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Abstract

In this paper, we constructed two new base sequence spaces, denoted rf and rf), and we investigated some
of their important properties. Then, by using matrix domains, we defined other sequence spaces on these
base spaces, called zrf and zrfy. Finally, we introduced theBj — core of a complex-valued sequence and we
examined some inclusion theorems related to this new type of core. (©2016 All rights reserved.
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1. Preliminaries, background and notations

There are several methods by which one can construct new spaces from a given space. The easiest one is
to derive a linear subspace from any given space. For example, let us suppose that V is the set of functions
defined as €' = e¢(t) in the complex space C(—o0,00) with the norm ||z| = SUD(_oo,00) |Z(t)] and & € R,
the set of real numbers. In this case, the closed span, span(V'), consists of all bounded and continuous
complex valued functions which are the limits of uniformly convergent trigonometric series on the real line.
Therefore, span(V') is the set of all almost periodic functions in sense of Bohr [12], [I3]. Another way to
construct a new sequence space is by using the concept of two-normed space introduced by Orlicz in [27].

Namely, let U be any normed sequence space endowed with the norm || - ||, and let || - ||* be another norm
on U. Then (U, | -, ]| - |I*) is said to be a two-normed space, where we assume that the norm || - || is coarse
from the norm || - ||*. Also, ||- || and || - ||* are called the basic and starred norm on U, respectively. Clearly,
if we take || - || = - ||*, then (U, || - |, || - [|*) reduces to the normed space (U, || - ||). More information about
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two-normed spaces can be found in [27]. Other standard techniques are the construction of quotient spaces
and cartesian products (for more, see [1], [2]-[6], [11], [22], [24], [25], [26], [29], [32], [34]).

Let U be a normed space which has not been obtained from any space using standard techniques. If
we can derive a new space from U via standard techniques, then U is called base space. For example, the
space V mentioned above and the spaces (., c, co, ¢p, f and fo which are called bounded, convergent, null,
absolutely p summable, almost convergent and almost null convergent sequence spaces of complex numbers,
respectively, are base spaces.

A matrix A € ({s : ¢) is called a Schur matrix [28]. We recall the following important properties of
Schur matrices.

Proposition 1.1. If A is a Schur matriz, then lim, aym, = an ezists for each n and if x € lo, then
limy, (AZ)m =D, 0nTn.
Proposition 1.2. A € ({x : ¢p) if and only if lim,, Y, |amn| = 0.

The main purpose of the present paper is to construct a new class of base spaces called rf, rfy-, zrf- and
zrfy- convergent sequence spaces and to analyze the duals and some classes of matrix mappings on these
spaces. Furthermore, we introduce the By — core of a complex valued sequence and examine some inclusion
theorems related to this new type of core.

The rest of paper is organized as follows. In Section 2, we summarize the basic knowledge regarding
almost convergence in the literature. In Section 3, we show that the spaces rf and zrf are isometrically
isomorphic, and investigate some algebraic and topological properties of the spaces rf, rfy, 2rf and zrf,. In
Section 4, we state and prove theorems determining the duals of the spaces rf, rfy, 2rf and zrf,. Then, we
study the classes (1f: ), (1f: ¢), ({x : 7f) and (¢ : rf). In Section 5, we characterize the matrix mappings
from zrf into any given sequence space by means of dual summability methods. We also determine the
classes (21f : loo), (21f 1 ), (boo @ 2rf) and (c : zrf). In the final section, we introduce the Bp — core of a
complex valued sequence.

Now, we provide some notations and definitions in order to explain our idea. For simplicity, through all
the text, we shall write ), , sup,, limsup, and lim, instead of Y ° . sup,cy, limsup, ., and lim,
where N = {0,1,2,...}. By w we denote the space of all complex valued sequences. Each vector subspace
of w is called a sequence space. Let A and p be two sequence spaces and A = (ay)) be an infinite matrix of
real or complex numbers a,, where n, k € N. Then, we can say that A defines a matrix mapping from \ to
i, and we denote it by writing A € (A : u), if for every sequence x = (zy) in A, the sequence Az = {(Ax),}
(the A- transform of z), is in u, where k runs from 0 to co. The domain A4 of an infinite matrix A in a
sequence space A is defined by

A ={z = (z) e w: Ax € A}, (1.1)

which is a sequence space. If we take A = ¢, then c4 is called the convergence domain of A. We write the
limit of Az as A — limy, x, = lim, > ;  ankxk, and A is called regular if lim Az = limz for every z € c.
A = (any) is called a triangle matrix if a,;, = 0 for £ > n and a,,, # 0 for all n € N. If A is a triangle matrix,
then one can easily see that the sequence spaces A4 and A are linearly isomorphic, i.e., Ay = \. A sequence
space A with a linear topology is called a K- space provided that each of the maps p; : A — C defined by
pi(z) = x; is continuous for all 4 € N. If \ is a complete linear metric space then it is called an F'K-space.
Any F K-space whose topology is normable is called a BK- space [10].

We now recall some well-known triangle and regular matrices.

The Cesaro matrix of order one C' = (c¢y) is a lower triangular matrix defined by

1
Col = n+1’ 0§k§n7
" 0, k>n

for all n,k € N. A matrix U is called a generalized Cesaro matriz if it is obtained from C' by shifting rows.
Let 6 : N — N. Then U = (uyg) is defined by

- n%rl, O(n) <k <60(n)+n,
" 0, otherwise
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for all n, k € N.

Let us suppose that G is the set of all such matrices obtained by using all possible functions 6. The
following lemma given by Butkovic, Kraljevic and Sarapa [15] characterizes the set of almost convergent
sequences.

Lemma 1.3. The set f of all almost convergent sequences is equal to the set Nycgcy -

One of the best known regular matrices is R = (7,,%), the Riesz matrix, which is defined by

Ry’

s, 0<k<n,
Tk = 0, k>n

for all n,k € N, where (r}) is real sequence with 79 > 0, r, > 0 and R, = > ,_,7%. The Riesz matrix R is
regular if and only if R, — oo as n — oo [2§].
The matrix ZP defined by
p, n=k,
ZP =)= 1—p, n—1=kF,
0, otherwise

for all n,k € N and p € R — {—1} is called a Zweier matrix [14].

For i = 1,2,..., let A® = (a,) be an infinite matrix of complex numbers. Let 7 denote the sequence of
matrices (A’). For a sequence z = (zy,), the double sequence t = (t},) defined by ti, = >"7° | a’, xy, is called
the o7~ transform of = = (xj,) whenever the series converges for all n and i. A sequence x = (z},) is said to
be o7/~ summable to some number I, if t = () converges to [ as n tends to oo, uniformly for i = 1,2, ... .
Furthermore, the number [ is said to be the &7~ limit of x = (), written &/ — limx = [.

2. The sequence space f of almost convergent sequences

In this section, we deal with the sequence space f of almost convergent sequences. First of all, we recall
the definition of the Banach limit L : /o — R that is a continuous linear functional on ¢, such that the
following statements hold for any sequences x = (zy) and y = (yx) [8]:

(i

) L(azy, + byx) = aL(zg) + bL(yx), a,b € R;
(ii) if x > 0 for all k € N, then L(xy) > 0;
i)

)

(ili) L(Sx) = L(x), where S is the shift operator defined by (Sx)i = xp11;

(iv) L(e) =1, where e = (1,1, ...).

A bounded sequence z is called almost convergent to a € R if all Banach limits of the sequence = are
equal to a € C, and this is denoted by f — limx = a [23]. Given a sequence x = (xy), we define t,,,, ()
for all m,n € N by tyn(z) = ﬁzgo(é”x)n. Lorentz [23] proved that f — limzy, = a if and only if
lim,y, tyn(z) = @, uniformly in n. By f and fy, we denote the space of all almost convergent and almost null
sequences, respectively, i.e.,

f= {a: = (k) € loo : Fa = hmz 1 € C, uniformly in n}

and

fo= {x = (z}) €l : hnl;nZ % = 0, uniformly in n} .

k=0
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In [23], Lorentz obtained the necessary and sufficient conditions for an infinite matrix to contain f in its
convergence domain. These are standard Silverman - Toeplitz conditions for regularity, with the additional
following condition:

(o]
liﬁnz |k — appi1] = 0. (2.1)
k=0

3. A generalization of the definition of almost convergence by means of the sequence spaces
rf and rfy

Almost convergence can be defined as the intersection of convergence field of a Cesaro matrix that is
obtained by displacement of the lines of the first-order Cesaro matrix. Let v € N and « = (x}) € ¢o. Then,
let us define the matrix S¥ = (s?,) as follows:

o 1, n+v=k,
"k 0, otherwise.

The sequence (SVz) = (Sz, S'z, 5%z, ..., 8%z, ...) is called the shifted transforms sequence of z, obtained
by S. Thus, almost convergence has the same meaning as the convergence of first-order Cesaro average of
the shifted transform sequence (Sz) = (S%z, Sz, S%x,...,SVx,...) to a fixed sequence for each v. We will
denote

fr= {33 Eloo : liin[T(S”:U)]k =acC,v=0,1,2, }

the set of all T- convergent sequences.
In particular, if we take a;, = 1%1 if i <k <n-+1and 0 otherwise, then the sequence x is said to rf -
summable to a if (R'z), = % Y h_o TkTk+i converges to a as n — oo, uniformly for ¢ = 1,2,... . By rfand

rfy, we denote the sequence spaces of all rf- convergent and null rf- convergent sequences, respectively, i.e.,

1 m
rf= {:U = (zg) € loo : lim — Zrk$k+n = a, uniformly in n} , (3.1)
m Fom k=0
1 m
Ty = {x = (z1) € loo : lim — Zrkl“k-s-n = 0, uniformly in n} . (3.2)
m Fom k=0

The spaces rfy and rf are not obtained by the convergence field of an infinite matrix. By taking this into
consideration, we can say that these are base spaces. In addition to rfy and rf, we define two new types of
convergent sequence spaces, zrf and zrfy, as the sets of all sequences such that their ZP- transforms are in
rf and rfy, respectively, that is,

2rf = {a: = (z) €Ew: limz ;—k[p:z:kJrn + (1 — p)xgs+n—1] = a, uniformly in n}
k=0~ ™

and
X~ TR . :
2rfy = {x = (zg) Ew: hmz —[pTiin + (1 — p)Thyn—1] = 0, uniformly in n} .
™ o fm

Clearly, the sets zrfy and zrf are not base spaces. Now, let us define the sequence y = (yx), which will be
frequently used, as the ZP - transform of a sequence x = (), i.e.,

yp = prp + (1 —p)rg_q forall k e N;p e R — {—1}. (3.3)

We should emphasize here that the sequence spaces rf and rfy can be reduced to the classical almost
convergent sequence spaces of real numbers f and fy respectively, in the case rp, = 1 for all k¥ € N. Thus,
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the properties and results related to the sequence spaces rf and rf, are more general than the corresponding
implications for the spaces f and fj respectively.

Lorentz [23] proved that if the regular matrix method A has the property then f and rf are
equivalent. But, if lim,, R, is not equal to co, then the Riesz matrix R is not a Toeplitz matrix. Therefore,
in general, the spaces rf and rf, are different from f and fo.

Lemma 3.1. The sets rf and rfy are Banach spaces with the norm

m

]%i Z TkLk+n

M k=0

2l,.f = llll,g, = sup , uniformly in n. (3.4)
m

Proof. Clearly, the norm conditions are satisfied. We consider only the space 7f, since the fact that rf; is a
Banach space can be proved in a similar way. Let us suppose that the sequence (z},) is Cauchy in the space
rf. Then there exists ng € N such that for all ¢, 7 > ng we have

’tinn(w) - tinn(x” <€, (35)

where t¢ (z) = ﬁ > heo TRy, () and hn () = ﬁ oo Tkxi+n(x). This shows that for every m,n € N

the sequence (£ (z)) is Cauchy in R. Let lim; ¢! (2) = tmn(z). By B.5), [tmn(z) — thn(z)| < €, hence
ti (x) converges to ty,(z).
It is easy to see that t,,,(x) € rf. This completes the proof. O]

Theorem 3.2. The sets zrf and zrfy are linear spaces with the co-ordinatewise addition and scalar multip-
lication, and BK - spaces with the norm defined by

1 — . ,
Izl 2ry = l|Z|| 2rp = sUp i Z Tk[PThin + (1 — P)Trin—1]|, uniformly in n. (3.6)

Proof. The first part of the theorem is clear. We will only prove the second part. Since (3.3)) holds and rf,
rfy are Banach spaces (see Lemma and the matrix Z? is normal, the conclusion follows by Theorem
4.3.3 of Wilansky [33]. O

Theorem 3.3. The sequence spaces rf and rfy are isometrically isomorphic to the spaces zrf and zrfy,
respectively.

Proof. We consider only the spaces rf and zrf, since the discussion regarding rf; and zrf; is similar. In order
to prove the fact that rf = zrf, we should show the existence of a linear bijection between these spaces.
Consider the transformation T defined, with the notation of , from zrfto rf by z — y = Txz. The
linearity of T is clear. Furthermore, it is trivial that z is equal to = (0,0, ...) whenever Tz = 6 and hence
T is injective.

Let y = (yx) € rf, B = E?zo(—l)kfj%, Br-L = Z?;é(—l)k*j (;;f’zf:j. If we define the sequence

x = (z1) by (B*y;) then we see that T is surjective. Since

1 m
]| 2rp = sup | —— Z TE[PThn + (1 — P)Thyn—1]
m

R,
k=0
1 _
= sup R—Zm[p%kyj + (1 —p)BF 1y
m m kZO

1 m
= sup Fzrkyk = Hy”rf7
™ k=0

m

it follows that T' is norm preserving, so the spaces zrf and rf are isometrically isomorphic. O
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We recall that a sequence space A is said to be solid if and only if £ A C A [14].
Theorem 3.4. The space rf is not a solid sequence space.

Proof. If we take u = (ug) = (1,1,...) and v = (vg) = (1,0,1,1,0,0,...) for k¥ € N then we see that u € rf,
v € Ly and 7f — limv = lim,, ﬁ Y b TkTk+n = 00. It means that uv = v ¢ rf, that is, rfis not solid. [

Theorem 3.5. The inclusions ¢y C rfy C rf C lso, 1fy C 2rfy and rf C zrf hold for (ry) = (1).
Proof. The proof of the theorem is clear so we omit it. O

It is known that a set A C w is said to be convex if for all z,y e \, M ={z € w:z=tx + (1 —t)y,0 <
t<1} C A

Theorem 3.6. The sets rf, vfy, zrf and zrfy are convex spaces.

Proof. The proof of the theorem is clear from the definition of convexity. O

4. Duals

In this section, by using techniques in [7], we state and prove theorems determining the a-, 8- and -
duals of the spaces rfy, rf, zrfy and zrf.
For the sequence spaces A and p, define the set S(A, 1) by

S\ p)={z=(2r) €Ew:2zz= (xpz) € p for all x = (x) € A}. (4.1)

If we take p = £ then the set S(\, ¢1) is called the a- dual of A; similarly, the sets S(\, cs), S(A, bs) are
called the 8- and ~- dual of A and are denoted by A%, A and \7, respectively.

Theorem 4.1 ([20]). If A C yu, then u* C \S where € € {a, B,7}.

As a consequence of Theorems and we obtain that the & € {a, 8,7}- duals of the spaces rf and
rfy is the space ¢;.
We state the following results which will be used in the computation of the 8- dual of the sets zrf and

2rfy-

Lemma 4.2. Let A = (ank) be an infinite matriz. Then A € (rf: ls) if and only if

sup E lank| < oco. (4.2)
n
k

Proof. Suppose that sup, >, |ane| < 0o and « € rf C l. Then Ax exists because of the fact that
(ank)ken € Tf° = £, for every k € N. Therefore |(Az)n e = sup, | D @nkxr| < supy, > g lank| ||| < oo.
The converse is proved similarly, so we omit the details. O

Proposition 4.3. Let A = (ani) be an infinite matriz. Then A € (rf: ¢) if and only if
li7rln Z ank = a, (4.3)
k

limay, = ar (k €N), (4.4)

and

lirlgnz |A(an — ag)| = 0. (4.5)
k
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Lemma 4.4. Let A = (ank) be an infinite matriz. Then A € (Uso : f) if and only if (4.2) and

rf—hmay, = ag, € N, .
f—1i Vk e N 4.6
1 & . :
Z o Zrianﬂ-,k — ag| = 0, uniformly in n (4.7)
k ™ =0

hold.

Proof. Suppose that A € ({s : rf). Then the necessity of condition is obtained similarly as in the case
of Lemma Now, let the equations e$ﬁ> = Onk, (n € N), and a, = rf—lim Ae®) hold. Then (Ae(k))n = Unk
implies that ay is equal to rf — lim a,;. Suppose that (B(”)) = (bf:,)c), bf:,i = % Yoo riGntik. The matrix
B™ satisfies the conditions of the Schur theorem. Since A € (fo : 7f) for all z € lo, the sequence
(B"%)m = >4 ﬁ Yoo Tilnti kT = i Yoo >k Tinti kT = (SmAx), converges for m — oo, uniformly
in n. Therefore, lim,, bg;,)C = qay, for each k,n, whence lim,, (S, Ax), = limm(B(")ac)m = > 1 apxy, uniformly
in n. It follows that rf—lim Ax = ), arx) holds for each .

Now, define the sequence (C(™) by CZQ = ﬁ S Tilnyi g —ag. Tt is clear that (C™x),, = (S,,Ax), —
> i axTk, therefore limm(C(”)x)m = 0, uniformly in n, for all z € (. Consequently, lim,, >,
oo TiGntik — ag| = 0, uniformly in n.

Conversely, suppose that the matrix A satisfies the conditions (4.2)), (4.6) and (4.7). Then, we have

1
o

m

(SmAx)n Zakl’k < |zl ( Znan+i,k — ay, > (4.8)
m =0
uniformly in n for all z € £o. Therefore, rf —lim Az = > 77, apxg. This completes the proof. O

Lemma 4.5. Let A = (ani) be an infinite matriz. Then A € (c: rf) if and only if

Znalk < oo, (k,meN), (4.9)
lim 1 Zr-a ik = ar € C, uniformly in n (4.10)
™ Rm - iUn+ik — Uk y Y .
and
1
Tﬂn o zk: Zz; Tilptik = @, uniformly in n, (4.11)
hold.

Proof. Suppose that A € (¢ : rf) and tp,(x) = ﬁ Yoo rioi(x), where o3(x) = Y anyi g2y It is clear that

o; € 0* ={0:0:c— Cis linear and continuous, Vi,n € N}. Hence, for m = 0,1, ..., t;,(x) € o*. Since

A € (c: rf), we can write lim,, t,,,(x) = t(x) uniformly in n. It follows that = € ¢ and we have (t,,,(x)) € loo

for all k& € N. Therefore, the sequence (||tmnl|) is bounded according to the uniform convergence principle.
Let us define the sequence y = (yi) as follows:

1 m
SIN R i Tilniy 0Sk<m
- " , Vk,r €N
o { 0, r<k, "

One can easily see that |y = 1 and |tmn(y = L M riansir|, hence we obtain
c Ry £<k i=0 +1,
tmn (W) < [[Emnl[lyll = [[tmnll. This shows that > >k | 2oimo Tibntik| < [[tmnll, that is, (4.9) holds.
R
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Consider the sequences e = (1) and (ex) = (0, ...,0,1,0,...), where 1 is in the k" position of the sequence
er. Since e, (e;) € c it is easy to see that lim,, t,,,(e) and lim,, t,;,,(ex) are convergent uniformly in n. We
conclude that (4.10) and (4.11)) hold.

Conversely, suppose that , and are satisfied. Let x be in ¢. Then the following inequality
holds:

1 m
trn (@) < 2= D7 > riansi ll.
™Mk li=0

Now,

1« 1 -

tn (1) = R Z Z Tiln4i,kTi = R Z Z T3 Qp4i kLi-
™i=0 &k ™k =0
7 (2

From (4.9) we can write |t (z)| < K||z||, where K € R. Moreover, by considering the function ¢,,,(z) € o*
form = 1,2, ..., we can see that the sequence (||t ||) is bounded. By (4.10) and (4.11)), the limits lim,;, ¢,,,,(€)
and lim,, ty,n(ex) exist. Since the set {e, eg, e1,...} is fundamental in ¢, limy, ty, () = t,(z). Furthermore,

tn(x) is linear and continuous from ¢ to C.
The expression t,(x) can be written as

tn(z) =b [tn(e) =) taler)

k

+ ) wpta(er), (4.12)
k

where b = limzy ([21I]). The equalities t,(e) = a and t,(ex) = aj hold for £k = 0,1,..., from (4.10) and
(4.11]), respectively. Thus, for £k =0, 1,..., and every x € ¢ we can write

+ Z arRTh.
k

ligzntmn(:n) = t(x) and t(x) = b [a - Zak
k

Furthermore, since t,,, € ¢*, we obtain

tmn () = b [tmn(e) = tmn(er)
k

+ Zxktmn(ek)- (4.13)
k

From (4.12) and (4.13) we can easily see that (t,,(x)) — t(x), uniformly in n since limy, t;n(e) = a and
lim,y, tn(ex) = ag. This completes the proof. a

Lemma 4.6 ([7]). Let D = (d,) be defined via a sequence a = (ay) € w and the inverse matriz V = (vpy)
of the triangle matriz U = (ung), by

Ao — Z;L:kajvjka 0<k<n,
nk 0’ k>

for all k,n € N. Then,
A} ={a=(ar) Ew:D e (X:lsx)}

and
MY ={a=(ax)ew:De(\:c)}
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Let us define the sets d;, i = 1,2, 3 as follows:

Jk(l—p)"“
diy =< (ug) €w: supzz i uj| <00 p,
" k=0 |j=k

)i (1 pp

dy = { (up) € w Elimz(

4 uj ¢,
p p]fk+1 J
j k 1— j—k
d3: ( ( p](k+1 ) U]Uk.> =0
Theorem 4.7. The 3- dual of the spaces zrf and zrfy is the set 2 = ﬂ?zl d;
Proof. Define the matrix V' = (v,x) via the sequence u = (uy) € w by
1 (1—p)i—k
Upk = Z?:k(_l)j k(pjf)lerl uj, 0<k<mn,
0, k>n
for all n, k € N. Given that zp = %kyj, we find that
Py
Zukxk = ZT’ Z Wujyk = (Vy)p, neN. (4.14)

k=0 j=k

From (4.14), we see that ux = (ugxr) € cs whenever x = (z) € zrfif and only if Vy € ¢ whenever
y = (yx) € rf. Then we derive by Proposition [4.3| that zrf® = zrfg =9. O

5. Some matrix mappings related to the space zrf

In this section, we characterize the matrix mappings from zrf into any given sequence space via a new
concept of dual summability methods.

Suppose that the sequences u = (ug) and v = (v) are connected via and let z = (z) be the
A-transform of the sequence u = (ug) and t = (tx) be the B-transform of the sequence v = (vi) i.e.,

2= (Au)p =Y ampup, (k €N) (5.1)
k
and
tr = (Bv)k = ankvk, (k‘ S N) (5.2)
k

It is clear here that B is applied to the ZP- transform of the sequence u = (uy), while A is directly applied
to the terms of the sequence u = (ug). Then it is easy to see that methods A and B are essentially different
(see [9]).

Let us assume that the matrix product BZP exists (this is a much weaker assumption than that of matrix
B belonging to any matrix class, in general). If z; becomes t; (or t; becomes zi), under the application
of the formal summation by parts, then the methods A and B as in and are called Zweier dual
type matrices. This leads us to the fact that BZP exists and is equal to A and (BZP)u = B(ZPu). This
statement is equivalent to the relation

n

_E: il =py=F B
bk = (—1) pi—k+1 Anj OT Apj = Pbnk + (1- p)bn,k+1 (5.3)
J=k

for all n, k € N.

Now, we give the following theorem concerning Zweier dual matrices:
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Theorem 5.1. Let A = (an,) and B = (byy) be dual matrices of new type and p be any given sequence
space. Let limyy, by, = 0 for alln € N and (apk)ken € 1. Then A € (zrf: ) if and only if B € (rf: p).

Proof. Suppose that A = (an;) and B = (byy) are Zweier dual matrices, that is to say holds, and p is
any given sequence space. Additionally, note that the spaces zrf and rf are isomorphic.

Let A € (zrf: u) and take any y = (yx) € rf. Then BZP exists and (ank)reny € 2, which implies that
(bnk)ken € 41 for each n € N. Hence, By exists for each y € rf. Using the hypothesis and letting m — oo in
the equality

m—1

Z bnkYr = Z Dbk + (1 - p)bmk—i-l)xk + PbpmTm, Ym,n € N, (5'4)
k=0

we obtain By = Ax. It follows that B € (rf: p).
Conversely, suppose that (5.4) and B € (rf: u) hold for every fixed k € N and take any = = (zy) € 2rf.
Then, Ax exists. Therefore, from

(1—p)i—*
ZankJUk = Z Z ] kik)ﬂan]yk = Z bnkyk (n € N) (5'5)
k=0 j—k k=0
by taking m — oo we obtain that Ax = By. From here, it is clear that A € (zrf: u). O

Theorem 5.2. Suppose that the elements of the infinite matrices D = (dni) and E = (enr) are connected
via the relation
Enk = pdnk + (1 - p)dn—l,ka (nv ke N) (56)

and let u be any given sequence space. Then D € (u : zrf) if and if only E € (u : rf).

Proof. Suppose that z = (x1) € p. Since (5.6)) holds and

n n
1
a5 Zrk [Pdn ktiThpi + (1 = p)dn_1 pyiThyi] = N Tk (€n k+iTh+i),
" k=0 " k=0
we obtain for n — oo that || Dz||., s = ||[Ex||,¢. O

The following propositions are consequences of Proposition [£.3] Lemma [£.4) and Theorems [5.1] and [5.2}

Proposition 5.3. Let A = (a,i) be an infinite matrixz of real or complex numbers. Then A = (ank) € (2rf:
lso) if and only if (ang)ren € zrf? for alln € N and

j k 17p)j_k

Proposition 5.4. Let A = (ank) be an infinite matriz of real or complex numbers. Then A = (ank) € (2rf: ¢)
if and only if (ang)ren € 2rfP for alln € N, (5.7) and following statements hold:

_ k
(1) limy, Y3 S0 (— 1B 0 = a,
(i) limy, Y27 4 (— 1)/~ k%am = ay, for each fived k € N,
—p k
(i) limy >, ‘A( k(= 1)1_’“%@”] k)‘ = 0.

Proposition 5.5. Let A = (anx) be an infinite matriz of real or complex numbers. Then A = (ank) € (beo :
zrf) if and only if following statements hold:
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(i) supy, > [Pank + (1 = p)an—1,x| < o0,

(ii) rf—limy, pang + (1 — p)an—1k = ay exists for each fized k € N,
(i) limy >, |R%z oo itk — ak| = 0, uniformly in v.

Proposition 5.6. Let A = (a,) be an infinite matriz of real or complex numbers. Then A = (ank) € (¢ : zrf)
if and only if

(i) sup, >k [Pank + (1 = plan—1,x] < o0,
(ii) lim, R%, S o ri(Pantik + (1 —p)anti—1k) = ax exists, uniformly in n,

(iii) lim, R%I ST ori >, (Paktin + (1 = p)agri—1n) = a exists, uniformly in k.

6. Core theorems of new type

In this section, we give some core theorems related to the rf - and zrf - cores.

Let x = (z) be a sequence in C and Ry, be the least convex closed region of the complex plane containing
Tk, Tht1y Tht2,- - .. The Knopp Core (or I — core) of x is defined by the intersection of all Ry, (k = 1,2, ...)
(see [17]). In [30], it is shown that

K — core(x) = m B (2)
zeC
for any bounded sequence z, where B,(z) = {w € C: |w — z| < limsup, |z — z|}.
Let E be a subset of N. The natural density § of F is defined by

S(E) = lim > |{k <n:kec B},
non

where |[{k < n : k € E}| denotes the number of elements of E not exceeding n. A sequence x = (xy) is said
to be statistically convergent to a number ¢ if 6({k : |z — €| > €}) = 0 for every € > 0. In this case, we
write st — lima = ¢ [31]. By st and sty we denote the space of all statistically convergent and statistically
null sequences, respectively.

In [19], Fridy and Orhan introduced the notion of the statistical core(or st — core) of a complex valued
sequence and showed that, if x is a statistically bounded sequence x, then

st — core(x) = ﬂ Cx(2),

zeC

where Cy(z) = {w € C: |w — z| < st — limsupy, |zx — 2|}

In this section, we will consider complex valued sequences, and by ¢ (C) we denote the space of all such
sequences which are bounded.

Following Knopp, a core theorem characterizes a class of matrices for which the core of the transformed
sequence is included in the core of original sequence. For example, the Knopp Core Theorem [17] states
that IC— core(Azx) C K — core(x) for all real valued sequences x whenever A is a positive matrix in the class
(€, C)reg-

Now, we introduce the B — core of a complex valued sequence and characterize the class of matrices
such that Bp — core(Ax) C K — core(z), K — core(Ar) C Bp — core(x), By — core(Ax) C Bp — core(z) and
Bp — core(Ax) C st — core(x) for all x € £oo(C).

Considering
m

1
tmn(x) = Ri Z TiTi4n,

™ =0

we can define the By — core of a complex sequence as follows.
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Definition 6.1. Let H,, be the least closed convex hull containing ¢y, (), tmt1.0(2), tmt2.n(z),.... Then,
the By — core of z is the intersection of all Hy, i.e.,

o0
Bg — core(z) = ﬂ H,.
n=1

Note that we have defined the By — core of z by the K — core of the sequence (¢, (z)), Consequently,
we can obtain the following theorem which is analogue of that for the I — core in [30]:

Theorem 6.2. For any z € C, let

Gz(z) = {w € C: |w— z| <limsupsup |ty (z) — z]} .

m n

Then, for any x € £y,
Bp — core(z) = ﬂ Gz(2).

zeC

Now, we need to characterize the classes A € (¢ : 27 f)peg and (st()loo : 27 f)reg. For brevity, through
all the text we write a(m,n, k) = a instead of

1 m
5 TiQi4n k
Rom i=0
for all m,n, k € N.

Lemma 6.3. A € (¢ : 21f)yeq if and only if (4.9) and (4.10) of the Lemma hold with ap = 0 for all
k € N and
limZEL =1, uniformly in n. (6.1)
k

Lemma 6.4. A € (st()loo : 2rf)reg if and only if A € (c: 2rf)req and
lim Z la| = 0, uniformly in n, (6.2)
" ker

for every E C N with natural density zero.

Proof. Let A € (st Nlog : 21f)reg. Then A € (¢ : 2rf)req immediately follows from the fact that ¢ C st N fo.
Now, define the sequence t = (ty) for z € £, by

= rp, keEl,
71 0, k¢E,

where E' is any subset of N with §(F) = 0. Then st — limt; = 0 and ¢ € stg, so we have At € zrfy. On the
other hand, since (At), = > ;cp @nklk, the matrix B = (bny) defined by

b — Ank, kEE,
") 0, k¢E

for all n, must belong to the class (¢, 27fy). Hence, the necessity of (6.2)) is clear.
Conversely, let © € st N ¢y and st — limx = £. Then, for any given € > 0, the set £ = {k : |z — ¢| > ¢}
has density zero and |z — ¢| < ¢ if k ¢ E. From here, it is clear that

 awp =Y (v —0)+ L) (6.3)
k k

k
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Since

S 0)| < all S lal + <Al

k keE

by letting m — oo in (6.3) and using (6.1) with (6.2), we have

117211251% =/
k

This implies that A € (st( )l : 2rf)req and the proof is completed. O
Lemma 6.5 ([I8], Corollary 12). Let A = {amr(n)} defined by ami(n) = a for all m,n,k € N be a matriz
satisfying || Al = ||amk(n)|| < oo and limsup,, sup,, |ami(n)| = 0. Then there exists y € loo with |ly|]|] <1
such that
lim sup su ayr = limsup su al.
mpnpzk:yk mpnpzk;ll
Theorem 6.6. By — core(Az) C K — core(x) for all x € l if and only if A € (c: zrf)reg and
lim sup su al = 1. 6.4
L5up npzk:! | (6.4)

Proof. Suppose that By —core(Az) C K —core(z) and take x € ¢ with limz = £. Then, since K — core(z) C
{t}, Bp — core(Ax) C {£}, zrf— lim Az = {, which means that A € (c : 2rf);¢y. It follows that the matrix
A = a satisfies the conditions of Lemma Thus, there exists y € lo, with |ly|| < 1 such that

w e C: |w| <limsupsu a =<<weC: |w| <limsupsu al y .
{ lw| < mpanyk} { w] < mpanII}

k k
On the other hand, since K — core(y) C A7(0), by the hypothesis we have

{w eC:|w| < limsupsupz ]d} CAJ(0) ={w e C: |w| <1},
m n L

which implies (6.4)).
Conversely, let w € B — core(Az). Then, for any given z € C, we can write

z— E axy

|lw — z| <limsupsup |tmn(Az) — 2| = limsup sup
m n m n

k
<lim sup su a(z — x)| + limsupsup |z| |1 — a
mpnpzk:( k) Lsupsup 2| Zk:
=lim sup su alz —x)| .
mpnpzk: ( k)

Now, let L(x) = limsupy|zx — z|. Then, for any € > 0, |z — z| < L(z) + £ whenever k > ko. Hence, one
can write

Z a(z — xg)

k

= Zd(z—xk)+2d(z—xk)

k<k0 kaO

< s%p!z—xk\ > lal + [L(x) +¢] > lal

k<ko kaQ

< s%p]z — x| Z la| + [L(z) + €] Z |al.

k<ko k>ko
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Therefore, applying lim sup,, sup,,, in light of the hypothesis we get

lw — 2| < limsupsup | E a(z —xp)| < L(z) + ¢,
m n
k

which means that w € K — core(x). O

Theorem 6.7. By — core(Ax) C st — core(x) for all x € Ly if and only if A € (st(Vleo : 27f)reg and (6.4)
holds.

Proof. First, we suppose that B — core(Axr) C st — core(z) for all x € lo. By taking € st[){x, one can
see that A € (st()loo @ 21f)reg. Also, since st — core(x) C K — core(x) for any x ([16]), the necessity of the
condition follows from Theorem

Conversely, suppose A € (st()ls : 27f)reqg and holds, and take w € Bp — core(Ax). Now, let
B = st—limsup|z —xg|. f weset E ={k: |z —z| > +¢e}, then 6(F) =0 and |z — x| < f+ ¢ whenever
k ¢ E. From here, we obtain

Z a(z — xg) Z a(z — x) + Z a(z — xy)

k keE k¢E
<lz—apl Y lal+ > lallz — okl
keE k¢E
<lz—al Y lal+[B+e] D lal.
keE k¢E

By applying the operator limsup,, sup,, and using the hypothesis with (6.2)) and (6.4)), we find that

Z a(z — xg)

k

lim sup sup
m n

<B+e. (6.5)

Thus, (6.5) implies that |w — z| < 4 e. Since € is arbitrary, this means that w € st — core(x), which
completes the proof. O
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