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Abstract

This paper is devoted to a study of relations between chaotic properties of nonautonomous dynamical system
and its induced fuzzy system. More specially, we study transitivity, periodic density and sensitivity in an
original nonautonomous system and its connections with the same ones in its fuzzified system. c©2016 All
rights reserved.
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1. Introduction and Preliminaries

A discrete dynamical system uniquely induces its fuzzified system which on the space of fuzzy sets. It
is natural to ask the following question: What is the relation between dynamical properties of the original
and fuzzified systems? In the present paper we study the relations between some chaotic properties of the
nonautonomous discrete dynamical system and its fuzzified system. Let (X, d) be a compact metric space.
A nonautonomous discrete system (NADS) is the following:

xn+1 = fn(xn), n ≥ 0, (1.1)

where {fn}∞n=0 is a sequence of continuous maps and each fn : X → X. Note that the autonomous dynamical
system (ADS) is a special case of system (1.1) when fn = f for all n ≥ 0. For other notions and notations
mentioned in this section, we refer to Section 2. ADSs have been extensively studied and many elegant
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results have been obtained. The study of dynamics of NADSs is more complicated and there are many
publications on this area [2, 8, 11, 16], but it seems there are only a few results about chaotic properties
of NADSs. Chaotic dynamics has been hailed as the third great scientific revolution of the 20th century,
along with relativity and quantum mechanics. But there is not a generally accepted definition of chaos yet.
The word ”chaos” has been introduced into mathematics by Li and Yorke [21], and then different definitions
of chaos have been designed to meet different purposes and they are based on very different backgrounds
and levels of mathematical sophistication. Among various definitions of chaos, Devaney’s chaos [7] is one of
the most commonly used. In [1], AlSharawi and his coauthors present an extension of Sharkovsky’s theorem
and its converse to periodic system. Tian and Chen [28] introduce several new concepts of chaos in the sense
of Devaney and prove that two uniformly topologically conjugate NADS share the same chaotic properties.
However, similar conclusions do not hold for two topological conjugate NADS [26], which means it is diffcult
to study chaotic behavior of NADS. In [26], Shi and Chen also establish a criterion of chaos in the sense
of Li-Yorke and discuss chaos of NADS in the sense of Devaney, Wiggins, respectively. Until very recently
the study of NADSs’ chaotic behavior has become actively [3, 10, 14, 15, 25].

On the other hand, as the complexity of research subjects increased, an accurate description for systems
becomes more and more difficult, the situation would become more complicated when the systems are
affected by the uncertainty. In this case, the fuzzy system should be considered. As we mentioned at the
first place, it is necessary to study the relations between dynamical properties of the original and fuzzified
systems. Actually, there are quite a few elegant results have been obtained [5, 6, 17, 18, 19, 20, 23, 24, 29].

In this paper, we focus on relations between Devaney’s chaotic properties of the original and its fuzzified
nonautonomous dynamical systems. Below, Section 2 gives basic notions and definitions. Section 3, Section 4
and Section 5 discuss the relation between Devaney’s chaotic properties of the original and fuzzified systems,
respectively. Finally, a brief conclusion concludes the paper.

2. Preliminaries

In this section, some basic concepts and notations are introduced.

2.1. Basic concepts of NADSs

Let (X, d) be a compact metric space and {fn}∞n=0 be a sequence of continuous maps, where fn : X → X.
An orbit of a point x0 ∈ X, denoted by {xn}∞n=0, is defined as follows:

xn = fn(xn−1), n = 1, 2, · · · .

Denote Fn : X → X by
Fn(x) = fn ◦ fn−1 · · · ◦ f2 ◦ f1(x).

A point x is periodic if Fn(x) = x for some n ≥ 1.
We say that {fn}∞n=0 is transitive if for any pair of non-empty open sets U and V there exists n ≥ 1

such that Fn(U) ∩ V 6= ∅.
We say that {fn}∞n=0 has sensitive dependence on initial conditions if there is a constant δ > 0

such that for every point x and every neighborhood U about x, there is a y ∈ U and a k ≥ 1 such that
d(Fk(x), Fk(y)) ≥ δ.

A map that is transitive, has a dense set of periodic points and has sensitive dependence on initial
conditions is called Devaney chaotic. It is well known that sensitive dependence on initial conditions is a
consequence of transitivity together with a dense set of periodic points [4, 27]. More precisely, sensitivity
is redundant in the definition if the state space X is infinite. This fact reveals the topological, rather
than metric, nature of chaos. However, the situation is complicated when we consider a nonautonomous
system. It is not clear that whether transitivity together with periodic density still imply sensitivity in
the nonautonomous dynamical systems. Consequently, in this research, we say that {fn}∞n=0 is Devaney
chaotic, if it is transitive, sensitive and has dense set of periodic points.
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2.2. Zadeh’s extension of NADSs

For a given NADS (X, {f̂n}∞n=0), its Zadeh’s extension (or fuzzification) is a sequence of maps
f̂n : F(X)→ F(X) defined by

[f̂n(u)](x) = supy∈f−1
n (x){u(y)},

for any u ∈ F(X) and x ∈ X.
Denote F1(X) the space of all normal fuzzy sets on X by

F1(X) = {u ∈ F(X) | u(x) = 1 for some x ∈ X}

Proposition 2.1 ([18, 23]). Let A,B be two subsets of X. Define e(A) = {u ∈ F(X) : [u]0 ⊆ A}, then
(1) If A is an open set, then e(A) is an open subset of F(X);
(2) e(A) 6= ∅ if and only if A 6= ∅;
(3) e(A ∩B) = e(A) ∩ e(B).

2.3. Metric space of fuzzy sets

Let K(X) be the class of all non-empty and compact subset of X. If A ∈ K(X) we define the
ε−neighborhood of A as the set

N(A, ε) = {x ∈ X| d(x,A) < ε},

where d(x,A) = infa∈A ‖x− a‖.
The Hausdorff separation ρ(A,B) of A,B ∈ K(X) is defined by

ρ(A,B) = inf{ε > 0| A ⊆ N(B, ε)},

The Hausdorff metric on K(X) is defined by letting

H(A,B) = max{ρ(A,B), ρ(B,A)}.

Define F(X) as the class of all upper semicontinuous fuzzy sets u : X → [0, 1] such that [u]α ∈ K(X),
where α-cuts and the support of u are defined by

[u]α = {x ∈ X|u(x) ≥ α}, α ∈ [0, 1] and supp(u) = {x ∈ X|u(x) > 0},

respectively.
Moreover, let F1(X) denote the space of all normal fuzzy sets on X and ∅X denote the empty fuzzy set

(∅X(x) = 0 for all x ∈ X).
A levelwise metric d∞ on F(X) is defined by

d∞(u, v) = sup
α∈[0,1]

H([u]α, [v]α)

for all u, v ∈ F(X). It is well known that if (X, d) is complete, then (F(X), d∞) is also complete but is not
compact and is not separable (see [9, 13, 17]).

3. Transitivity

In this section, the relations between transitivity of nonautonomous system and its induced fuzzy system
has been discussed.
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Proposition 3.1. [F̂n(u)]α = Fn([u]α).

Proof. Assume f̂i(ui) = ui+1.

[F̂n(u1)]α = [f̂n ◦ f̂n−1 ◦ · · · ◦ f̂1(u1)]α) = [f̂n ◦ f̂n−1 ◦ · · · ◦ f̂2(u2)]α)

= [f̂n ◦ f̂n−1 ◦ · · · ◦ f̂3(u3)]α)

= · · ·
= [f̂n(un)]α = fn([un]α) = fn ◦ fn−1([un−1]α)

= · · ·
= fn ◦ fn−1 ◦ · · · ◦ f1([u1]α) = Fn([u]α).

Proposition 3.2. F̂n[e(U)] ⊆ e[Fn(U)].

Proof. Suppose u ∈ F̂n[e(U)], then there exists ω ∈ e(U) such that u = F̂n(ω). Therefore, we have

[u]0 = [F̂n(ω)]0 = Fn([ω]0).

Since [ω]0 ⊆ U , [u]0 = Fn([ω]0) ⊆ Fn(U), consequently, u ∈ e[Fn(U)]. This completes the proof.

Theorem 3.3. If {f̂n}∞n=1 is transitive, then {fn}∞n=1 is transitive.

Proof. Suppose {f̂n}∞n=1 is transitive. To show that {fn}∞n=1 is transitive, it suffices to prove for any non-
empty open subsets U and V , there is a k ≥ 1 such that

Fk(U) ∩ V 6= ∅.

Due to Proposition 2.1 (1), e(U) and e(V ) are open subsets of F(X) and so, e(U) ∩ e(V ) is open. Thus, by
transitivity of F̂n and Proposition 3.2, there is a k ≥ 1 such that

∅ 6= F̂k[e(U)] ∩ e(V ) ⊂ e[Fk(U)] ∩ e(V ) = e[Fk(U) ∩ V ].

By Proposition 2.1 (2), we have Fk(U) ∩ V 6= ∅. This completes the proof.

The following examples show that, in general, the converse of Theorem 3.3 is not true.

Example 3.4. (Irrational rotation of circle)
Consider system (1.1) and let fn = fλ : S1 → S1 defined by fλ(eiθ) = ei(θ+2πλ), where λ is an irrational

number. It is well known that for each z ∈ S1, the orbit of z is dense in S1 and, consequently, fλ is transitive.
However, f̂λ is not transitive. In fact, assume u ∈ F(S1) and diam([u]0) = 1. Given that 0 < ε < 1

2 , let

U = B(1̂, ε2) and V = B(u, ε2), we obtain

ω ∈ U = B(1̂,
ε

2
)⇒ diam([ω]0) ≤

ε

2
,

ν ∈ V = B(u,
ε

2
)⇒ diam([ν]0) ≥ 1− ε.

Since
diam([f̂λ

k
(ν)]0) = diam(fkλ [ν]0) ≥ 1− ε

for k ∈ N. Hence, U ∩ f̂λ
n
(V) = ∅, which means that {f̂n}∞n=1 is not transitive on F(X).
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In [17, 18] the author proves that no fuzzification can be transitive on the whole F(X), but there exists
a transitive fuzzification on the space of normal fuzzy sets F1(X). To finalize this section, we develop a
method to prove that {fn}∞n=0 is transitive and it implies {f̂n}∞n=0 is transitive. It should be mentioned that
our approach was inspired by the idea presented in [12, 17, 18].

Let U be a subset of F1(X). Set

r(U) = {A ∈ K(X) | ∃u ∈ U s.t. A ⊆ [u]0}.

Proposition 3.5. Let U and V be subsets of F1(X).
(1) r(U) 6= ∅ if and only if U 6= ∅X , where ∅X is the empty fuzzy set (∅X = 0 for each x ∈ X);
(2) Suppose that u 6= v implies [u]0 ∩ [v]0 = ∅, then r(U ∩ V) = r(U) ∩ r(V);
(3) Fn[r(U)] ⊆ r[F̂n(U)];
(4) If U is a non-empty open subset of F1(X), then r(U) is a non-empty open subset of X.

Proof. (1) follows directly from the definitions.
(2) If A ∈ r(U ∩ V), then there exists ω ∈ U ∩ V such that A ∈ [ω]0. Then A ∈ r(U) and A ∈ r(V).

Therefore, the inclusion r(U ∩ V) ⊆ r(U) ∩ r(V) follows. Conversely, let A ∈ r(U) ∩ r(V). Then there exist
u ∈ U and v ∈ V such that A ⊆ [u]0 and A ⊆ [v]0, respectively. Hence, by hypothesis, A ⊆ [u]0 ∩ [v]0 which
means that [u]0 ∩ [v]0 6= ∅ and so, u = v. Consequently, there is u ∈ U ∩ V such that A ∈ r(U ∩ V) and the
inclusion r(U ∩ V) ⊇ r(U) ∩ r(V) is true.

(3) If y ∈ Fn[r(U)], then there exists x ∈ A ⊆ [u]0 such that y = Fn(x). Thus, by Proposition 3.1, we
have y = Fn(x) ∈ Fn([u]0) = [F̂n(u)]0, consequently, y ∈ r[F̂n(U)], which follows that Fn[r(U)] ⊆ r[F̂n(U)].

(4) Suppose that r(U) is not open. For any A ∈ r(U)\int(r(U)) and ε > 0, there exists open
ε−neighborhood N of A such that N ∩ r(U) 6= ∅ and N * r(U). Consider a fuzzy set χ{A}. Since
χ{A} ∈ U and

D(χN , χ{A}) = sup
α∈[0,1]

H([χN ]α, [χ{A}]α) ≤ ε,

we obtain χN ∈ B(χ{A}, ε), where B(χ{A}, ε) is an open ball in F1(X). However, χN /∈ U , and consequently,
B(χ{A}, ε) * U . That is to say, no ε−neighborhood of χ{A} contains in U , this contradicts the fact that U
is open in F1(X).

Theorem 3.6. Let {f̂n}∞n=1 be a sequence of maps on normal fuzzy sets F1(X). If {fn}∞n=0 is transitive
then {f̂n}∞n=0 is transitive.

Proof. Suppose {fn}∞n=0 is transitive. To prove {f̂n}∞n=0 is transitive, it suffices to show that for any non-
empty open subsets U and V of F1(X), there is a k ≥ 1 such that

F̂ k(U) ∩ V 6= ∅.

Since U and V are open, by Proposition 3.5 (4), r(U) and r(V) are also open sets. Due to {fn}∞n=0 is
transitive, there is a k ≥ 1 such that

Fk(r(U)) ∩ r(V) 6= ∅.

By Propositions 3.5 (3) and 3.5 (4), we have

∅ 6= Fk[r(U)] ∩ r(V) ⊆ r[F̂k(U)] ∩ r(V) = r[F̂k(U) ∩ V].

Thus, using Proposition 3.5 (1), it follows that

F̂ k(U) ∩ V 6= ∅X .

This completes the proof.
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4. Periodic Density

It has been proven that f ∈ C(X) has periodic density then both f̄ and f̂ share the same property,
but the converse are not true [18, 23]. In this section, we first show that the periodic density of {fn}∞n=0

implies the periodic density of {f̂n}∞n=0, and then some conditions are discussed, under which the converse
implication is true.

Theorem 4.1. If {fn}∞n=0 has periodic density, then {f̂n}∞n=0 has periodic density.

Proof. The proof, with slighter modifications, is similar to Theorem 5 in [23].

In the converse direction of Theorem 4.1, we discuss sufficient conditions on {f̂n}∞n=0 for the periodic
density of {fn}∞n=0 as follows. Before passing to the next theorem, we give some preliminary notations.

Let M be a subspace of F(X). Notice that f̂M(u) = f̂(u) for all u ∈M. We say that a topological space
X has the fixed point property ( in short, f.p.p. ) if every continuous map fn : X → X has a fixed point.
We will denote the family of all non-empty compact subsets of X which have the f.p.p. by Kp(X). Define

Fp(X) = {u ∈ F(X) : [u]α ∈ Kp(X)}. The next theorem shows that when {f̂n}∞n=0 has periodic density will
imply {fn}∞n=0 has periodic density.

Remark 4.2. Let U be a subset of X and let eM (U) = {u ∈M : [u]0 ⊆ U}. We can conclude that if U is an
open subset of X, then eM (U) is an open subset of F(X).

Theorem 4.3. Let M be a subspace of F(X). If M ⊆ Fp(X), then {f̂n}∞n=0 has periodic density implies
{fn}∞n=0 has periodic density.

Proof. Let x ∈ X and χ{x} ∈M, then by periodic density of {f̂n}∞n=0, for any ε > 0, there exist ν ∈M and
n ∈ N such that
(a) d∞(χ{x}, ν) < ε;

(b) F̂n(ν) = ν.
On one hand, by Proposition 3.1, we have Fn([ν]α) = [ν]α. Thus, combing (a) and (b), we have

d(x, Fn(y)) < ε (4.1)

for all y ∈ [ν]α.
On the other hand, the map g : [ν]α → [ν]α given by g(y) = Fn(y) for every y ∈ [ν]α is a continuous

map. Since [ν]α has the f.p.p. (recall that M ⊆ Fp(X)), it follows that g has a fixed point yp such that
g(yp) = Fn(yp) = yp, that is to say, yp is a periodic point of {fn}∞n=0 contained in [ν]α. Thus, due to (4.1),
we obtain d(x, yp) < ε for all x ∈ X. Consequently, {fn}∞n=0 has periodic density on X. This completes the
proof.

5. Sensitivity

In this section, we study the relations between sensitivity of nonautonomous dynamical system and its
fuzzified system. An counterexample has been given to show that, in general, sensitivity of {fn}∞n=0 does
not imply sensitivity of {f̂n}∞n=0.

Theorem 5.1. If {f̂n}∞n=0 is sensitive, then {fn}∞n=0 is sensitive.

Proof. Let u0 ∈ F(X). Since {f̂n}∞n=0 is sensitive, there exists a constant δ such that for every ε > 0 we can
find ν ∈ F(X) and k ∈ N satisfying ν ∈ B(u0, ε) and

d∞(F̂k(u0), F̂k(ν)) = sup
α∈[0,1]

H([F̂k(u0)]α, [F̂k(ν)]α)

= sup
α∈[0,1]

H(Fk[u0]α, Fk[ν]α) > δ.
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Thus, there exist x0 ∈ [u0]α and y0 ∈ [ν]α such that d(Fk(x0), Fk(y0)) > δ. On the other hand, since
ν ∈ B(u0, ε), we have d(x0, y0) < ε. Therefore, {fn}∞n=0 is sensitive.

The following example shows that, in general, the converse of Theorem 5.1 is not true.

Example 5.2. We first need some previous notations and results. In [7], the author perform ”surgery”
on the circle S1 to construct a Denjoy homeomorphism, more specifically, take any point x0 ∈ S1, we cut
out each point Rnλ(x0) on the orbit of x0 and replace it with a small interval In, where Rλ : S1 → S1 is
the irrational rotation of the circle S1. Consequently, a new circle S∗ has been constructed. The Denioy
map Dλ : S∗ → S∗ is an orientation preserving homeomorphism of S∗. There exists a Cantor set Cλ ⊂ S∗

on which Dλ acts minimally. It is known that there exists a continuous surjection hλ : S∗ → S1 that
semi-conjugates Dλ with Rλ. In [22], the authors show that the system (K(Cλ), Dλ) is not sensitive.

Now turning to our problem. Let fn = Dλ, n = 1, 2, · · · . Define iλ : K(Cλ)→ F(Cλ) by iλ(K) = λχK for

any K ∈ K(Cλ) and any λ ∈ (0, 1], where χK is the characteristic function of K. Hence, iλ ◦Dλ = D̂λ ◦ iλ.

Note that iλ is continuous. We show that the sensitivity of Dλ cannot be inherited by D̂λ as follows.
Since (K(Cλ), Dλ) is not sensitive, for ε > 0, δ > 0, there exists a nonempty set M ∈ K(Cλ) and B(M, δ)

such that for all N ∈ B(M, δ),
H(D

n
λ(M), D

n
λ(N)) < ε. (5.1)

Suppose u ∈ e(M) (recall that e(M) = {u ∈ F(Cλ) | [u]0 ⊆M}), by continuity of iλ and (5.1), we have

H(D
n
λ([u]0), D

n
λ(N)) < ε ⇒ H(iλ ◦D

n
λ([u]0), iλ ◦D

n
λ(N)) < ε

⇒ H(D̂λ
n
◦ iλ([u]0), D̂λ

n
◦ iλ(N))

= d∞(D̂λ
n
(u), D̂λ

n
(ν)) < ε,

where ν = iλ(N) ∈ F(Cλ).

6. Conclusions and Discussions

In this paper, we discuss relations between some chaotic properties of the nonautonomous discrete
dynamical systems and its fuzzified dynamical systems. More specifically, we study transitivity, periodic
density and sensitivity, respectively. Several examples are also presented to illustrate the relations between
two dynamical systems. We show that the dynamical properties of the original system and its fuzzy extension
mutually inherit some global characteristics. The following main results are obtained:

Theorem 3.3. If {f̂n}∞n=1 is transitive, then {fn}∞n=1 is transitive.

Theorem 3.6. Let {f̂n}∞n=1 be a sequence of maps on normal fuzzy sets F1(X). If {fn}∞n=1 is transitive,
then {f̂n}∞n=1 is transitive.

Theorem 4.1. If {fn}∞n=0 has periodic density, then {f̂n}∞n=0 has periodic density.

Theorem 4.3. Let M be a subspace of F(X). If M ⊆ Fp(X), then {f̂n}∞n=0 has periodic density implies
{fn}∞n=0 has periodic density.

Theorem 5.1. If {f̂n}∞n=0 is sensitive, then {fn}∞n=0 is sensitive.

In general, the converse of the Theorem 5.1 is not true, please see Example 5.2.
From the results obtained above, we can conclude that {f̂n}∞n=0 is Devaney chaotic implies {fn}∞n=0 is

Devaney chaotic, provided that F(X) has the f.p.p. It is worth noting that if the system is autonomous, then
sensitive dependence on initial conditions is a consequence of transitivity together with a dense set of periodic
points [4, 27]. More precisely, sensitivity is redundant in the definition of Devaney’s chaos if the state space
X is infinite. However, it is not clear whether similar conclusion still holds for the nonautonomous systems.

On the other hand, the results mentioned above are restricted to the special case that all (Xn, dn) (n ≥ 0)
are same space. In the current literature, there are few results about chaotic properties of nonautonomous
systems in general case.
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According to above analysis, there are some open problems still exist.
Problem 1. In nonautonomous dynamical systems, does transitivity together with periodic density

imply sensitivity?
Problem 2. In general case, although it is indeed difficult to study complexity of a nonautonomous

system, it would be a challenge to discuss the relations between dynamics of a nonautonomous system and
its induced fuzzy system.
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