:

(v) (generalized Ulam–Hyers stability of the inclusion x ∈ T (x)) Let ε > 0 and x ∈ X be such that
D(x, T (x)) ≤ ε. Then there exists x∗ ∈ FT such that d(x, x∗) ≤ ψ(ε);

(vi) T is upper semi-continuous, T̂ : (Pcp(X), H) → (Pcp(X), H), T̂ (Y ) :=
⋃

x∈Y
T (x) is a set-to-set

ϕ-contraction and (thus) FT̂ = {A∗T };

(vii) Tn(x)
H→ A∗T as n→ +∞, for each x ∈ X;

(viii) FT ⊂ A∗T and FT is compact;
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(ix) A∗T =
⋃

n∈N∗
Tn(x), for each x ∈ FT .

Theorem 3.2 ([1]). Let (X, d) be a complete metric space and T : X → Pcl(X) be a multivalued ϕ-
contraction with SFT 6= ∅. Then, the following assertions hold:

(x) FT = SFT = {x∗};
(xi) If, additionally T (x) is compact for each x ∈ X, then FTn = SFTn = {x∗} for n ∈ N∗;

(xii) If, additionally T (x) is compact for each x ∈ X, then Tn(x)
H→ {x∗} as n→ +∞, for each x ∈ X;

(xiii) Let S : X → Pcl(X) be a multivalued operator and η > 0 such that FS 6= ∅ and H(S(x), T (x)) ≤ η, for
each x ∈ X. Then, H(FS , FT ) ≤ β(η), where β : R+ → R+ is given by β(η) := sup{t ∈ R+| t−ϕ(t) ≤
η};

(xiv) Let Tn : X → Pcl(X), n ∈ N be a sequence of multivalued operators such that FTn 6= ∅ for each n ∈ N
and Tn(x)

H→ T (x) as n→ +∞, uniformly with respect to x ∈ X. Then, FTn

H→ FT as n→ +∞.

(xv) (Well-posedness of the fixed point problem with respect to D) If (xn)n∈N is a sequence in X such that

D(xn, T (xn))→ 0 as n→∞, then xn
d→ x∗ as n→∞;

(xvi) (Well-posedness of the fixed point problem with respect to H) If (xn)n∈N is a sequence in X such that

H(xn, T (xn))→ 0 as n→∞, then xn
d→ x∗ as n→∞;

(xvii) (Limit shadowing property of the multivalued operator) Suppose additionally that ϕ is a sub-additive
function. If (yn)n∈N is a sequence in X such that D(yn+1, T (yn))→ 0 as n→∞, then there exists a
sequence (xn)n∈N ⊂ X of successive approximations for T , such that d(xn, yn)→ 0 as n→∞.

Theorem 3.3 ([8]). If X is a paracompact Hausdorff topological space and Y is a closed and complete
metrizable subset of a complete locally convex space over the fields of real or complex numbers, then:

(i) any lower semi-continuous multivalued function F : X → Pcl,cv(Y ) admits a continuous selection.

(ii) moreover, if F |A is the restriction of a lower semi-continuous multivalued function F : X → Pcl,cv(Y )
to a closed subset A ⊂ X and f : A→ Y is a continuous selection from F |A defined on A, then f can
always be extended to a continuous selection of F defined on the whole set X.

4. A theory for an n-order functional inclusion

We will consider now the problem (1.1), i.e. the following problem

x(t) ∈ G(t, x(f1(t)), . . . , x(fn(t))), t ∈ X.

Throughout this section we will suppose the following settings. Let X be an arbitrary compact and
Hausdorff topological space and (Y, ‖ · ‖) be a Banach space. Let f1, . . . , fn : X → X, be continuous
mappings and G : X × Y n −→ Pcl,cv(Y ) be a semi-continuous multivalued operator.

We are looking for solutions of the inclusion (1.1), i.e. continuous mapping x : X → Y which satisfy
(1.1) for each t ∈ X.
We denote the set of all solutions of the inclusion (1.1) by SG;f1,...,fn , i.e.,

SG;f1,...,fn := {x ∈ C(X,Y )/ x satisfies (1.1), for all t ∈ X}.

Our first result is an existence theorem for (1.1)

Theorem 4.1. Consider the n-order functional inclusion (1.1). We suppose:

i) there exists a function β : Rn
+ → R+ increasing with respect to each variable such that:

H‖·‖ (G(t, y1, . . . , yn), G(t, ȳ1, . . . , ȳn)) ≤ β (‖y1 − ȳ1‖, . . . , ‖yn − ȳn‖)

for each t ∈ X and yi, ȳi ∈ Y (when i ∈ {1, . . . , n}).
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ii) the function ϕ : R+ → R+ given by ϕ(t) = β(t, . . . , t) is a strict comparison function.

Then the inclusion (1.1) has at least one solution.

Proof. On C(X,Y ) := {x : X → Y/ x is continuous} we consider the supremum norm, i.e.,

‖x‖∞ := sup
t∈X
‖x(t)‖.

Then (C(X,Y ), ‖ · ‖∞) is a Banach space. We introduce a multivalued operator
T : C(X,Y )→ P (C(X,Y )) as follows:

x 7−→ Tx,

where
Tx := {z ∈ C(X,Y )/ z(t) ∈ G (t, x(f1(t)), . . . , x(fn(t))) , for all t ∈ X}.

Using this notation, a solution for the inclusion (1.1) means a fixed point for T. Hence, it is enough to
show that T has at least one fixed point.
Notice first that, by Michael’s selection theorem (see Theorem 3.3), the set Tx 6= ∅, for each x ∈ C(X,Y ).

Indeed, if x ∈ C(X,Y ), since G is lower semi-continuous and fi (i ∈ {1, . . . , n}) are continuous, we get
that G (·, x (f1(·)) , . . . , x (fn(·))) is lower semi-continuous.

Notice also that Tx ∈ Pcl,cv(C(X,Y )) for all x ∈ C(X,Y ).
We will prove now that T is a multivalued ϕ-contraction on C(X,Y ), i.e.,

H‖·‖∞(Tx1, Tx2) ≤ ϕ (‖x1 − x2‖∞) , ∀x1, x2 ∈ C(X,Y ).

For this purpose, let z1 ∈ Tx1 be arbitrary. It is enough to show that

D‖·‖∞(z1, Tx2) ≤ ϕ(‖x1 − x2‖).

Since
D‖·‖∞(z1, Tx2) = inf

z2∈Tx2

‖z1 − z2‖∞,

it is enough to show that for every q > 1 there exists z2 ∈ Tx2 such that

‖z1 − z2‖∞ ≤ qϕ(‖x1 − x2‖∞).

Now, for z1 ∈ Tx1 we have

D‖·‖ (z1(t), G(t, x2(f1(t)), . . . , x2(fn(t))))

≤ H (G(t, x1(f1(t)), . . . , x1(fn(t))), G(t, x2(f1(t)), . . . , x2(fn(t))))

≤ β (‖x1(f1(t))− x2(f1(t))‖, . . . , ‖x1(fn(t))− x2(fn(t))‖)
≤ β (‖x1 − x2‖∞, . . . , ‖x1 − x2‖∞) = ϕ(‖x1 − x2‖∞).

For a fixed q > 1 and for every t ∈ X (by Lemma 2.2, ii)) there exists ut ∈ G(t, x2(f1(t)), . . . , x2(fn(t)))
such that ‖z1(t)− ut‖ ≤ qϕ(‖x1 − x2‖∞).

Then, by Theorem 3.3 b)(Wegrzyk) there exists a family of continuous functions {zt ∈ C(X,Y )/t ∈ X}
such that zt(t) = ut and zt ∈ Tx2, for t ∈ X.

Then, by the above relations, we get

‖z1(t)− zt(t)‖ = ‖z1(t)− u(t)‖ < qϕ(‖x1 − x2‖∞), ∀ t ∈ X.

By the continuity of z1 and zt there is an open neighborhood Ut of x such that

‖z1(s)− zt(s)‖ < qϕ(‖x1 − x2‖∞), ∀ s ∈ Ut.
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Since the family U := {Ut : t ∈ X} is an open covering of the compact space X and if pi : X → [0, 1], (i ∈
{1, . . . ,m}) is a finite partition of unity subordinated to U with sup pi ⊂ Uti , then the operator

z2(t) :=
m∑
i=1

pi(t)zti(t)

is continuous and satisfies the condition

‖z1 − z2‖∞ ≤ qϕ(‖x1 − x2‖∞).

Moreover z2 ∈ Tx2, by the convexity of the values of G.
Hence, we proved that

H‖·‖∞(Tx1, Tx2) ≤ ϕ(‖x1 − x2‖∞), for all x1, x2 ∈ C(X,Y ).

Since ϕ : R+ → R+ is a strict comparison function, we can apply Theorem 3.1 i) and thus, the multivalued
operator T is a MWP operator, i.e., T has at least one fixed point x∗ ∈ C(X,Y ) and there exists a sequence
(xp)p∈N ⊂ C(X,Y ) with x0 ∈ C(X,Y );x1 ∈ C(X,Y ) and x1(t) ∈ G(t, x0(f1(t)), . . . , x0(fn(t))) for all t ∈ X;
xp+1 ∈ C(X,Y ) and xp+1 ∈ G(t, xp(f1(t)), . . . , xp(fn(t))) for all t ∈ X and p ∈ N which converges in C(X,Y )
to x∗.

As a consequence, the n-order inclusion (1.1) has at least one solution x∗ ∈ C(X,Y ) and the sequence
(xp)p∈N defined above converges to x∗.

Another result concerning the properties of the solutions of (1.1) is the following:

Theorem 4.2. Consider the following two n-order functional inclusions:

x(t) ∈ G1(t, x(f1(t)), . . . , x(fn(t))), t ∈ X, (4.1)

y(t) ∈ G2(t, y(f1(t)), . . . , y(fn(t))), t ∈ X. (4.2)

We suppose that G1, G2, f1, . . . , fn satisfy all the assumptions from Theorem 4.1. We also suppose:

(iii) ϕ(qt) ≤ qϕ(t), ∀t ∈ R+ (where q > 1);

(iv) there exists η > 0 such that

H‖·‖(G1(t, u1, . . . , un), G2(t, u1, . . . , un)) ≤ η

for all t ∈ X and u1, . . . , un ∈ Y .

Then
H‖·‖∞ (SG1;f1,...,fn , SG2,f1,...,fn) ≤ ψ(η),

where ψ(t) = t+ s(t) and s(t) :=
∑∞

n=1 ϕ
n(t).

Proof. The conclusions follows by Theorem 4.1 and Theorem 3.1 (ii) + (iii)

A result concerning the Ulam-Hyers stability of the n-order functional inclusion (1.1) is the following

Theorem 4.3. Consider the inclusion (1.1). We suppose that G, f1, . . . , fn satisfy all the assumptions from
Theorem 4.1. Moreover, we suppose:

(v) G : X × Y n −→ Pcp,cv(Y )
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(vi) there exists an increasing function γ : R+ → R+ with the property: for every ε > 0 there exists δ > 0
such that if t, s ∈ X, ‖t− s‖ < δ implies

δ (G(t, x(f1(t)), . . . , x(fn(t))), G(s, x(f1(s)), . . . , x(fn(s)))) < ε,

for all x ∈ C(X,Y ).

Then, the n-order functional inclusion (1.1) is generalized Ulam-Hyers stable.

Proof. From our assumptions, via the Ascoli-Arzela Theorem, it follows that Tx ∈ Pcp(C(X,Y )), for every
x ∈ C(X,Y ). The conclusion follows now by Theorem 3.1 (v).

Some other stability results are the following.

Theorem 4.4. Consider the n-order inclusion (1.1). We additionally suppose that there exists u∗ ∈ C(X,Y )
such that

G(t, u∗(f1(t)), . . . , u
∗(fn(t))) = {u∗(t)}.

Then:

a) The n-order functional inclusion (1.1) has u∗ as unique solution;

b) The n-order functional inclusion (1.1) is well-posed, i.e., if (xp)p∈N∗ ⊂ C(X,Y ) is a sequence with the
property that

D‖·‖(xp(t), G(t, xp(f1(t)), . . . , xp(fn(t)))) −→ 0 as p→∞

then (xp)p∈N∗ converges to u∗ in the supremum norm of C(X,Y );

c) If additional the function ϕ is subadditive, then the n-order functional inclusion (1.1) has the limit
shadowing property, i.e., if (yp)p∈N∗ ⊂ C(X,Y ) is such that

D‖·‖(yp+1, G(t, yp(f1(t)), . . . , yp(fn(t)))) −→ 0 as p→∞,

then there exists a sequence (xp)p∈N ⊂ C(X,Y ) such that

xp+1(t) ∈ G(t, xp(f1(t)), . . . , xp(fn(t))),∀t ∈ X

and ‖xp − yp‖∞ → 0 as p→∞.

Proof. The conclusions follows by Theorems 4.1-4.3 and Theorem 3.2 (x), (xv), (xvi), (xvii).
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[4] A. Petruşel, Multivalued weakly Picard operators and applications, Scientiae Math. Jpn., 59, (2004), 167–202. 2,

2.8, 2.9
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