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bG. Antep University, Science and Art Faculty, 27000, G. Antep, Turkey.

Communicated by Y. J. Cho

Abstract

In this paper, we constructed two new base sequence spaces, denoted rf and rf0, and we investigated some
of their important properties. Then, by using matrix domains, we defined other sequence spaces on these
base spaces, called zrf and zrf0. Finally, we introduced theBR̂ − core of a complex-valued sequence and we
examined some inclusion theorems related to this new type of core. c©2016 All rights reserved.
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1. Preliminaries, background and notations

There are several methods by which one can construct new spaces from a given space. The easiest one is
to derive a linear subspace from any given space. For example, let us suppose that V is the set of functions
defined as eiξt = eξ(t) in the complex space C(−∞,∞) with the norm ‖x‖ = sup(−∞,∞) |x(t)| and ξ ∈ R,

the set of real numbers. In this case, the closed span, span(V ), consists of all bounded and continuous
complex valued functions which are the limits of uniformly convergent trigonometric series on the real line.
Therefore, span(V ) is the set of all almost periodic functions in sense of Bohr [12], [13]. Another way to
construct a new sequence space is by using the concept of two-normed space introduced by Orlicz in [27].
Namely, let U be any normed sequence space endowed with the norm ‖ · ‖, and let ‖ · ‖∗ be another norm
on U . Then (U, ‖ · ‖, ‖ · ‖∗) is said to be a two-normed space, where we assume that the norm ‖ · ‖ is coarse
from the norm ‖ · ‖∗. Also, ‖ · ‖ and ‖ · ‖∗ are called the basic and starred norm on U , respectively. Clearly,
if we take ‖ · ‖ = ‖ · ‖∗, then (U, ‖ · ‖, ‖ · ‖∗) reduces to the normed space (U, ‖ · ‖). More information about
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two-normed spaces can be found in [27]. Other standard techniques are the construction of quotient spaces
and cartesian products (for more, see [1], [2]-[6], [11], [22], [24], [25], [26], [29], [32], [34]).

Let U be a normed space which has not been obtained from any space using standard techniques. If
we can derive a new space from U via standard techniques, then U is called base space. For example, the
space V mentioned above and the spaces `∞, c, c0, `p, f and f0 which are called bounded, convergent, null,
absolutely p summable, almost convergent and almost null convergent sequence spaces of complex numbers,
respectively, are base spaces.

A matrix A ∈ (`∞ : c) is called a Schur matrix [28]. We recall the following important properties of
Schur matrices.

Proposition 1.1. If A is a Schur matrix, then limn amn = αn exists for each n and if x ∈ `∞, then
limm(Ax)m =

∑
n αnxn.

Proposition 1.2. A ∈ (`∞ : c0) if and only if limm
∑

n |amn| = 0.

The main purpose of the present paper is to construct a new class of base spaces called rf-, rf0-, zrf- and
zrf0- convergent sequence spaces and to analyze the duals and some classes of matrix mappings on these
spaces. Furthermore, we introduce the B

R̂
− core of a complex valued sequence and examine some inclusion

theorems related to this new type of core.
The rest of paper is organized as follows. In Section 2, we summarize the basic knowledge regarding

almost convergence in the literature. In Section 3, we show that the spaces rf and zrf are isometrically
isomorphic, and investigate some algebraic and topological properties of the spaces rf, rf0, zrf and zrf0. In
Section 4, we state and prove theorems determining the duals of the spaces rf, rf0, zrf and zrf0. Then, we
study the classes (rf : `∞), (rf : c), (`∞ : rf) and (c : rf). In Section 5, we characterize the matrix mappings
from zrf into any given sequence space by means of dual summability methods. We also determine the
classes (zrf : `∞), (zrf : c), (`∞ : zrf) and (c : zrf). In the final section, we introduce the B

R̂
− core of a

complex valued sequence.
Now, we provide some notations and definitions in order to explain our idea. For simplicity, through all

the text, we shall write
∑

n, supn, lim supn and limn instead of
∑∞

n=0, supn∈N, lim supn→∞ and limn→∞
where N = {0, 1, 2, ...}. By w we denote the space of all complex valued sequences. Each vector subspace
of w is called a sequence space. Let λ and µ be two sequence spaces and A = (ank) be an infinite matrix of
real or complex numbers ank, where n, k ∈ N. Then, we can say that A defines a matrix mapping from λ to
µ, and we denote it by writing A ∈ (λ : µ), if for every sequence x = (xk) in λ, the sequence Ax = {(Ax)n}
(the A- transform of x), is in µ, where k runs from 0 to ∞. The domain λA of an infinite matrix A in a
sequence space λ is defined by

λA = {x = (xk) ∈ w : Ax ∈ λ}, (1.1)

which is a sequence space. If we take λ = c, then cA is called the convergence domain of A. We write the
limit of Ax as A − limn xn = limn

∑∞
k=0 ankxk, and A is called regular if limAx = limx for every x ∈ c.

A = (ank) is called a triangle matrix if ank = 0 for k > n and ann 6= 0 for all n ∈ N. If A is a triangle matrix,
then one can easily see that the sequence spaces λA and λ are linearly isomorphic, i.e., λA ∼= λ. A sequence
space λ with a linear topology is called a K- space provided that each of the maps pi : λ → C defined by
pi(x) = xi is continuous for all i ∈ N. If λ is a complete linear metric space then it is called an FK-space.
Any FK-space whose topology is normable is called a BK- space [10].

We now recall some well-known triangle and regular matrices.
The Cesàro matrix of order one C = (cnk) is a lower triangular matrix defined by

cnk =

{
1

n+1 , 0 ≤ k ≤ n,
0, k > n

for all n, k ∈ N. A matrix U is called a generalized Cesàro matrix if it is obtained from C by shifting rows.
Let θ : N→ N. Then U = (unk) is defined by

unk =

{
1

n+1 , θ(n) ≤ k ≤ θ(n) + n,

0, otherwise
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for all n, k ∈ N.
Let us suppose that G is the set of all such matrices obtained by using all possible functions θ. The

following lemma given by Butkovic, Kraljevic and Sarapa [15] characterizes the set of almost convergent
sequences.

Lemma 1.3. The set f of all almost convergent sequences is equal to the set ∩U∈GcU .

One of the best known regular matrices is R = (rnk), the Riesz matrix, which is defined by

rnk =

{ rk
Rn
, 0 ≤ k ≤ n,

0, k > n

for all n, k ∈ N, where (rk) is real sequence with r0 > 0, rk ≥ 0 and Rn =
∑n

k=0 rk. The Riesz matrix R is
regular if and only if Rn →∞ as n→∞ [28].

The matrix Zp defined by

Zp = (zpnk) =


p, n = k,

1− p, n− 1 = k,
0, otherwise

for all n, k ∈ N and p ∈ R− {−1} is called a Zweier matrix [14].
For i = 1, 2, ..., let Ai = (aink) be an infinite matrix of complex numbers. Let A denote the sequence of

matrices (Ai). For a sequence x = (xk), the double sequence t = (tin) defined by tin =
∑∞

k=1 a
i
nkxk is called

the A - transform of x = (xk) whenever the series converges for all n and i. A sequence x = (xk) is said to
be A - summable to some number l, if t = (tin) converges to l as n tends to ∞, uniformly for i = 1, 2, ... .
Furthermore, the number l is said to be the A - limit of x = (xk), written A − limxk = l.

2. The sequence space f of almost convergent sequences

In this section, we deal with the sequence space f of almost convergent sequences. First of all, we recall
the definition of the Banach limit L : `∞ → R that is a continuous linear functional on `∞ such that the
following statements hold for any sequences x = (xk) and y = (yk) [8]:

(i) L(axk + byk) = aL(xk) + bL(yk), a, b ∈ R;

(ii) if xk ≥ 0 for all k ∈ N, then L(xk) ≥ 0;

(iii) L(Sx) = L(x), where S is the shift operator defined by (Sx)k = xk+1;

(iv) L(e) = 1, where e = (1, 1, ...).

A bounded sequence x is called almost convergent to a ∈ R if all Banach limits of the sequence x are
equal to a ∈ C, and this is denoted by f − limxk = a [23]. Given a sequence x = (xk), we define tmn(x)
for all m,n ∈ N by tmn(x) = 1

m+1

∑m
i=0(S

ix)n. Lorentz [23] proved that f − limxk = a if and only if
limm tmn(x) = a, uniformly in n. By f and f0, we denote the space of all almost convergent and almost null
sequences, respectively, i.e.,

f =

{
x = (xk) ∈ `∞ : ∃a = lim

m

m∑
k=0

xn+k
m+ 1

∈ C, uniformly in n

}

and

f0 =

{
x = (xk) ∈ `∞ : lim

m

m∑
k=0

xn+k
m+ 1

= 0, uniformly in n

}
.
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In [23], Lorentz obtained the necessary and sufficient conditions for an infinite matrix to contain f in its
convergence domain. These are standard Silverman - Toeplitz conditions for regularity, with the additional
following condition:

lim
n

∞∑
k=0

|ank − an,k+1| = 0. (2.1)

3. A generalization of the definition of almost convergence by means of the sequence spaces
rf and rf0

Almost convergence can be defined as the intersection of convergence field of a Cesàro matrix that is
obtained by displacement of the lines of the first-order Cesàro matrix. Let v ∈ N and x = (xk) ∈ `∞. Then,
let us define the matrix Sv = (svnk) as follows:

svnk =

{
1, n+ v = k,
0, otherwise.

The sequence (Svx) = (S0x, S1x, S2x, ..., Svx, ...) is called the shifted transforms sequence of x, obtained
by S. Thus, almost convergence has the same meaning as the convergence of first-order Cesàro average of
the shifted transform sequence (Svx) = (S0x, S1x, S2x, ..., Svx, ...) to a fixed sequence for each v. We will
denote

fT =

{
x ∈ `∞ : lim

k
[T (Svx)]k = a ∈ C, v = 0, 1, 2, ...

}
the set of all T - convergent sequences.

In particular, if we take aink = rk
Rn

if i ≤ k ≤ n + i and 0 otherwise, then the sequence x is said to rf -

summable to a if (Rix)n = 1
Rn

∑n
k=0 rkxk+i converges to a as n→∞, uniformly for i = 1, 2, ... . By rf and

rf0, we denote the sequence spaces of all rf - convergent and null rf - convergent sequences, respectively, i.e.,

rf =

{
x = (xk) ∈ `∞ : lim

m

1

Rm

m∑
k=0

rkxk+n = a, uniformly in n

}
, (3.1)

rf0 =

{
x = (xk) ∈ `∞ : lim

m

1

Rm

m∑
k=0

rkxk+n = 0, uniformly in n

}
. (3.2)

The spaces rf0 and rf are not obtained by the convergence field of an infinite matrix. By taking this into
consideration, we can say that these are base spaces. In addition to rf0 and rf, we define two new types of
convergent sequence spaces, zrf and zrf0, as the sets of all sequences such that their Zp- transforms are in
rf and rf0, respectively, that is,

zrf =

{
x = (xk) ∈ w : lim

m

m∑
k=0

rk
Rm

[pxk+n + (1− p)xk+n−1] = a, uniformly in n

}

and

zrf0 =

{
x = (xk) ∈ w : lim

m

m∑
k=0

rk
Rm

[pxk+n + (1− p)xk+n−1] = 0, uniformly in n

}
.

Clearly, the sets zrf0 and zrf are not base spaces. Now, let us define the sequence y = (yk), which will be
frequently used, as the Zp - transform of a sequence x = (xk), i.e.,

yk = pxk + (1− p)xk−1 for all k ∈ N, p ∈ R− {−1}. (3.3)

We should emphasize here that the sequence spaces rf and rf0 can be reduced to the classical almost
convergent sequence spaces of real numbers f and f0 respectively, in the case rk = 1 for all k ∈ N. Thus,
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the properties and results related to the sequence spaces rf and rf0 are more general than the corresponding
implications for the spaces f and f0 respectively.

Lorentz [23] proved that if the regular matrix method A has the property (2.1) then f and rf are
equivalent. But, if limnRn is not equal to ∞, then the Riesz matrix R is not a Toeplitz matrix. Therefore,
in general, the spaces rf and rf0 are different from f and f0.

Lemma 3.1. The sets rf and rf0 are Banach spaces with the norm

‖x‖rf = ‖x‖rf0 = sup
m

∣∣∣∣∣ 1

Rm

m∑
k=0

rkxk+n

∣∣∣∣∣ , uniformly in n. (3.4)

Proof. Clearly, the norm conditions are satisfied. We consider only the space rf, since the fact that rf0 is a
Banach space can be proved in a similar way. Let us suppose that the sequence (xik) is Cauchy in the space
rf. Then there exists n0 ∈ N such that for all i, j ≥ n0 we have

|timn(x)− tjmn(x)| < ε, (3.5)

where timn(x) = 1
Rm

∑m
k=0 rkx

i
k+n(x) and tjmn(x) = 1

Rm

∑m
k=0 rkx

j
k+n(x). This shows that for every m,n ∈ N

the sequence (timn(x)) is Cauchy in R. Let limi t
i
mn(x) = tmn(x). By (3.5), |tmn(x) − tjmn(x)| < ε, hence

timn(x) converges to tmn(x).
It is easy to see that tmn(x) ∈ rf . This completes the proof.

Theorem 3.2. The sets zrf and zrf0 are linear spaces with the co-ordinatewise addition and scalar multip-
lication, and BK- spaces with the norm defined by

‖x‖zrf0 = ‖x‖zrf = sup
m

∣∣∣∣∣ 1

Rm

m∑
k=0

rk[pxk+n + (1− p)xk+n−1]

∣∣∣∣∣ , uniformly in n. (3.6)

Proof. The first part of the theorem is clear. We will only prove the second part. Since (3.3) holds and rf,
rf0 are Banach spaces (see Lemma 3.1) and the matrix Zp is normal, the conclusion follows by Theorem
4.3.3 of Wilansky [33].

Theorem 3.3. The sequence spaces rf and rf0 are isometrically isomorphic to the spaces zrf and zrf0,
respectively.

Proof. We consider only the spaces rf and zrf, since the discussion regarding rf0 and zrf0 is similar. In order
to prove the fact that rf ∼= zrf, we should show the existence of a linear bijection between these spaces.
Consider the transformation T defined, with the notation of (3.3), from zrf to rf by x 7→ y = Tx. The
linearity of T is clear. Furthermore, it is trivial that x is equal to θ = (0, 0, ...) whenever Tx = θ and hence
T is injective.

Let y = (yk) ∈ rf, Bk =
∑k

j=0(−1)k−j (1−p)
k−j

pk−j+1 , Bk−1 =
∑k−1

j=0(−1)k−j (1−p)
k−j

pk−j+1 . If we define the sequence

x = (xk) by (Bkyj) then we see that T is surjective. Since

‖x‖zrf = sup
m

∣∣∣∣∣ 1

Rm

m∑
k=0

rk[pxk+n + (1− p)xk+n−1]

∣∣∣∣∣
= sup

m

∣∣∣∣∣ 1

Rm

m∑
k=0

rk[pB
kyj + (1− p)Bk−1yj ]

∣∣∣∣∣
= sup

m

∣∣∣∣∣ 1

Rm

m∑
k=0

rkyk

∣∣∣∣∣ = ‖y‖rf,

it follows that T is norm preserving, so the spaces zrf and rf are isometrically isomorphic.



Z. Zararsız, M. Şengönül, K. Kayaduman, J. Nonlinear Sci. Appl. 9 (2016), 377–391 382

We recall that a sequence space λ is said to be solid if and only if `∞λ ⊂ λ [14].

Theorem 3.4. The space rf is not a solid sequence space.

Proof. If we take u = (uk) = (1, 1, ...) and v = (vk) = (1, 0, 1, 1, 0, 0, ...) for k ∈ N then we see that u ∈ rf,
v ∈ `∞ and rf− lim v = limm

1
Rm

∑m
k=0 rkxk+n =∞. It means that uv = v /∈ rf, that is, rf is not solid.

Theorem 3.5. The inclusions c0 ⊂ rf0 ⊂ rf ⊂ `∞, rf0 ⊂ zrf0 and rf ⊂ zrf hold for (rk) = (1).

Proof. The proof of the theorem is clear so we omit it.

It is known that a set λ ⊂ w is said to be convex if for all x, y ∈ λ, M = {z ∈ w : z = tx+ (1− t)y, 0 ≤
t ≤ 1} ⊂ λ.

Theorem 3.6. The sets rf, rf0, zrf and zrf0 are convex spaces.

Proof. The proof of the theorem is clear from the definition of convexity.

4. Duals

In this section, by using techniques in [7], we state and prove theorems determining the α-, β- and γ-
duals of the spaces rf0, rf, zrf0 and zrf.

For the sequence spaces λ and µ, define the set S(λ, µ) by

S(λ, µ) = {z = (zk) ∈ w : xz = (xkzk) ∈ µ for all x = (xk) ∈ λ} . (4.1)

If we take µ = `1 then the set S(λ, `1) is called the α- dual of λ; similarly, the sets S(λ, cs), S(λ, bs) are
called the β- and γ- dual of λ and are denoted by λα, λβ and λγ , respectively.

Theorem 4.1 ([20]). If λ ⊂ µ, then µξ ⊂ λξ where ξ ∈ {α, β, γ}.

As a consequence of Theorems 3.5 and 4.1, we obtain that the ξ ∈ {α, β, γ}- duals of the spaces rf and
rf0 is the space `1.

We state the following results which will be used in the computation of the β- dual of the sets zrf and
zrf0.

Lemma 4.2. Let A = (ank) be an infinite matrix. Then A ∈ (rf : `∞) if and only if

sup
n

∑
k

|ank| <∞. (4.2)

Proof. Suppose that supn
∑

k |ank| < ∞ and x ∈ rf ⊂ `∞. Then Ax exists because of the fact that
(ank)k∈N ∈ rfβ = `1 for every k ∈ N. Therefore ‖(Ax)n‖`∞ = supn |

∑
k ankxk| ≤ supn

∑
k |ank|‖x‖rf < ∞.

The converse is proved similarly, so we omit the details.

Proposition 4.3. Let A = (ank) be an infinite matrix. Then A ∈ (rf : c) if and only if

lim
n

∑
k

ank = a, (4.3)

lim
n
ank = ak (k ∈ N), (4.4)

and
lim
n

∑
k

|4(ank − ak)| = 0. (4.5)
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Lemma 4.4. Let A = (ank) be an infinite matrix. Then A ∈ (`∞ : rf) if and only if (4.2) and

rf− lim
n
ank = ak,∀k ∈ N, (4.6)

∑
k

∣∣∣∣∣ 1

Rm

m∑
i=0

rian+i,k − ak

∣∣∣∣∣ = 0, uniformly in n (4.7)

hold.

Proof. Suppose that A ∈ (`∞ : rf). Then the necessity of condition (4.2) is obtained similarly as in the case

of Lemma 4.2. Now, let the equations e
(k)
n = δnk, (n ∈ N), and ak = rf− limAe(k) hold. Then (Ae(k))n = ank

implies that ak is equal to rf− lim ank. Suppose that (B(n)) = (b
(n)
mk), b

(n)
mk = 1

Rm

∑m
i=0 rian+i,k. The matrix

B(n) satisfies the conditions of the Schur theorem. Since A ∈ (`∞ : rf) for all x ∈ `∞, the sequence
(Bnx)m =

∑
k

1
Rm

∑m
i=0 rian+i,kxk = 1

Rm

∑m
i=0

∑
k rian+i,kxk = (SmAx)n converges for m → ∞, uniformly

in n. Therefore, limm b
(n)
mk = ak for each k, n, whence limm(SmAx)n = limm(B(n)x)m =

∑
k akxk, uniformly

in n. It follows that rf− limAx =
∑

k akxk holds for each x.

Now, define the sequence (C(n)) by C
(n)
mk = 1

Rm

∑m
i=0 rian+i,k−ak. It is clear that (C(n)x)m = (SmAx)n−∑

k akxk, therefore limm(C(n)x)m = 0, uniformly in n, for all x ∈ `∞. Consequently, limm
∑

k |
1
Rm∑m

i=0 rian+i,k − ak| = 0, uniformly in n.
Conversely, suppose that the matrix A satisfies the conditions (4.2), (4.6) and (4.7). Then, we have∣∣∣∣∣(SmAx)n −

∑
k

akxk

∣∣∣∣∣ ≤ ‖x‖
(∑

k

∣∣∣∣∣ 1

Rm

m∑
i=0

rian+i,k − ak

∣∣∣∣∣
)

(4.8)

uniformly in n for all x ∈ `∞. Therefore, rf− limAx =
∑∞

k=0 akxk. This completes the proof.

Lemma 4.5. Let A = (ank) be an infinite matrix. Then A ∈ (c : rf) if and only if

sup
m

∑
k

∣∣∣∣∣ 1

Rm

m∑
i=0

riaik

∣∣∣∣∣ <∞, (k,m ∈ N), (4.9)

lim
m

1

Rm

m∑
i=0

rian+i,k = ak ∈ C, uniformly in n (4.10)

and

lim
m

1

Rm

∑
k

m∑
i=0

rian+i,k = a, uniformly in n, (4.11)

hold.

Proof. Suppose that A ∈ (c : rf) and tmn(x) = 1
Rm

∑m
i=0 riσi(x), where σi(x) =

∑
k an+i,kxk. It is clear that

σi ∈ σ∗ = {σ : σ : c → C is linear and continuous, ∀i, n ∈ N}. Hence, for m = 0, 1, ..., tmn(x) ∈ σ∗. Since
A ∈ (c : rf), we can write limm tmn(x) = t(x) uniformly in n. It follows that x ∈ c and we have (tmn(x)) ∈ `∞
for all k ∈ N. Therefore, the sequence (‖tmn‖) is bounded according to the uniform convergence principle.

Let us define the sequence y = (yk) as follows:

yk =

{
sgn 1

Rm

∑m
i=0 rian+i,k, 0 ≤ k ≤ r,

0, r < k,
, ∀k, r ∈ N.

One can easily see that ‖y‖c = 1 and |tmn(y)| = 1
Rm

∑
k |
∑m

i=0 rian+i,k|, hence we obtain

|tmn(y)| ≤ ‖tmn‖‖y‖ = ‖tmn‖. This shows that 1
Rm

∑
k |
∑m

i=0 rian+i,k| ≤ ‖tmn‖, that is, (4.9) holds.
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Consider the sequences e = (1) and (ek) = (0, ..., 0, 1, 0, ...), where 1 is in the kth position of the sequence
ek. Since e, (ek) ∈ c it is easy to see that limm tmn(e) and limm tmn(ek) are convergent uniformly in n. We
conclude that (4.10) and (4.11) hold.

Conversely, suppose that (4.9), (4.10) and (4.11) are satisfied. Let x be in c. Then the following inequality
holds:

|tmn(x)| ≤ 1

Rm

∑
k

∣∣∣∣∣
m∑
i=0

rian+i,k

∣∣∣∣∣ ‖x‖.
Now,

tmn(x) =
1

Rm

m∑
i=0

∑
k

rian+i,kxi =
1

Rm

∑
k

m∑
i=0

rian+i,kxi.

From (4.9) we can write |tmn(x)| ≤ K‖x‖, where K ∈ R. Moreover, by considering the function tmn(x) ∈ σ∗
for m = 1, 2, ..., we can see that the sequence (‖tmn‖) is bounded. By (4.10) and (4.11), the limits limm tmn(e)
and limm tmn(ek) exist. Since the set {e, e0, e1, ...} is fundamental in c, limm tmn(x) = tn(x). Furthermore,
tn(x) is linear and continuous from c to C.

The expression tn(x) can be written as

tn(x) = b

[
tn(e)−

∑
k

tn(ek)

]
+
∑
k

xktn(ek), (4.12)

where b = limxk ([21]). The equalities tn(e) = a and tn(ek) = ak hold for k = 0, 1, ..., from (4.10) and
(4.11), respectively. Thus, for k = 0, 1, ..., and every x ∈ c we can write

lim
m
tmn(x) = t(x) and t(x) = b

[
a−

∑
k

ak

]
+
∑
k

akxk.

Furthermore, since tmn ∈ σ∗, we obtain

tmn(x) = b

[
tmn(e)−

∑
k

tmn(ek)

]
+
∑
k

xktmn(ek). (4.13)

From (4.12) and (4.13) we can easily see that (tm(x)) → t(x), uniformly in n since limm tmn(e) = a and
limm tmn(ek) = ak. This completes the proof.

Lemma 4.6 ([7]). Let D = (dnk) be defined via a sequence a = (ak) ∈ w and the inverse matrix V = (vnk)
of the triangle matrix U = (unk), by

dnk =

{ ∑n
j=k ajvjk, 0 ≤ k ≤ n,

0, k > n

for all k, n ∈ N. Then,
{λU}γ = {a = (ak) ∈ w : D ∈ (λ : `∞)}

and
{λU}β = {a = (ak) ∈ w : D ∈ (λ : c)}.
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Let us define the sets di, i = 1, 2, 3 as follows:

d1 =

(uk) ∈ w : sup
n

n∑
k=0

∣∣∣∣∣∣
n∑
j=k

(−1)j−k(1− p)j−k

pj−k+1
uj

∣∣∣∣∣∣ <∞
 ,

d2 =

(uk) ∈ w : ∃ lim
n

n∑
j=k

(−1)j−k(1− p)j−k

pj−k+1
uj

 ,

d3 =

(uk) ∈ w : lim
n

n∑
j=k

∣∣∣∣∆((−1)j−k(1− p)j−k

pj−k+1
uj − uk

)∣∣∣∣ = 0

 .

Theorem 4.7. The β- dual of the spaces zrf and zrf0 is the set D =
⋂3
i=1 di.

Proof. Define the matrix V = (vnk) via the sequence u = (uk) ∈ w by

vnk =

{ ∑n
j=k(−1)j−k (1−p)

j−k

pj−k+1 uj , 0 ≤ k ≤ n,
0, k > n

for all n, k ∈ N. Given that xk = Bkyj , we find that

n∑
k=0

ukxk =

n∑
k=0

ri

n∑
j=k

(−1)j−k
(1− p)j−k

pj−k+1
ujyk = (V y)n, n ∈ N. (4.14)

From (4.14), we see that ux = (ukxk) ∈ cs whenever x = (xk) ∈ zrf if and only if V y ∈ c whenever

y = (yk) ∈ rf. Then we derive by Proposition 4.3 that zrfβ = zrfβ0 = D .

5. Some matrix mappings related to the space zrf

In this section, we characterize the matrix mappings from zrf into any given sequence space via a new
concept of dual summability methods.

Suppose that the sequences u = (uk) and v = (vk) are connected via (3.3) and let z = (zk) be the
A-transform of the sequence u = (uk) and t = (tk) be the B-transform of the sequence v = (vk) i.e.,

zk = (Au)k =
∑
k

ankuk, (k ∈ N) (5.1)

and
tk = (Bv)k =

∑
k

bnkvk, (k ∈ N). (5.2)

It is clear here that B is applied to the Zp- transform of the sequence u = (uk), while A is directly applied
to the terms of the sequence u = (uk). Then it is easy to see that methods A and B are essentially different
(see [9]).

Let us assume that the matrix product BZp exists (this is a much weaker assumption than that of matrix
B belonging to any matrix class, in general). If zk becomes tk (or tk becomes zk), under the application
of the formal summation by parts, then the methods A and B as in (5.1) and (5.2) are called Zweier dual
type matrices. This leads us to the fact that BZp exists and is equal to A and (BZp)u = B(Zpu). This
statement is equivalent to the relation

bnk =
n∑
j=k

(−1)j−k
(1− p)j−k

pj−k+1
anj or ank = pbnk + (1− p)bn,k+1 (5.3)

for all n, k ∈ N.
Now, we give the following theorem concerning Zweier dual matrices:
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Theorem 5.1. Let A = (ank) and B = (bnk) be dual matrices of new type and µ be any given sequence
space. Let limm bnm = 0 for all n ∈ N and (ank)k∈N ∈ `1. Then A ∈ (zrf : µ) if and only if B ∈ (rf : µ).

Proof. Suppose that A = (ank) and B = (bnk) are Zweier dual matrices, that is to say (5.3) holds, and µ is
any given sequence space. Additionally, note that the spaces zrf and rf are isomorphic.

Let A ∈ (zrf : µ) and take any y = (yk) ∈ rf. Then BZp exists and (ank)k∈N ∈ D , which implies that
(bnk)k∈N ∈ `1 for each n ∈ N. Hence, By exists for each y ∈ rf. Using the hypothesis and letting m→∞ in
the equality

m∑
k=0

bnkyk =
m−1∑
k=0

(pbnk + (1− p)bn,k+1)xk + pbnmxm, ∀m,n ∈ N, (5.4)

we obtain By = Ax. It follows that B ∈ (rf : µ).
Conversely, suppose that (5.4) and B ∈ (rf : µ) hold for every fixed k ∈ N and take any x = (xk) ∈ zrf.

Then, Ax exists. Therefore, from

m∑
k=0

ankxk =

m∑
k=0

m∑
j=k

(−1)j−k
(1− p)j−k

pj−k+1
anjyk =

m∑
k=0

bnkyk (n ∈ N), (5.5)

by taking m→∞ we obtain that Ax = By. From here, it is clear that A ∈ (zrf : µ).

Theorem 5.2. Suppose that the elements of the infinite matrices D = (dnk) and E = (enk) are connected
via the relation

enk = pdnk + (1− p)dn−1,k, (n, k ∈ N) (5.6)

and let µ be any given sequence space. Then D ∈ (µ : zrf) if and if only E ∈ (µ : rf).

Proof. Suppose that x = (xk) ∈ µ. Since (5.6) holds and

1

Rn

n∑
k=0

rk[pdn,k+ixk+i + (1− p)dn−1,k+ixk+i] =
1

Rn

n∑
k=0

rk(en,k+ixk+i),

we obtain for n→∞ that ‖Dx‖zrf = ‖Ex‖rf .

The following propositions are consequences of Proposition 4.3, Lemma 4.4 and Theorems 5.1 and 5.2:

Proposition 5.3. Let A = (ank) be an infinite matrix of real or complex numbers. Then A = (ank) ∈ (zrf :
`∞) if and only if (ank)k∈N ∈ zrfβ for all n ∈ N and

sup
n

∑
k

∣∣∣∣∣∣
n∑
j=k

(−1)j−k
(1− p)j−k

pj−k+1
anj

∣∣∣∣∣∣ <∞. (5.7)

Proposition 5.4. Let A = (ank) be an infinite matrix of real or complex numbers. Then A = (ank) ∈ (zrf : c)
if and only if (ank)k∈N ∈ zrfβ for all n ∈ N, (5.7) and following statements hold:

(i) limn
∑

k

∑n
j=k(−1)j−k (1−p)

j−k

pj−k+1 anj = a,

(ii) limn
∑n

j=k(−1)j−k (1−p)
j−k

pj−k+1 anj = ak for each fixed k ∈ N,

(iii) limn
∑

k

∣∣∣4(∑n
j=k(−1)j−k (1−p)

j−k

pj−k+1 anj − ak
)∣∣∣ = 0.

Proposition 5.5. Let A = (ank) be an infinite matrix of real or complex numbers. Then A = (ank) ∈ (`∞ :
zrf) if and only if following statements hold:
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(i) supn
∑

k |pank + (1− p)an−1,k| <∞,

(ii) rf− limn pank + (1− p)an−1,k = ak exists for each fixed k ∈ N,

(iii) limn
∑

k |
1
Rn

∑n
i=0 riaν+i,k − ak| = 0, uniformly in ν.

Proposition 5.6. Let A = (ank) be an infinite matrix of real or complex numbers. Then A = (ank) ∈ (c : zrf)
if and only if

(i) supn
∑

k |pank + (1− p)an−1,k| <∞,

(ii) limq
1
Rq

∑q
i=0 ri(pan+i,k + (1− p)an+i−1,k) = ak exists, uniformly in n,

(iii) limq
1
Rq

∑q
i=0 ri

∑
n(pak+i,n + (1− p)ak+i−1,n) = a exists, uniformly in k.

6. Core theorems of new type

In this section, we give some core theorems related to the rf - and zrf - cores.
Let x = (xk) be a sequence in C and Rk be the least convex closed region of the complex plane containing

xk, xk+1, xk+2, . . .. The Knopp Core (or K− core) of x is defined by the intersection of all Rk, (k = 1, 2, ...)
(see [17]). In [30], it is shown that

K − core(x) =
⋂
z∈C

Bx(z)

for any bounded sequence x, where Bx(z) = {w ∈ C : |w − z| ≤ lim supk |xk − z|}.
Let E be a subset of N. The natural density δ of E is defined by

δ(E) = lim
n

1

n
|{k ≤ n : k ∈ E}| ,

where |{k ≤ n : k ∈ E}| denotes the number of elements of E not exceeding n. A sequence x = (xk) is said
to be statistically convergent to a number ` if δ({k : |xk − `| ≥ ε}) = 0 for every ε > 0. In this case, we
write st − limx = ` [31]. By st and st0 we denote the space of all statistically convergent and statistically
null sequences, respectively.

In [19], Fridy and Orhan introduced the notion of the statistical core(or st− core) of a complex valued
sequence and showed that, if x is a statistically bounded sequence x, then

st− core(x) =
⋂
z∈C

Cx(z),

where Cx(z) = {w ∈ C : |w − z| ≤ st− lim supk |xk − z|}.
In this section, we will consider complex valued sequences, and by `∞(C) we denote the space of all such

sequences which are bounded.
Following Knopp, a core theorem characterizes a class of matrices for which the core of the transformed

sequence is included in the core of original sequence. For example, the Knopp Core Theorem [17] states
that K− core(Ax) ⊂ K− core(x) for all real valued sequences x whenever A is a positive matrix in the class
(c, c)reg.

Now, we introduce the B
R̂
− core of a complex valued sequence and characterize the class of matrices

such that B
R̂
− core(Ax) ⊆ K− core(x), K− core(Ax) ⊆ B

R̂
− core(x), B

R̂
− core(Ax) ⊆ B

R̂
− core(x) and

B
R̂
− core(Ax) ⊆ st− core(x) for all x ∈ `∞(C).
Considering

tmn(x) =
1

Rm

m∑
i=0

rixi+n,

we can define the B
R̂
− core of a complex sequence as follows.
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Definition 6.1. Let Hn be the least closed convex hull containing tmn(x), tm+1,n(x), tm+2,n(x), .... Then,
the B

R̂
− core of x is the intersection of all Hn, i.e.,

B
R̂
− core(x) =

∞⋂
n=1

Hn.

Note that we have defined the B
R̂
− core of x by the K − core of the sequence (tmn(x)), Consequently,

we can obtain the following theorem which is analogue of that for the K − core in [30]:

Theorem 6.2. For any z ∈ C, let

Gx(z) =

{
w ∈ C : |w − z| ≤ lim sup

m
sup
n
|tmn(x)− z|

}
.

Then, for any x ∈ `∞,

B
R̂
− core(x) =

⋂
z∈C

Gx(z).

Now, we need to characterize the classes A ∈ (c : zrf)reg and (st
⋂
`∞ : zrf)reg. For brevity, through

all the text we write ã(m,n, k) = ã instead of

1

Rm

m∑
i=0

riai+n,k

for all m,n, k ∈ N.

Lemma 6.3. A ∈ (c : zrf)reg if and only if (4.9) and (4.10) of the Lemma 4.5 hold with ak = 0 for all
k ∈ N and

lim
m

∑
k

ã = 1, uniformly in n. (6.1)

Lemma 6.4. A ∈ (st
⋂
`∞ : zrf)reg if and only if A ∈ (c : zrf)reg and

lim
m

∑
k∈E
|ã| = 0, uniformly in n, (6.2)

for every E ⊂ N with natural density zero.

Proof. Let A ∈ (st ∩ `∞ : zrf)reg. Then A ∈ (c : zrf)reg immediately follows from the fact that c ⊂ st ∩ `∞.
Now, define the sequence t = (tk) for x ∈ `∞ by

tk =

{
xk, k ∈ E,
0, k /∈ E,

where E is any subset of N with δ(E) = 0. Then st− lim tk = 0 and t ∈ st0, so we have At ∈ zrf0. On the
other hand, since (At)n =

∑
k∈E anktk, the matrix B = (bnk) defined by

bnk =

{
ank, k ∈ E,
0, k /∈ E

for all n, must belong to the class (`∞, zrf0). Hence, the necessity of (6.2) is clear.
Conversely, let x ∈ st ∩ `∞ and st− limx = `. Then, for any given ε > 0, the set E = {k : |xk − `| ≥ ε}

has density zero and |xk − `| ≤ ε if k /∈ E. From here, it is clear that∑
k

ãxk =
∑
k

ã(xk − `) + `
∑
k

ã. (6.3)
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Since ∣∣∣∣∣∑
k

ã(xk − `)

∣∣∣∣∣ ≤ ‖x‖∑
k∈E
|ã|+ ε‖A‖,

by letting m→∞ in (6.3) and using (6.1) with (6.2), we have

lim
m

∑
k

ãxk = `.

This implies that A ∈ (st
⋂
`∞ : zrf)reg and the proof is completed.

Lemma 6.5 ([18], Corollary 12). Let A = {amk(n)} defined by amk(n) = ã for all m,n, k ∈ N be a matrix
satisfying ‖A‖ = ‖amk(n)‖ < ∞ and lim supm supn |amk(n)| = 0. Then there exists y ∈ `∞ with ‖y‖ ≤ 1
such that

lim sup
m

sup
n

∑
k

ãyk = lim sup
m

sup
n

∑
k

|ã|.

Theorem 6.6. B
R̂
− core(Ax) ⊆ K − core(x) for all x ∈ `∞ if and only if A ∈ (c : zrf)reg and

lim sup
m

sup
n

∑
k

|ã| = 1. (6.4)

Proof. Suppose that B
R̂
−core(Ax) ⊆ K−core(x) and take x ∈ c with limx = `. Then, since K−core(x) ⊆

{`}, B
R̂
− core(Ax) ⊆ {`}, zrf − limAx = `, which means that A ∈ (c : zrf)reg. It follows that the matrix

A = ã satisfies the conditions of Lemma 6.5. Thus, there exists y ∈ `∞ with ‖y‖ ≤ 1 such that{
w ∈ C : |w| ≤ lim sup

m
sup
n

∑
k

ãyk

}
=

{
w ∈ C : |w| ≤ lim sup

m
sup
n

∑
k

|ã|

}
.

On the other hand, since K − core(y) ⊆ A∗1(0), by the hypothesis we have{
w ∈ C : |w| ≤ lim sup

m
sup
n

∑
k

|ã|

}
⊆ A∗1(0) = {w ∈ C : |w| ≤ 1},

which implies (6.4).
Conversely, let w ∈ B

R̂
− core(Ax). Then, for any given z ∈ C, we can write

|w − z| ≤ lim sup
m

sup
n
|tmn(Ax)− z| = lim sup

m
sup
n

∣∣∣∣∣z −∑
k

ãxk

∣∣∣∣∣
≤ lim sup

m
sup
n

∣∣∣∣∣∑
k

ã(z − xk)

∣∣∣∣∣+ lim sup
m

sup
n
|z|

∣∣∣∣∣1−∑
k

ã

∣∣∣∣∣
= lim sup

m
sup
n

∣∣∣∣∣∑
k

ã(z − xk)

∣∣∣∣∣ .
Now, let L(x) = lim supk|xk − z|. Then, for any ε > 0, |xk − z| ≤ L(x) + ε whenever k ≥ k0. Hence, one

can write ∣∣∣∣∣∑
k

ã(z − xk)

∣∣∣∣∣ =

∣∣∣∣∣∣
∑
k<k0

ã(z − xk) +
∑
k≥k0

ã(z − xk)

∣∣∣∣∣∣
≤ sup

k
|z − xk|

∑
k<k0

|ã|+ [L(x) + ε]
∑
k≥k0

|ã|

≤ sup
k
|z − xk|

∑
k<k0

|ã|+ [L(x) + ε]
∑
k≥k0

|ã|.
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Therefore, applying lim supm supn, in light of the hypothesis we get

|w − z| ≤ lim sup
m

sup
n

∣∣∑
k

ã(z − xk)
∣∣ ≤ L(x) + ε,

which means that w ∈ K − core(x).

Theorem 6.7. B
R̂
− core(Ax) ⊆ st− core(x) for all x ∈ `∞ if and only if A ∈ (st

⋂
`∞ : zrf)reg and (6.4)

holds.

Proof. First, we suppose that B
R̂
− core(Ax) ⊆ st− core(x) for all x ∈ `∞. By taking x ∈ st

⋂
`∞, one can

see that A ∈ (st
⋂
`∞ : zrf)reg. Also, since st− core(x) ⊆ K − core(x) for any x ([16]), the necessity of the

condition (6.4) follows from Theorem 6.6.
Conversely, suppose A ∈ (st

⋂
`∞ : zrf)reg and (6.4) holds, and take w ∈ B

R̂
− core(Ax). Now, let

β = st− lim sup |z − xk|. If we set E = {k : |xk − z| ≥ β + ε}, then δ(E) = 0 and |z − xk| ≤ β + ε whenever
k /∈ E. From here, we obtain∣∣∣∣∣∑

k

ã(z − xk)

∣∣∣∣∣ =

∣∣∣∣∣∑
k∈E

ã(z − xk) +
∑
k/∈E

ã(z − xk)

∣∣∣∣∣
≤ |z − xk|

∑
k∈E
|ã|+

∑
k/∈E

|ã||z − xk|

≤ |z − xk|
∑
k∈E
|ã|+ [β + ε]

∑
k/∈E

|ã|.

By applying the operator lim supm supn and using the hypothesis with (6.2) and (6.4), we find that

lim sup
m

sup
n

∣∣∣∣∣∑
k

ã(z − xk)

∣∣∣∣∣ ≤ β + ε. (6.5)

Thus, (6.5) implies that |w − z| ≤ β + ε. Since ε is arbitrary, this means that w ∈ st − core(x), which
completes the proof.

Author contributions

Sections 1, 2 and 3 represent the joint work of Zarife Zararsız and Mehmet Şengönül. The last section
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