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Abstract

In this article, we propose a composition projection algorithm for solving feasibility problem in Hilbert space.
The convergence of the proposed algorithm are established by using gap vector which does not involve the
nonempty intersection assumption. Moreover, we provide the sufficient and necessary condition for the
convergence of the proposed method. As an application, we investigate the split feasibility equilibrium
problem. c©2016 All rights reserved.
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1. Introduction and Preliminaries

Throughout this paper, we assume that X is a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖,
and that A and B are two nonempty closed and convex subsets of X.

The distance between the subsets A,B of X by

d(A,B) := inf{‖w − l‖ : w ∈ A, l ∈ B}.
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If B is empty, we set infw∈A d(x,B) = +∞.
Let x ∈ X. The metric projection of x onto a nonempty closed and convex subset B is defined by

PB(x) = argminy∈B‖y − x‖.

It is well-known that PB is single-valued and nonexpansive. For x ∈ X, the metric projection PB(x) is
characterized by

Kolmogorov’s criterion :

PB(x) ∈ B and 〈y − PB(x), x− PB(x)〉 ≤ 0 for all y ∈ B. (1.1)

We are interested in the following feasibility problem (shortly, (FP)):

Findx ∈ A
⋂
B. (1.2)

It is worth noting that many authors studied the common element for variational inequalities, equilibrium
problem, maximal monotone operators and fixed points of nonlinear operators which can be considered as
special cases of the problem (FP) (see, [2, 3, 11, 13, 14, 15, 17]). In many practical problems, the set A

⋂
B

is empty. A natural question arises: whether there exists a good substitute for A
⋂
B when it is empty?

Bauschke and Borwein[1] introduced two good generalization of A
⋂
B:

E := {a ∈ A : d(a,B) = d(A,B)}, F := {b ∈ B : d(b, A) = d(B,A)}. (1.3)

Particularly, if A
⋂
B 6= ∅, then E = F = A

⋂
B.

For the reader’s convenience, we recall the following well-known definitions and results.

Definition 1.1. Let a mapping T : X ⇒ X with graph grT = {(x, u) ∈ X ×X : u ∈ T (x)}. T is said to
be:

(i) monotone if 〈x− y, ξ − ζ〉 ≥ 0 for all (x, ξ), (y, ζ) ∈ grT ;

(ii) maximal monotone if T is monotone and no proper enlargement of grT is monotone.

We also denote the set of fixed points of T by Fix(T ) = {x ∈ X : x ∈ T (x)}, and the resolvent of T is
defined as JT := (I + T )−1.

Definition 1.2 ([1, 18]). Let v ∈ X. v is said to be a gap vector from A to B if, v = PB−A(0).

It is easy to see that if v is a gap vector from A to B, then −v is also a gap vector from B to A, and
−v = PA−B(0).

Fact 1.3 ([1]). Let v be a gap vector from A to B, and E,F be defined by (1.2) and (1.3). Then

(i) ‖v‖ = d(A,B), E + v = F ;

(ii) E = Fix(PAPB) = A
⋂

(B − v), F = Fix(PBPA) = B
⋂

(A+ v);

(iii) PBe = PF e = e+ v (e ∈ E), PAf = PEf = f − v (f ∈ F ).

For more information on the gap vector see, for instance, [1, 18] and the references therein.

Definition 1.4 ([16]). Let h : X → (−∞,+∞] be a proper convex function. The subdifferential of h at x
is defined by

∂h(x) := {ξ ∈ X : h(x+ τ) ≥ h(x) + 〈ξ, τ〉, ∀τ ∈ X};

Definition 1.5 ([4, 16]). Let Ω be a subset of X. The dual cone of Ω is

Ω∗ = {ξ ∈ X : 〈ξ, x〉 ≥ 0, ∀x ∈ Ω},

the polar cone of Ω is Ω◦ = −Ω∗, the tangent cone of Ω at x is

TΩ(x) :=

{
cone(Ω− x), if x ∈ Ω,
∅, otherwise.
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Fact 1.6 ([16, 18]). Let Ω ⊆ X and h : X → (−∞,+∞] be a proper convex function. Then

(i) the subdifferential operator ∂h : X ⇒ X is maximal monotone;

(ii) the proximal mapping of h, denoted by Proxh, has a full domain and Proxh := J∂h.

Particularly, if h = ιΩ, then ProxιΩ = PΩ and ∂ιΩ = NΩ, where NΩ is the normal cone operator, and ιΩ
is the indicator function of Ω defined by

NΩ(x) :=

{
{ξ ∈ X : 〈ξ, y − x〉 ≤ 0, ∀y ∈ Ω}, ifx ∈ Ω,
∅, otherwise,

and

ιΩ(x) =

{
0, ifx ∈ Ω,
+∞, otherwise.

Fact 1.7 ([4, 16]). Let Ω be a nonempty convex subset of X and let x ∈ Ω. Then the following hold:

(i) NΩ(x) = T ◦Ω(x) = −T ∗Ω(x) and N◦Ω(x) = −N∗Ω(x) = TΩ(x);

(ii) TΩ(x) = X ⇔ NΩ(x) = {0}.

We now explore some properties of the gap vector.

Lemma 1.8. Let ā ∈ A and b̄ ∈ B and v = ā− b̄. Then the following statements are equivalent:

(i) v is a gap vector from B to A;

(ii) ā = PA(b̄) and b̄ = PB(ā);

(iii) v ∈ NB(b̄) and −v ∈ NA(ā);

(iv) v ∈ T ◦B(b̄)
⋂
T ∗A(ā);

(v) (ā, b̄) is a solution of the following optimization problem:

min
(a,b)

[1/2‖a− b‖2 + ιA×B(a, b)], (1.4)

where ιA×B is the indicator function of A×B.

Proof. (i)⇒(ii): Suppose that v = ā− b̄ is a gap vector from B to A. By Definition 1.2, we have

v = PA−B(0).

Then
〈y − v,−v〉 ≤ 0, ∀y ∈ A−B.

That is,
〈y − (ā− b̄), b̄− ā〉 ≤ 0, ∀y ∈ A−B. (1.5)

For any x ∈ A and z ∈ B, x− z ∈ A−B. It follows from (1.5) that

〈x− z − (ā− b̄), b̄− ā〉 ≤ 0, ∀x ∈ A, z ∈ B.

Moreover, one has
〈x− ā, b̄− ā〉 ≤ 〈z − b̄, b̄− ā〉, ∀x ∈ A, z ∈ B. (1.6)

Take z = b̄ and x = ā in (1.6), respectively, we have

〈x− ā, b̄− ā〉 ≤ 0, ∀x ∈ A

and
〈z − b̄, ā− b̄〉 ≤ 0, ∀z ∈ B.
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Therefore, from (1.1), we derive that ā = PA(b̄) and b̄ = PB(ā).
(ii)⇒(iii): Note that{

ā = PA(b̄),
b̄ = PB(ā),

⇔
{
ā = (I +NA)−1(b̄),
b̄ = (I +NB)−1(ā),

⇔
{
ā ∈ (I +NB)(b̄),
b̄ ∈ (I +NA)(ā),

⇔
{
ā− b̄ ∈ NB(b̄),
b̄− ā ∈ NA(ā),

⇔
{
v ∈ NB(b̄),
−v ∈ NA(ā).

(iv)⇔(iii): It directly follows from Fact 1.7.
(v)⇔(iii): Let f(a, b) = 1/2‖a− b‖2 + ιA×B(a, b) for all (a, b) ∈ X ×X. It is well-known that (ā, b̄) is a

solution of the problem (1.4) if and only if (0, 0) ∈ ∂f(ā, b̄). Note that

∂f(ā, b̄) = (ā− b̄+ ∂ιA(ā), b̄− ā+ ∂ιB(b̄)) = (ā− b̄+NA(ā), b̄− ā+NB(b̄)).

Then

(0, 0) ∈ ∂f(ā, b̄)⇔
{

0 ∈ ā− b̄+NA(ā),
0 ∈ b̄− ā+NB(b̄),

⇔
{
−v ∈ NA(ā),
v ∈ NB(b̄).

(iii)⇒(i): Suppose that v ∈ NB(b̄) and −v ∈ NA(ā). Then

〈v, z − b̄〉 ≤ 0, 〈−v, x− ā〉 ≤ 0, ∀x ∈ A, z ∈ B.

Moreover, we obtain that
〈x− z − v, 0− v〉 ≤ 0, ∀x ∈ A, z ∈ B.

Hence, we get
〈ω − v, 0− v〉 ≤ 0, ∀ω ∈ A−B. (1.7)

Claim. v = PA−B(0). Suppose to the contrary that there exists y ∈ A−B such that

〈y − v, 0− v〉 > 0. (1.8)

Then there exists a sequence yn ∈ A−B such that yn → y. By (1.7), we have

〈yn − v, 0− v〉 ≤ 0.

Taking the limit in the above inequality, one has

〈y − v, 0− v〉 = lim
n→∞

〈yn − v, 0− v〉 ≤ 0,

which contradicts (1.8). This completes the proof.

Lemma 1.9. Let ā ∈ A and b̄ ∈ B. Then

ā = PA(b̄), b̄ = PB(ā)⇔ ā = PAPB(ā), b̄ = PBPA(b̄).

Proof. The necessity is obvious. We only need to prove the sufficiency. Assume that ā = PAPB(ā) and
b̄ = PBPA(b̄). Then

ā = PAPB(ā) = PAPBPA(ā) = PA(b̄)

and
b̄ = PBPA(b̄) = PBPAPB(b̄) = PB(ā).

Consequently, ā = PA(b̄), b̄ = PB(ā). This completes the proof.

Fact 1.10 ([4, 9]). Let Ω be a nonempty closed and convex subset of X, let T : Ω→ X be nonexpansive, let
(xn)n∈N be a sequence in Ω, and x ∈ X. Suppose that xn ⇀ x and that xn − T (xn)→ 0. Then x ∈ Fix(T ).



J. W. Chen, Y.-C. Liou, S. A. Khan, Z. Wan, C.-F. Wen, J. Nonlinear Sci. Appl. 9 (2016), 461–470 465

2. Main results

In this section, we propose a composition projection algorithm for solving feasibility problem in Hilbert
space. The asymptotic behaviors of the proposed algorithm are established by using gap vector which
does not involve the nonempty intersection assumption. Moreover, we provide the sufficient and necessary
condition for the convergence of the proposed algorithm.

Theorem 2.1. Let A,B be two nonempty closed convex subsets of a Hilbert space X, and let the sequence
(xn) be generated by the following algorithm:

x1 ∈ X arbitrarily,
yn = PAPB(xn),
Cn+1 = {z ∈ Cn : ‖z − yn‖ ≤ ‖z − xn‖},
xn+1 = PCn+1x1, ∀n ≥ 1,

(2.1)

where C1 = X. Assume that there exist a ∈ A and b ∈ B such that d(A,B) = ‖a − b‖. Then the following
statements hold:

(i) the sequence (xn) generated by Algorithm (2.1) strongly converges to the point p, where p = PE(x1)
and E = Fix(PAPB);

(ii) p− PB(p) = PA−B(0);

(iii) limn→∞ ‖xn − PB(xn)‖ = limn→∞ ‖yn − PB(xn)‖ = ‖p− PB(p)‖ = d(A,B);

(iv) p− PB(p) ∈ NB(PB(p)) and PB(p)− p ∈ NA(p).

Proof. (i) We proceed in several steps.
Step 1. E = Fix(PAPB) is nonempty closed and convex.
To this aim, we divide it into two cases:
(a1) Let A∩B 6= ∅. Since A and B are two nonempty closed convex subsets of a Hilbert space X, from

Fact 1.3 (ii), E = Fix(PAPB) = A ∩B 6= ∅.
(b1) Let A ∩B = ∅. Since there exist a ∈ A and b ∈ B such that d(A,B) = ‖a− b‖, then b− a is a gap

vector from A to B. Moreover, we conclude that d(A,B) = ‖a− b‖ > 0 and

E = Fix(PAPB) = A ∩ (B − v) 6= ∅,

where v = PB−A(0) = b− a and ‖v‖ = d(A,B).
Combining (a1) and (b1) yield that E = Fix(PAPB) 6= ∅. Since PA and PB are nonexpansive, for any

x, y ∈ X,
‖PAPB(x)− PAPB(y)‖ ≤ ‖PB(x)− PB(y)‖ ≤ ‖x− y‖.

This means that PAPB is also nonexpansive on X. Thus, E = Fix(PAPB) is closed and convex.
Step 2. E ⊆ Cn for all n ≥ 1.
For any given u ∈ E = Fix(PAPB), we have

‖u− y1‖ = ‖PAPB(u)− PAPB(x1)‖ ≤ ‖u− x1‖.

So, E = Fix(PAPB) ⊆ C1. Moreover, one has

‖u− yn‖ = ‖PAPB(u)− PAPB(xn)‖ ≤ ‖u− xn‖, ∀n ∈ N,

that is, E ⊆ Cn+1 for all n ≥ 1. Therefore, E ⊆ Cn for all n ≥ 1.

Step 3. (xn) is well defined.
From Steps 1, 2 and Algorithm (2.1), it is easy to see that Cn is nonempty closed and convex for all

n ≥ 1. Consequently, (xn) is well defined.
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Step 4. The sequence (xn) is bounded and limn→∞ ‖xn − x1‖ exists.
Note that xn+1 = PCn+1x1 ∈ Cn+1 ⊆ Cn. For xn = PCnx1(n > 1), one has

‖xn − x1‖ ≤ ‖xn+1 − x1‖. (2.2)

For any given u ∈ E, from Step 2, u ∈ Cn for all n ≥ 1. It follows from xn = PCnx1 that

〈u− xn, x1 − xn〉 ≤ 0.

Note that

‖u− PCnx1‖2 + ‖PCnx1 − x1‖2 = ‖u− xn‖2 + ‖xn − x1‖2 = ‖u− x1‖2 + 2〈u− xn, x1 − xn〉 ≤ ‖u− x1‖2,

i.e.,
‖u− xn‖2 + ‖xn − x1‖2 ≤ ‖u− x1‖2.

Therefore, one has
‖xn‖ − ‖x1‖ ≤ ‖xn − x1‖ ≤ ‖u− x1‖

and so, ‖xn‖ ≤ ‖u− x1‖+ ‖x1‖. These show that the sequences (xn) and (xn − x1) are bounded. It follows
from (2.2) that limn→∞ ‖xn − x1‖ exists.

Step 5. The sequence (xn) is a Cauchy sequence.
For any positive integer numbers m,n and m > n, one has xm ∈ Cm ⊆ Cn. Again from xn = PCnx1, we

have
〈xm − xn, x1 − xn〉 ≤ 0. (2.3)

Taking into account ‖xm − xn‖2 + ‖xn − x1‖2 = ‖xm − x1‖2 + 2〈xm − xn, x1 − xn〉, from (2.3), we have

‖xm − xn‖2 + ‖xn − x1‖2 ≤ ‖xm − x1‖2.

Then

‖xm − xn‖2 ≤ ‖xm − x1‖2 − ‖xn − x1‖2 = (‖xm − x1‖+ ‖xn − x1‖)(‖xm − x1‖ − ‖xn − x1‖).

Therefore, (xn) is a Cauchy sequence and so, ‖xn+1 − xn‖ → 0 as n → ∞. Without loss of generality, let
xn → p ∈ X.

Step 6. p ∈ E = Fix(PAPB).
Since xn+1 = PCn+1x1, xn+1 ∈ Cn+1. By the definition of Cn+1, one has

‖xn+1 − yn‖ ≤ ‖xn+1 − xn‖. (2.4)

It follows from (2.4) and ‖xn+1 − xn‖ → 0 as n→∞ that ‖xn+1 − yn‖ → 0 as n→∞. Noticing that

‖xn − yn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − yn‖.

We have that ‖xn − yn‖ → 0 as n → ∞. Consequently, yn → p and xn − PAPBxn → 0 as n → ∞. By the
nonexpansiveness of PAPB and Corollary 4.18 ([4],p64), we conclude that p ∈ Fix(PAPB) = E.

Last step . p = PEx1.
Without loss of generality, let q = PEx1 = PFix(PAPB)x1. Then q ∈ E ⊆ Cn for all n ≥ 1. Since

xn+1 = PCn+1x1, ‖xn+1 − x1‖ ≤ ‖z − x1‖ for all z ∈ Cn+1. From this and E ⊆ Cn+1, we have

‖xn+1 − x1‖ ≤ ‖q − x1‖. (2.5)

In view of xn+1 → p ∈ E. Take n→∞ in (2.5), one has ‖p−x1‖ ≤ ‖q−x1‖. This, together with q = PEx1,
shows that p = q = PEx1.
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(ii) Let us prove that p− PB(p) = PA−B(0).
Indeed, since p ∈ E = Fix(PAPB), p = PAPB(p). Therefore, by Fact 1.3 and Lemma 1.8, we have

v = p− PB(p) = PA−B(0). (2.6)

(iii) Let us prove that

lim
n→∞

‖xn − PB(xn)‖ = lim
n→∞

‖yn − PB(xn)‖ = ‖p− PB(p)‖ = d(A,B).

Since xn, yn → p and from the continuity of PB, one has

lim
n→∞

‖xn − PB(xn)‖ = lim
n→∞

‖yn − PB(xn)‖ = ‖p− PB(p)‖.

It follows from (2.6) that p− PB(p) is a gap vector from B to A. This, together with Facts 1.3, shows that

‖v‖ = ‖p− PB(p)‖ = d(A,B).

As a consequence, we derive that

lim
n→∞

‖xn − PB(xn)‖ = lim
n→∞

‖yn − PB(xn)‖ = ‖p− PB(p)‖ = d(A,B).

(iv) It follows from (2.6) and Lemma 1.8 that

p− PB(p) ∈ NB(PB(p)), PB(p)− p ∈ NA(p).

This completes the proof.

The next corollary shows the Algorithm (2.1) to solve a convex feasibility problem.

Corollary 2.2. Let A,B be two nonempty closed convex subsets of a Hilbert space X such that A∩B 6= ∅.
Then the sequence (xn) generated by Algorithm (2.1) strongly converges to some point p of A∩B, moreover,
p = PA∩B(x1).

Particularly, if A and B are two closed affine subspaces of X, we have the following result.

Corollary 2.3. Let A,B be two closed affine subspaces of a Hilbert space X. Then the sequence (xn)
generated by Algorithm (2.1) strongly converges to some point p of A ∩B, moreover, p = PA∩B(x1).

If A ∩B = ∅, then we can find the distance between A and B from Algorithm (2.1).

Corollary 2.4. Let A,B be two nonempty closed convex subsets of a Hilbert space X such that A∩B = ∅,
and let the sequences (xn) and (yn) be generated by Algorithm (2.1). Assume that there exist a ∈ A and
b ∈ B such that d(A,B) = ‖a− b‖. Then

(i) d(A,B) = limn→∞ ‖xn − PB(xn)‖ = limn→∞ ‖yn − PB(xn)‖ = ‖p− PB(p)‖ > 0;

(ii) p− PB(p) = PA−B(0), where p = PFix(PAPB)(x1).

Remark 2.5. (i) The assumption ′′there exist a ∈ A and b ∈ B such that d(A,B) = ‖a−b‖ ′′ is reasonable.
On the one hand, from the computational viewpoint, we, in general, can only obtain approximate
solutions (ε-optimal solutions) of nonlinear and linear problems by using the algorithms proposed in
the literature, where ε is the tolerance. So, we can view the assumption ′′there exist a ∈ A and b ∈ B
such that d(A,B) = ‖a− b‖ ′′ as the terminative condition or the tolerance ε = d(A,B) = ‖a− b‖ of
Algorithm (2.1) in the numerical experimentation. On the other hand, if A

⋂
B = ∅, and A or B is

bounded, we know that the assumption ′′there exist a ∈ A and b ∈ B such that d(A,B) = ‖a − b‖ ′′
holds.
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(ii) The assumption ′′there exist a ∈ A and b ∈ B such that d(A,B) = ‖a − b‖ ′′ is essential in Theorem
2.1 and Corollary 2.4.

Example 2.6. Let A = {(x, y) ∈ R2 : y ≤ 0} and Υ(x) = ex for all x ∈ (−∞,+∞). Then the graph of Υ,
denoted by B,B = {(x, y) ∈ R2 : ex ≤ y} is a nonempty closed and convex subset of R2. It is easy to check
that A

⋂
B = ∅. But there does not exist a ∈ A and b ∈ B such that d(A,B) = ‖a− b‖ ′′. Indeed, since the

distance d(A,B) = 0 and E = Fix(PAPB) = ∅.

Remark 2.7. Theorem 2.1 and Corollaries 2.2 and 2.3 develop and improve Corollaries 5.23, 5.25 and 5.28
of (Bauschke and Combettes [4], pages 84–85) in the following aspects:

(i) Theorem 2.1 and Corollaries 2.2 and 2.3 do not involve the assumptions Fix(PAPB) 6= ∅ and A
⋂
B 6= ∅;

(ii) The sequence (xn) generated by Algorithm (2.1) can be guaranteed the strong convergence under the
assumptions of Theorem 2.1 and Corollaries 2.2 and 2.3;

(iii) Compared with the Algorithms 6.1 and 6.2 of Kassay, Reich and Sabach [13] and Algorithm 6.1 of
Sabach [17], the step Qn+1 = {z ∈ A

⋂
B : 〈x1 − xn+1, z − xn+1〉 ≤ 0} is removed.

In the proof of Theorem 2.1, we observe that

∃a ∈ A, b ∈ B such that d(A,B) = ‖a− b‖ ⇒ Fix(PAPB) 6= ∅. (2.7)

Naturally, a question arises: whether the converse of (2.7) is true?

The next proposition presents some sufficient and necessary conditions for Fix(PAPB) 6= ∅ as well as
Fix(PAPB) = ∅.

Proposition 2.8. (i) ∃a ∈ A, b ∈ B such that d(A,B) = ‖a− b‖ ⇔ Fix(PAPB) 6= ∅;
(ii) for any a ∈ A, b ∈ B such that d(A,B) < ‖a− b‖ ⇔ Fix(PAPB) = ∅.

Proof. (i) By the proof of Theorem 2.1, we only need prove the sufficiency of (i).
Suppose that Fix(PAPB) 6= ∅. We divide into two cases:

(a) If A
⋂
B 6= ∅, then (i) holds;

(b) If A
⋂
B = ∅. Since Fix(PAPB) 6= ∅, for f∗ ∈ Fix(PAPB), one has f∗ = PAPB(f∗) ∈ A and

PB(f∗) = PBPA(PB(f∗)) ∈ B. By Lemmas 1.8 and 1.9, f∗ − PB(f∗) is a gap vector from B to A,
that is, f∗ − PB(f∗) = PA−B(0). This shows that ‖f∗ − PB(f∗)‖ = d(A,B), as required.

(ii) It directly follows from (i). This completes the proof.

We now propose another question: what will happen of Algorithm (2.1) when Fix(PAPB) = ∅?

Theorem 2.9. Let A and B be two nonempty closed and convex subsets of a Hilbert space X such that
E = Fix(PAPB) = ∅. Assume that the sequence (xn) is generated by Algorithm (2.1). Then exactly one of
the following alternatives holds:

(i) ‖xn‖ → +∞ as n→∞ whenever Cn 6= ∅ for all n ≥ 1;

(ii) Algorithm (2.1) stops at finite iteration n ≥ 1 whenever Cn = ∅ for some n ≥ 1.

Proof. We only need to prove that (i) holds. Suppose that ‖xn‖ 6→ +∞ as n → ∞. That is, for some
M > 0, there exists a subsequence (xnk

)∞k=1 of (xn) such that ‖xnk
‖ ≤ M . In other word, the subsequence

(xnk
)∞k=1 is bounded. Then xnk

⇀ v ∈ X (here we may take a subsequence (xnkl
) of (xnk

) if necessary).
Since Cn is closed and convex for all n ≥ 1, v ∈

⋂
k≥1Cnk

. Take into account Cn+1 ⊆ Cn for all n ≥ 1, one
has

⋂
n≥1Cn =

⋂
k≥1Cnk

. Moreover, v ∈
⋂
n≥1Cn 6= ∅. Without loss of generality, let n(k+1) ≥ nk + 1. In

view of xn(k+1)
= PCn(k+1)

x1 ∈ Cn(k+1)
⊆ Cnk

. It follows from xnk
= PCnk

x1 that

‖xnk
− x1‖ ≤ ‖v − x1‖ (2.8)
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and
‖xnk

− x1‖ ≤ ‖xn(k+1)
− x1‖. (2.9)

Both (2.8) and (2.9) imply that limk→∞ ‖xnk
− x1‖ exists. Again, from xn(k+1)

∈ Cnk
and xnk

= PCnk
x1,

one has
〈xn(k+1)

− xnk
, x1 − xnk

〉 ≤ 0. (2.10)

Owing to ‖xn(k+1)
− xnk

‖2 + ‖xnk
− x1‖2 = ‖xn(k+1)

− x1‖2 + 2〈xn(k+1)
− xnk

, x1 − xnk
〉. This, together with

(2.10), shows that
‖xn(k+1)

− xnk
‖2 + ‖xnk

− x1‖2 ≤ ‖xn(k+1)
− x1‖2.

Furthermore, one has
‖xn(k+1)

− xnk
‖2 ≤ ‖xn(k+1)

− x1‖2 − ‖xnk
− x1‖2.

This implies that
‖xn(k+1)

− xnk
‖ → 0, k →∞.

Since xn(k+1)
∈ Cn(k+1)

⊆ Cnk+1, by the definition of Cnk+1, we have

‖xn(k+1)
− ynk

‖ ≤ ‖xn(k+1)
− xnk

‖.

Moreover, one has
‖xn(k+1)

− ynk
‖ → 0, k →∞.

In the light of ‖xnk
− ynk

‖ ≤ ‖xnk
− xn(k+1)

‖+ ‖xn(k+1)
− ynk

‖, we conclude that

‖xnk
− ynk

‖ → 0, k →∞.

Consequently, one has
lim
k→∞

‖xnk
− ynk

‖ = lim
k→∞

‖xnk
− PAPB(xnk

)‖ = 0.

By Fact 1.10, we derived that v = PAPB(v) and so,

v ∈ Fix(PAPB) 6= ∅,

which contradicts E = Fix(PAPB) = ∅. This completes the proof.

3. An application to split feasibility equilibrium problem

Let C and D be nonempty closed and convex subsets of finite Euclidean spaces X and Y , respectively,
and let T : X → Y be a bounded linear operator, g : C × C → R and h : D ×D → R be two functions.

We consider the following split feasibility equilibrium problems (shortly, (SFEP)):
Find x∗ ∈ C such that

g(x∗, x) ≥ 0 (3.1)

for all x ∈ C, and y∗ = Tx∗ is a solution of the following equilibrium problem:
Find y∗ ∈ D such that

h(y∗, y) ≥ 0 (3.2)

for all y ∈ D.
Denote the solutions set of (SFEP) by S. If we set S1 = {x ∈ C : g(x, z) ≥ 0, ∀z ∈ C} and S2 = {x ∈

C : y = Tx ∈ D, h(y, v) ≥ 0, ∀v ∈ D}, then (SFEP) is equivalent to the following feasibility problem:

Find x ∈ S1

⋂
S2. (3.3)

The characterizations of solution set of various equilibrium problem had been studied by many authors
(see, [5, 6, 7, 8, 10, 12]). Here we assume that S1 and S2 are nonempty, closed and convex with S1

⋂
S2 6= ∅.

Lemma 3.1. Let A := S1 and B := S2 in Theorem 2.1. Assume that the sequence (xn) is generated by
Algorithm (2.1). Then the sequence (xn) generated by Algorithm (2.1) converges to a solution of S.

Proof. It directly follows from Theorem 2.1 (i). This completes the proof.
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