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Abstract

In this paper, we introduce the concept of generalized α-η-ψ-Geraghty contraction type mappings and prove
the unique fixed point theorems for such mappings in α-η-complete metric spaces without assuming the
subadditivity of ψ. We also give an example for supporting the result and present an application using our
main result to obtain a solution of the integral equation. c©2016 All rights reserved.
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1. Introduction and Preliminaries

One of the most important results in fixed point theory is the Banach contraction principle introduced
by Banach [1]. There were many authors have studied and proved the results for fixed point theory by
generalizing the Banach contraction principle in several directions (see [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] and
references contained therein). One of the remarkable result is Geraghty’s theorem given by Geraghty [4].
In 2013, Cho et al. [3] introduced the notion of α-Geraghty contraction type mappings and assured the
unique fixed point theorems for such mappings in complete metric spaces. Recently, Popescu [12] defined
the concept of triangular α-orbital admissible mappings and proved the unique fixed point theorems for
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the mentioned mappings which are generalized α-Geraghty contraction type mappings. On the other hand,
Karapinar [8] proved the existence of a unique fixed point for a triangular α-admissible mapping which is a
generalized α-ψ-Geraghty contraction type mapping.
For the sake of convenience, we recall the Geraghty’s theorem. Let F be the family of all functions
β : [0,∞)→ [0, 1) satisfying the condition:

lim
n→∞

β(tn) = 1 implies lim
n→∞

tn = 0.

Geraghty [4] proved the following unique fixed point theorem in a complete metric space.

Theorem 1.1 ([4]). Let (X, d) be a complete metric space and T : X → X. Suppose that there exists β ∈ F
such that

d(Tx, Ty) ≤ β(d(x, y))d(x, y) for all x, y ∈ X.

Then T has a unique fixed point x∗ ∈ X.

In 2012, Samet et al. [13] introduced the notion of α-admissible mappings.

Definition 1.2 ([13]). Let T : X → X and α : X ×X → [0,∞). Then T is said to be α-admissible if

α(x, y) ≥ 1 implies α(Tx, Ty) ≥ 1.

Karapinar et al. [9] defined the concept of triangular α-admissible mappings.

Definition 1.3 ([9]). A mapping T : X → X is said to be triangular α-admissible if

(a) T is α-admissible;

(b) α(x, z) ≥ 1 and α(z, y) ≥ 1 imply α(x, y) ≥ 1.

The definitions of α-orbital admissible mappings and triangular α-orbital admissible mappings are defined
by Popescu [12] in 2014.

Definition 1.4 ([12]). Let T : X → X and α : X ×X → [0,∞). Then T is said to be α-orbital admissible
if

α(x, Tx) ≥ 1 implies α(Tx, T 2x) ≥ 1.

Definition 1.5 ([12]). Let T : X → X and α : X ×X → [0,∞). Then T is said to be triangular α-orbital
admissible if

(a) T is α-orbital admissible;

(b) α(x, y) ≥ 1 and α(y, Ty) ≥ 1 imply α(x, Ty) ≥ 1.

Remark 1.6. Every triangular α-admissible mapping is a triangular α-orbital admissible mapping. There
exists a triangular α-orbital admissible mapping which is not a triangular α-admissible mapping. For more
details see [12].

Popescu [12] gave the definition of generalized α-Geraghty contraction type mappings and proved the
fixed point theorems for such mappings in complete metric spaces.

Definition 1.7 ([12]). Let (X, d) be a metric space and α : X×X → [0,∞). A mapping T : X → X is said
to be a generalized α-Geraghty contraction type mapping if there exists β ∈ F such that for all x, y ∈ X,

α(x, y)d(Tx, Ty) ≤ β(MT (x, y))MT (x, y),

where

MT (x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2

}
.
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Theorem 1.8 ([12]). Let (X, d) be a complete metric space, α : X ×X → [0,∞) and T : X → X. Suppose
that the following conditions are satisfied:

(i) T is a generalized α-Geraghty contraction type mapping;

(ii) T is a triangular α-orbital admissible mapping;

(iii) there exists x1 ∈ X such that α(x1, Tx1) ≥ 1;

(iv) T is a continuous mapping.

Then T has a fixed point x∗ ∈ X and {Tnx1} converges to x∗.

Recently, Karapinar [8] introduced the concept of α-ψ-Geraghty contraction type mappings in complete
metric spaces.

Let Ψ denote the class of the functions ψ : [0,∞)→ [0,∞) satisfying the following conditions:

(a) ψ is nondecreasing;

(b) ψ is continuous;

(c) ψ(t) = 0 if and only if t = 0;

(d) ψ is subadditive, that is ψ(s+ t) ≤ ψ(s) + ψ(t).

Definition 1.9. Let (X, d) be a metric space and α : X ×X → [0,∞). A mapping T : X → X is said to
be a generalized α-ψ-Geraghty contraction type mapping if there exists β ∈ F such that

α(x, y)ψ(d(Tx, Ty)) ≤ β(ψ(M(x, y)))ψ(M(x, y)) for all x, y ∈ X,

where
M(x, y) = max {d(x, y), d(x, Tx), d(y, Ty)} and ψ ∈ Ψ.

Theorem 1.10 ([8]). Let (X, d) be a complete metric space, α : X ×X → [0,∞) and T : X → X. Assume
that the following conditions are satisfied:

(i) T is a generalized α-ψ-Geraghty contraction type mapping;

(ii) T is a triangular α-admissible mapping;

(iii) there exists x1 ∈ X such that α(x1, Tx1) ≥ 1;

(iv) T is a continuous mapping.

Then T has a fixed point x∗ ∈ X and {Tnx1} converges to x∗.

On the other hand, Hussain et al. [6] introduced the concepts of α-η-complete metric spaces and α-η-
continuous functions.

Definition 1.11 ([6]). Let (X, d) be a metric space and α, η : X × X → [0,+∞). Then X is said to be
α-η-complete if every Cauchy sequence {xn} in X with α(xn, xn+1) ≥ η(xn, xn+1) for all n ∈ N converges
in X.

Example 1.12. Let X = (0,∞) and define a metric on X by d(x, y) = |x− y| for all x, y ∈ X. Therefore
X is not complete. Let Y be a closed subset of X. Define α, η : X ×X → [0,+∞) by

α(x, y) =

{
(x+ y)3, if x, y ∈ Y
0, otherwise,

and η(x, y) = 3x2y.

We will prove that (X, d) is an α-η-complete metric space. Suppose that {xn} is a sequence in X such that
α(xn, xn+1) ≥ η(xn, xn+1) for all n ∈ N. This implies that {xn} is in Y . By the completeness of Y, there
exists x∗ ∈ Y such that xn → x∗ as n→∞.
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Definition 1.13 ([6]). Let (X, d) be a metric space and α, η : X ×X → [0,+∞). A mapping T : X → X
is said to be an α-η-continuous mapping if for each sequence {xn} in X with xn → x as n → ∞ and
α(xn, xn+1) ≥ η(xn, xn+1) for all n ∈ N imply Txn → Tx as n→∞.

Example 1.14. Let X = [0,∞) and define a metric on X by d(x, y) = |x − y| for all x, y ∈ X. Assume
that T : X → X and α, η : X ×X → [0,+∞) are defined by

Tx =

{
x4, if x ∈ [0, 1]

cosπx+ 3, if x ∈ (1,∞),
, α(x, y) =

{
x3 + y3 + 1, if x, y ∈ [0, 1]

0, otherwise,
and η(x, y) = x3.

Therefore T is not continuous. We will prove that T is an α-η-continuous mapping. Let {xn} be a sequence
in X such that xn → x as n→∞ and α(xn, xn+1) ≥ η(xn, xn+1) for all n ∈ N. This implies that xn ∈ [0, 1]
and so lim

n→∞
Txn = lim

n→∞
x4n = x4 = Tx.

In this work, we introduce the notion of generalized α-η-ψ-Geraghty contraction type mappings in metric
spaces. Moreover, we prove the unique fixed point theorems for generalized α-η-ψ-Geraghty contraction
type mappings which are triangular α-orbital admissible mappings in the setting of α-η-complete metric
spaces without assuming the subadditivity of ψ. Our results improve and generalize the results proved by
Karapinar [8] and Poposcu [12]. Furthermore, we also give an example for supporting the result and present
an application using our main result to obtain a solution of the integral equation.

2. Main results

Let Ψ′ denote the class of the functions ψ : [0,∞)→ [0,∞) satisfying the following conditions:

(a) ψ is nondecreasing;

(b) ψ is continuous;

(c) ψ(t) = 0 if and only if t = 0.

Definition 2.1. Let T : X → X and α, η : X ×X → [0,∞). Then T is said to be α-orbital admissible with
respect to η if

α(x, Tx) ≥ η(x, Tx) implies α(Tx, T 2x) ≥ η(Tx, T 2x).

Definition 2.2. Let T : X → X and α, η : X × X → [0,∞). Then T is said to be triangular α-orbital
admissible with respect to η if

1. T is α-orbital admissible with respect to η;

2. α(x, y) ≥ η(x, y) and α(y, Ty) ≥ η(y, Ty) imply α(x, Ty) ≥ η(x, Ty).

Remark 2.3. If we suppose that η(x, y) = 1 for all x, y ∈ X, then Definition 2.1 reduces to Definition 1.4
and Definition 2.2 reduces to Definition 1.5.

We now prove the important lemma that will be used for proving our main results.

Lemma 2.4. Let T : X → X be a triangular α-orbital admissible with respect to η. Assume that there exists
x1 ∈ X such that α(x1, Tx1) ≥ η(x1, Tx1). Define a sequence {xn} by xn+1 = Txn. Then α(xn, xm) ≥
η(xn, xm) for all m,n ∈ N with n < m.

Proof. Since α(x1, Tx1) ≥ η(x1, Tx1) and T is α-orbital admissible with respect to η, we obtain that

α(x2, x3) = α(Tx1, T (Tx1)) ≥ η(Tx1, T (Tx1)) = η(x2, x3).

By continuing the process as above, we have α(xn, xn+1) ≥ η(xn, xn+1) for all n ∈ N. Suppose that

α(xn, xm) ≥ η(xn, xm) (2.1)
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and we will prove that α(xn, xm+1) ≥ η(xn, xm+1), where m > n. Since α(xm, xm+1) ≥ η(xm, xm+1), we
obtain that

α(xm, Txm) = α(xm, xm+1) ≥ η(xm, xm+1) = η(xm, Txm). (2.2)

By (2.1), (2.2) and triangular α-orbital admissibility of T, we have

α(xn, Txm) ≥ η(xn, Txm).

This implies that
α(xn, xm+1) ≥ η(xn, xm+1).

Hence α(xn, xm) ≥ η(xn, xm) for all m,n ∈ N with n < m.

We now introduce the concept of generalized α-η-ψ-Geraghty contraction type mappings and prove the
fixed point theorems for such mappings.

Definition 2.5. Let (X, d) be a metric space and α, η : X ×X → [0,∞). A mapping T : X → X is said to
be a generalized α-η-ψ-Geraghty contraction type mapping if there exists β ∈ F such that α(x, y) ≥ η(x, y)
implies

ψ(d(Tx, Ty)) ≤ β(ψ(MT (x, y)))ψ(MT (x, y)),

where

MT (x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2

}
and ψ ∈ Ψ′.

Remark 2.6. In Definition 2.5, if we take η(x, y) = 1 and ψ(t) = t, then it reduces to Definition 1.7.

Theorem 2.7. Let (X, d) be a metric space. Assume that α, η : X ×X → [0,∞) and T : X → X. Suppose
that the following conditions are satisfied:

(i) (X, d) is an α-η-complete metric space;

(ii) T is a generalized α-η-ψ-Geraghty contraction type mapping;

(iii) T is a triangular α-orbital admissible mapping with respect to η;

(iv) there exists x1 ∈ X such that α(x1, Tx1) ≥ η(x1, Tx1);

(v) T is an α-η-continuous mapping.

Then T has a fixed point x∗ ∈ X and {Tnx1} converges to x∗.

Proof. Let x1 ∈ X be such that α(x1, Tx1) ≥ η(x1, Tx1). Define a sequence {xn} in X by xn+1 = Txn for
all n ∈ N. Suppose that xn0 = xn0+1 for some n0 ∈ N, we have xn0 = xn0+1 = Txn0 . Then T has a fixed
point. Hence we suppose that xn 6= xn+1 for all n ∈ N. By Lemma 2.4, we have α(xn, xn+1) ≥ η(xn, xn+1)
for all n ∈ N. Since T is a generalized α-η-ψ-Geraghty contraction type mapping, we have

ψ(d(xn+1, xn+2)) = ψ(d(Txn, Txn+1)) (2.3)

≤ β(ψ(MT (xn, xn+1)))ψ(MT (xn, xn+1))

for all n ∈ N, where

MT (xn, xn+1) = max{d(xn, xn+1), d(xn, Txn), d(xn+1, Txn+1),
1

2
(d(xn, Txn+1) + d(xn+1, Txn))}

= max

{
d(xn, xn+1), d(xn, xn+1), d(xn+1, xn+2),

d(xn, xn+2)

2
+
d(xn+1, xn+1)

2

}
≤ max

{
d(xn, xn+1), d(xn+1, xn+2),

[
d(xn, xn+1) + d(xn+1, xn+2)

2

]}
= max{d(xn, xn+1), d(xn+1, xn+2)}.
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If max{d(xn, xn+1), d(xn+1, xn+2)} = d(xn+1, xn+2), then

ψ(d(xn+1, xn+2)) ≤ β(ψ(MT (xn, xn+1)))ψ(MT (xn, xn+1))

≤ β(ψ(MT (xn, xn+1)))ψ(d(xn+1, xn+2)) < ψ(d(xn+1, xn+2)),

which is a contradiction. Thus we conclude that

max{d(xn, xn+1), d(xn+1, xn+2)} = d(xn, xn+1).

By (2.3), we get that ψ(d(xn+1, xn+2)) < ψ(d(xn, xn+1)) for all n ∈ N. Since ψ is nondecreasing, we
have d(xn+1, xn+2) ≤ d(xn, xn+1) for all n ∈ N. Hence we deduce that the sequence {d(xn, xn+1)} is
nonincreasing. Therefore, there exists r ≥ 0 such that lim

n→∞
d(xn, xn+1) = r. We claim that r = 0. Suppose

that r > 0. Then due to (2.3), we have

ψ(d(xn+1, xn+2)) ≤ β(ψ(MT (xn, xn+1)))ψ(d(xn, xn+1)).

Therefore
ψ(d(xn+1, xn+2))

ψ(d(xn, xn+1))
≤ β(ψ(MT (xn, xn+1))) < 1.

This implies that lim
n→∞

β(ψ(MT (xn, xn+1))) = 1. Since β ∈ F , we have lim
n→∞

ψ(MT (xn, xn+1)) = 0, which

yields
r = lim

n→∞
d(xn, xn+1) = 0. (2.4)

This is a contradiction. Next, we will show that {xn} is a Cauchy sequence. Suppose that there exists ε > 0
such that for all k ∈ N, there exists m(k) > n(k) > k with d(xn(k), xm(k)) ≥ ε. Let m(k) be the smallest
number satisfying the condition above. Then we have d(xn(k), xm(k)−1) < ε. Therefore

ε ≤ d(xn(k), xm(k)) ≤ d(xn(k), xm(k)−1) + d(xm(k)−1, xm(k)) < ε+ d(xm(k)−1, xm(k)).

Letting k →∞, we have lim
k→∞

d(xn(k), xm(k)) = ε. Since

|d(xn(k), xm(k)−1)− d(xn(k), xm(k))| ≤ d(xm(k), xm(k)−1),

we have lim
k→∞

d(xn(k), xm(k)−1) = ε. Similarly, we obtain that

lim
k→∞

d(xm(k), xn(k)−1) = lim
k→∞

d(xm(k)−1, xn(k)−1) = ε.

By Lemma 2.4, we have α(xn(k)−1, xm(k)−1) ≥ η(xn(k)−1, xm(k)−1). Thus we have

ψ(d(xn(k), xm(k))) = ψ(d(Txn(k)−1, Txm(k)−1)) (2.5)

≤ β(ψ(MT (xn(k)−1, xm(k)−1)))ψ(MT (xn(k)−1, xm(k)−1)),

where

MT (xn(k)−1, xm(k)−1) = max{d(xn(k)−1, xm(k)−1), d(xn(k)−1, Txn(k)−1), d(xm(k)−1, Txm(k)−1),

1

2
(d(xn(k)−1, Txm(k)−1) + d(xm(k)−1, Txn(k)−1))}

= max
{
d(xn(k)−1, xm(k)−1), d(xn(k)−1, xn(k)), d(xm(k)−1, xm(k)),

d(xn(k)−1, xm(k))

2
+
d(xm(k)−1, xn(k))

2

}
.

Therefore
lim
k→∞

MT (xn(k)−1, xm(k)−1) = ε. (2.6)
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By (2.5) and (2.6), we have

1 =
lim
k→∞

ψ(d(xn(k), xm(k)))

lim
k→∞

ψ(MT (xn(k)−1, xm(k)−1))
≤ lim

k→∞
β(ψ(MT (xn(k)−1, xm(k)−1))),

which implies lim
k→∞

β(ψ(MT (xn(k)−1, xm(k)−1))) = 1. Consequently, we get lim
k→∞

MT (xn(k)−1, xm(k)−1) = 0.

Hence ε = 0 which is a contradiction. Thus {xn} is a Cauchy sequence. Since X is an α-η-complete metric
space and α(xn, xn+1) ≥ η(xn, xn+1) for all n ∈ N, there is x∗ ∈ X such that lim

n→∞
xn = x∗. Since T is

α-η-continuous, we get lim
n→∞

Txn = Tx∗ and so x∗ = Tx∗. Hence T has a fixed point.

In following theorem, we replace the continuity of T by some suitable conditions.

Theorem 2.8. Let (X, d) be a metric space. Assume that α, η : X ×X → [0,∞) and T : X → X. Suppose
that the following conditions are satisfied:

(i) (X, d) is an α-η-complete metric space;

(ii) T is a generalized α-η-ψ-Geraghty contraction type mapping;

(iii) T is a triangular α-orbital admissible mapping with respect to η;

(iv) there exists x1 ∈ X such that α(x1, Tx1) ≥ η(x1, Tx1);

(v) if {xn} is a sequence in X such that α(xn, xn+1) ≥ η(xn, xn+1) for all n ∈ N and xn → x∗ ∈ X as
n → ∞, then there exists a subsequence {xn(k)} of {xn} such that α(xn(k), x

∗) ≥ η(xn(k), x
∗) for all

k ∈ N.

Then T has a fixed point x∗ ∈ X and {Tnx1} converges to x∗.

Proof. By the analogous proof as in Theorem 2.7, we can construct the sequence {xn} defined by xn+1 = Txn
for all n ∈ N converging to x∗ ∈ X and α(xn, xn+1) ≥ η(xn, xn+1) for all n ∈ N. By (v), there exists a
subsequence {xn(k)} of {xn} such that α(xn(k), x

∗) ≥ η(xn(k), x
∗) for all k ∈ N. Therefore

ψ(d(xn(k)+1, Tx
∗)) = ψ(d(Txn(k), Tx

∗)) (2.7)

≤ β(ψ(MT (xn(k), x
∗)))ψ(MT (xn(k), x

∗)),

where

MT (xn(k), x
∗) = max{d(xn(k), x

∗), d(xn(k), Txn(k)), d(x∗, Tx∗),

1

2
(d(xn(k), Tx

∗) + d(x∗, Txn(k))}

= max{d(xn(k), x
∗), d(xn(k), xn(k)+1), d(x∗, Tx∗),

1

2
(d(xn(k), Tx

∗) + d(x∗, xn(k)+1)}.

Suppose that Tx∗ 6= x∗. Letting k →∞ in the above inequality, we have

lim
k→∞

MT (xn(k), x
∗) = d(x∗, Tx∗).

From (2.7), we have
ψ(d(xn(k)+1, Tx

∗))

ψ(MT (xn(k), x∗))
≤ β(ψ(MT (xn(k), x

∗))) < 1.

Letting k →∞ in the above inequality, we obtain that lim
k→∞

β(ψ(MT (xn(k), x
∗))) = 1 and so lim

k→∞
MT (xn(k), x

∗) =

0. Hence d(x∗, Tx∗) = 0. This is a contradiction. It follows that Tx∗ = x∗.
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For the uniqueness of a fixed point of a generalized α-η-ψ-contractive type mapping, we assume the
suitable condition introduced by Popescu [12].

Theorem 2.9. Suppose all assumptions of Theorem 2.7 (respectively Theorem 2.8) hold. Assume that for
all x 6= y ∈ X, there exists v ∈ X such that α(x, v) ≥ η(x, v), α(y, v) ≥ η(y, v) and α(v, Tv) ≥ η(v, Tv).
Then T has a unique fixed point.

Proof. Suppose that x∗ and y∗ are two fixed points of T such that x∗ 6= y∗. Then by assumption, there exists
v ∈ X such that α(x∗, v) ≥ η(x∗, v), α(y∗, v) ≥ η(y∗, v) and α(v, Tv) ≥ η(v, Tv). Since T is triangular
α-orbital admissible with respect to η, we have

α(x∗, Tnv) ≥ η(x∗, Tnv) and α(y∗, Tnv) ≥ η(y∗, Tnv),

for all n ∈ N. This implies that

ψ(d(x∗, Tn+1v)) = ψ(d(Tx∗, TTnv))

≤ β(ψ(MT (x∗, Tnv)))ψ(MT (x∗, Tnv)),

for all n ∈ N where

MT (x∗, Tnv) = max{d(x∗, Tnv), d(x∗, Tx∗), d(Tnv, Tn+1v),

1

2
(d(x∗, Tn+1v) + d(Tnv, Tx∗)}

= max{d(x∗, Tnv), d(Tnv, Tn+1v),
1

2
(d(x∗, Tn+1v) + d(Tnv, x∗)}.

By Theorem 2.7, we deduce that {Tnv} converges to a fixed point z∗ of T . Taking n → ∞ in the above
inequality, we have

lim
n→∞

MT (x∗, Tnv) = d(x∗, z∗).

We will prove that x∗ = z∗. Suppose that x∗ 6= z∗. Since

ψ(d(x∗, Tn+1v))

ψ(MT (x∗, Tnv))
≤ β(ψ(MT (x∗, Tnv))),

we obtain that lim
n→∞

β(ψ(MT (x∗, Tnv))) = 1. This implies that lim
n→∞

MT (x∗, Tnv) = 0, and then d(x∗, z∗) = 0

which is a contradiction. Hence x∗ = z∗. Similarly, we can prove that y∗ = z∗. Thus x∗ = y∗. It follows
that T has a unique fixed point.

In Theorem 2.7 and Theorem 2.8, if we put η(x, y) = 1 and ψ(t) = t, then we obtain the following result
proved by Popescu [12].

Corollary 2.10 ([12]). Let (X, d) be a complete metric space, α : X×X → [0,∞) and T : X → X. Suppose
that the following conditions are satisfied:

(i) T is a generalized α-Geraghty contraction type mapping;

(ii) T is a triangular α-orbital admissible mapping;

(iii) there exists x1 ∈ X such that α(x1, Tx1) ≥ 1;

(iv) T is a continuous mapping or if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n ∈ N and
xn → x∗ ∈ X as n → ∞, then there exists a subsequence {xn(k)} of {xn} such that α(xn(k), x

∗) ≥ 1
for all k ∈ N.

Then T has a fixed point x∗ ∈ X and {Tnx1} converges to x∗.
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By taking η(x, y) = 1 and the same techniques using in Theorem 2.7 and Theorem 2.8, we obtain the
following result.

Corollary 2.11. Let (X, d) be a complete metric space, α : X ×X → [0,∞) and T : X → X. Suppose that
the following conditions are satisfied:

(i) T is a triangular α-orbital admissible mapping;

(ii) if there exists β ∈ F such that

α(x, y) ≥ 1 implies ψ(d(Tx, Ty)) ≤ β(ψ(M(x, y)))ψ(M(x, y)) for all x, y ∈ X,

where
M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty)} and ψ ∈ Ψ′;

(iii) there exists x1 ∈ X such that α(x1, Tx1) ≥ 1;

(iv) T is a continuous mapping or if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n ∈ N and
xn → x∗ ∈ X as n → ∞, then there exists a subsequence {xn(k)} of {xn} such that α(xn(k), x

∗) ≥ 1
for all k ∈ N.

Then T has a fixed point x∗ ∈ X and {Tnx1} converges to x∗.

Consequently, we obtain that the following result proved by Karapinar [8].

Corollary 2.12 ([8]). Let (X, d) be a complete metric space. Assume that α : X × X → [0,∞) and
T : X → X. Suppose that the following conditions are satisfied:

(i) T is a triangular α-admissible mapping;

(ii) T is a generalized α-ψ-Geraghty contraction type mapping;

(iii) there exists x1 ∈ X such that α(x1, Tx1) ≥ 1;

(iv) T is a continuous mapping or if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n ∈ N and
xn → x∗ ∈ X as n → ∞, then there exists a subsequence {xn(k)} of {xn} such that α(xn(k), x

∗) ≥ 1
for all k ∈ N.

Then T has a fixed point x∗ ∈ X and {Tnx1} converges to x∗.

3. Consequences

Definition 3.1. Let (X, d) be a metric space and α, η : X ×X → [0,∞). A mapping T : X → X is said to
be an α-η-ψ-Geraghty contraction type mapping if there exists β ∈ F such that α(x, y) ≥ η(x, y) implies

ψ(d(Tx, Ty)) ≤ β(ψ(d(x, y)))ψ(d(x, y)),

where ψ ∈ Ψ′.

Theorem 3.2. Let (X, d) be a metric space. Assume that α, η : X ×X → [0,∞) and T : X → X. Suppose
that the following conditions are satisfied:

(i) (X, d) is an α-η-complete metric space;

(ii) T is an α-η-ψ-Geraghty contraction type mapping;

(iii) T is a triangular α-orbital admissible mapping with respect to η;

(iv) there exists x1 ∈ X such that α(x1, Tx1) ≥ η(x1, Tx1);

(v) T is an α-η-continuous mapping.

Then T has a fixed point x∗ ∈ X and {Tnx1} converges to x∗.
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Proof. Let x1 ∈ X be such that α(x1, Tx1) ≥ η(x1, Tx1). As in the proof of Theorem 2.7, we can construct
the sequence {xn} defined by xn+1 = Txn for all n ∈ N converging to some x∗ ∈ X and α(xn, xn+1) ≥
η(xn, xn+1) for all n ∈ N. Since T is α-η-continuous, we have

xn+1 = Txn → Tx∗ as n→∞.

Hence T has a fixed point .

Theorem 3.3. Let (X, d) be a metric space. Assume that α, η : X ×X → [0,∞) and T : X → X. Suppose
that the following conditions are satisfied:

(i) (X, d) is an α-η-complete metric space;
(ii) T is an α-η-ψ-Geraghty contraction type mapping;
(iii) T is a triangular α-orbital admissible mapping with respect to η;
(iv) there exists x1 ∈ X such that α(x1, Tx1) ≥ η(x1, Tx1);
(v) if {xn} is a sequence in X such that α(xn, xn+1) ≥ η(xn, xn+1) for all n ∈ N and xn → x∗ ∈ X as

n → ∞, then there exists a subsequence {xn(k)} of {xn} such that α(xn(k), x
∗) ≥ η(xn(k), x

∗) for all
k ∈ N.

Then T has a fixed point x∗ ∈ X and {Tnx1} converges to x∗.

Proof. Let x1 ∈ X be such that α(x1, Tx1) ≥ η(x1, Tx1). As in the proof of Theorem 2.7, we can construct
the sequence {xn} defined by xn+1 = Txn for all n ∈ N converging to some x∗ ∈ X and α(xn, xn+1) ≥
η(xn, xn+1) for all n ∈ N. By (v), there exists a subsequence {xn(k)} of {xn} such that α(xn(k), x

∗) ≥
η(xn(k), x

∗) for all k ∈ N. It follows that

ψ(d(xn(k)+1, Tx
∗)) = ψ(d(Txn(k), Tx

∗))

≤ β(ψ(d(xn(k), x
∗)))ψ(d(xn(k), x

∗))

< ψ(d(xn(k), x
∗)).

Letting k →∞ in above inequality, we obtain that ψ(d(x∗, Tx∗)) ≤ 0. Thus ψ(d(x∗, Tx∗)) = 0. This implies
that d(x∗, Tx∗) = 0. Hence x∗ = Tx∗.

Theorem 3.4. Suppose all assumptions of Theorem 3.2 (respectively Theorem 3.3) hold. Assume that for
all x 6= y ∈ X, there exists v ∈ X such that α(x, v) ≥ η(x, v), α(y, v) ≥ η(y, v) and α(v, Tv) ≥ η(v, Tv).
Then T has a unique fixed point.

Proof. Suppose that x∗ and y∗ are two fixed points of T such that x∗ 6= y∗. Then by assumption, there
exists v ∈ X such that α(x∗, v) ≥ η(x∗, v), α(y∗, v) ≥ η(y∗, v) and α(v, Tv) ≥ η(v, Tv). Since T is
triangular α-orbital admissible with respect to η, we have

α(x∗, Tnv) ≥ η(x∗, Tnv) and α(y∗, Tnv) ≥ η(y∗, Tnv)

for all n ∈ N. It follows that

ψ(d(x∗, Tn+1v)) = ψ(d(Tx∗, TTnv))

≤ β(ψ(d(x∗, Tnv)))ψ(d(x∗, Tnv)) (3.1)

< ψ(d(x∗, Tnv))

for all n ∈ N. Consequently, the sequence {ψ(d(x∗, Tnv))} is nonincreasing, then there exists r ≥ 0 such
that lim

n→∞
ψ(d(x∗, Tnv)) = r. By (3.1) we have

ψ(d(x∗, Tn+1v))

ψ(d(x∗, Tnv))
≤ β(ψ(d(x∗, Tnv))).

Letting limit n → ∞, we have lim
n→∞

β(ψ(d(x∗, Tnv))) = 1 and then lim
n→∞

ψ(d(x∗, Tnv)) = 0. It follows that

lim
n→∞

d(x∗, Tnv) = 0. Hence lim
n→∞

Tnv = x∗. Similarly, we can prove that lim
n→∞

Tnv = y∗. Hence x∗ = y∗.
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Corollary 3.5 ([8]). Let (X,�) be a partially ordered set and suppose that there exists a metric d on X
such that (X, d) is a complete metric space. Suppose that T : X → X. Assume that the following conditions
are satisfied:

(i) there exists β ∈ F such that

ψ(d(Tx, Ty)) ≤ β(ψ(d(x, y)))ψ(d(x, y))

for all x, y ∈ X with x � y where ψ ∈ Ψ′;

(ii) there exists x1 ∈ X such that x1 � Tx1;

(iii) T is nondecreasing;

(iv) either T is continuous or if {xn} is a nondecreasing sequence with xn → x as n→∞, then there exists
a subsequence {xn(k)} of {xn} such that xn(k) � x for all k ∈ N.

Then T has a fixed point x∗ ∈ X and {Tnx1} converges to x∗. Further if for all x 6= y ∈ X, there exists
v ∈ X such that x � v, y � v and v � Tv, then T has a unique fixed point.

Proof. Define functions α, η : X ×X → [0,∞) by

α(x, y) =

{
1, if x � y
1
4 , otherwise

and η(x, y) =

{
1
2 , if x � y
2, otherwise.

Let x, y ∈ X with α(x, y) ≥ η(x, y). By (i), we have

ψ(d(Tx, Ty)) ≤ β(ψ(d(x, y)))ψ(d(x, y)).

This implies that T is an α-η-ψ-Geraghty contraction type mapping. Since X is complete metric space,
we have X is α-η-complete metric space. By (ii), there exists x1 ∈ X such that α(x1, Tx1) ≥ η(x1, Tx1).
Let α(x, Tx) ≥ η(x, Tx), we have x � Tx. Since T is nondecreasing, we obtain that Tx � T (Tx). Then
α(Tx, T 2x) ≥ η(Tx, T 2x). Let α(x, y) ≥ η(x, y) and α(y, Ty) ≥ η(y, Ty), so we have x � y and y � Ty. It
follows that x � Ty. Then α(x, Ty) ≥ η(x, Ty). Thus all conditions of Theorem 3.2 and Theorem 3.3 are
satisfied. Hence T has a fixed point.

We now give an example for supporting Theorem 3.2.

Example 3.6. Let X = [0,∞) and d(x, y) = |x − y| for all x, y ∈ X. Let β(t) = 1
1+2t for all t > 0 and

β(0) = 0. Then β ∈ F . Let ψ(t) = 1
4 t and a mapping T : X → X be defined by

Tx =

{
2
3x, if 0 ≤ x ≤ 1

2x, if x > 1.

Also, we define functions α, η : X ×X → [0,∞) by

α(x, y) =

{
1, if 0 ≤ x, y ≤ 1

0, otherwise,
, η(x, y) =

{
1
4 , if 0 ≤ x, y ≤ 1

2, otherwise.

First, we will prove that (X, d) is an α-η-complete metric space. If {xn} is a Cauchy sequence such that
α(xn, xn+1) ≥ η(xn, xn+1) for all n ∈ N, then {xn} ⊆ [0, 1]. Since ([0, 1], d) is a complete metric space, then
the sequence {xn} converges in [0, 1] ⊆ X. Let α(x, Tx) ≥ η(x, Tx). Thus x ∈ [0, 1] and Tx ∈ [0, 1] and so
T 2x = T (Tx) ∈ [0, 1]. Then α(Tx, T 2x) ≥ η(Tx, T 2x). Thus T is α-orbital admissible with respect to η. Let
α(x, y) ≥ η(x, y) and α(y, Ty) ≥ η(y, Ty). We have x, y, Ty ∈ [0, 1]. This implies that α(x, Ty) ≥ η(x, Ty).
Hence T is triangular α-orbital admissible with respect to η. Let {xn} be a sequence such that xn → x as
n → ∞ and α(xn, xn+1) ≥ η(xn, xn+1), for all n ∈ N. Then {xn} ⊆ [0, 1] for all n ∈ N. This implies that
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lim
n→∞

Txn = lim
n→∞

2
3xn = 2

3x = Tx. That is T is α-η -continuous. It is clear that condition (iv) of Theorem

3.2 is satisfied with x1 = 1 since α(1, T (1)) = α(1, 23) = 1 > 1
4 = η(1, 23) = η(1, T (1)). Finally, we will prove

that T is an α-η-ψ-Geraghty contraction type mapping. Let α(x, y) ≥ η(x, y). Therefore x, y ∈ [0, 1]. It
follows that

β(ψ(d(x, y)))ψ(d(x, y))− ψ(d(Tx, Ty))

= β(
1

4
(d(x, y))) · 1

4
(d(x, y))− 1

4
(d(Tx, Ty)) (3.2)

= β(
1

4
|x− y|) · 1

4
|x− y| − 1

4
|Tx− Ty|

=
1

1 + 1
2 |x− y|

· 1

4
|x− y| − 1

4
|2
3
x− 2

3
y|

=
1
4 |x− y|

1 + 1
2 |x− y|

− 1

6
|x− y|

=
|x− y|(3− 2 + |x− y|)

6(2 + |x− y|)
≥ 0.

Then we have ψ(d(Tx, Ty)) ≤ β(ψ(d(x, y)))ψ(d(x, y)). Thus all assumptions of Theorem 3.2 are satisfied.
Hence T has a fixed point x∗ = 0.

4. Applications to ordinary differential equations

The following ordinary differential equation is taken from Karapinar [8]:{
−d2x
dt2

= f(t, x(t)), t ∈ [0, 1]
x(0) = x(1) = 0,

(4.1)

where f : [0, 1]× R→ R is a continuous function. The Green function associated to (4.1) is defined by

G(t, s) =

{
t(1− s), 0 ≤ t ≤ s ≤ 1

s(1− t), 0 ≤ s ≤ t ≤ 1.

Let C(I) be the space of all continuous functions defined on I where I = [0, 1]. Suppose that d(x, y) =
‖x− y‖∞ = sup

t∈I
|x(t)− y(t)| for all x, y ∈ C(I). It is well known that (C(I), d) is a complete metric space.

Assume that the following conditions hold:

(i) there exists a function ξ : R2 → R such that for all a, b ∈ R with ξ(a, b) ≥ 0, we have |f(t, a)−f(t, b)| ≤
8 ln(|a− b|+ 1) for all t ∈ I;

(ii) there exists x1 ∈ C(I) such that for all t ∈ I,

ξ

(
x1(t),

∫ 1

0
G(t, s)f(s, x1(s))ds

)
≥ 0;

(iii) for all t ∈ I and for all x, y, z ∈ C(I),

ξ(x(t), y(t)) ≥ 0 and ξ(y(t), z(t)) ≥ 0 imply ξ(x(t), z(t)) ≥ 0;

(iv) for all t ∈ I and for all x, y ∈ C(I),

ξ(x(t), y(t)) ≥ 0 implies ξ

(∫ 1

0
G(t, s)f(s, x(s))ds,

∫ 1

0
G(t, s)f(s, y(s))ds

)
≥ 0;
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(v) if {xn} is a sequence in C([0, 1]) such that xn → x ∈ C([0, 1]) and ξ(xn(t), xn+1(t)) ≥ 0 for all n ∈ N
and for all t ∈ I, then there exists a subsequence {xn(k)} of {xn} such that ξ(xn(k)(t), x(t)) ≥ 0 for all
k ∈ N and for all t ∈ I.

We now assure the existence of a solution of the above second order differential equation. The method
for proving the following result is taken from [8] but is slightly different.

Theorem 4.1. Suppose that conditions (i)-(v) are satisfied. Then (4.1) has at least one solution x∗ ∈ C2(I).

Proof. It is well known that x∗ ∈ C2(I) is a solution of (4.1) if and only if x∗ ∈ C(I) is a solution of the
integral equation (see [8]). Define a mapping T : C(I)→ C(I) by

Tx(t) =

∫ 1

0
G(t, s)f(s, x(s))ds for all t ∈ I.

Therefore the problem (4.1) is equivalent to finding x∗ ∈ C(I) that is a fixed point of T . Let x, y ∈ C(I)
such that ξ(x(t), y(t)) ≥ 0 for all t ∈ I . From (i), we obtain that

|Tx(t)− Ty(t)| =
∣∣ ∫ 1

0
G(t, s)[f(s, x(s))− f(s, y(s))]ds

∣∣
≤
∫ 1

0
G(t, s)

∣∣f(s, x(s))− f(s, y(s))
∣∣ds

≤ 8

∫ 1

0
G(t, s) ln(|x(s)− y(s)|+ 1)ds

≤ 8

∫ 1

0
G(t, s) ln(d(x, y) + 1)ds

≤ 8 ln(d(x, y) + 1)
(

sup
t∈I

∫ 1

0
G(t, s)ds

)
.

Since
∫ 1
0 G(t, s)ds = −(t2/2) + t/2 for all t ∈ I, we have sup

t∈I

∫ 1
0 G(t, s)ds = 1

8 . This implies that

d(Tx, Ty) ≤ ln(d(x, y) + 1).

Therefore

ln(d(Tx, Ty) + 1) ≤ ln(ln(d(x, y) + 1) + 1) =
ln(ln(d(x, y) + 1) + 1)

ln(d(x, y) + 1)
ln(d(x, y) + 1).

Define mappings ψ : [0,∞)→ [0,∞) and β : [0,∞)→ [0, 1) by

ψ(x) = ln(x+ 1) and β(x) =

{
ψ(x)
x , if x 6= 0

0, otherwise.

Therefore ψ : [0,∞) → [0,∞) is continuous, nondecreasing and ψ is positive in (0,∞) with ψ(0) = 0 and
also ψ(x) < x. Moreover, we obtain that β ∈ F and

ψ(d(Tx, Ty)) ≤ β(ψ(d(x, y)))ψ(d(x, y)

for all x, y ∈ C(I) such that ξ(x(t), y(t)) ≥ 0 for all t ∈ I.
Define α, η : C(I)× C(I)→ [0,∞) by

α(x, y) =

{
1, if ξ(x(t), y(t)) ≥ 0, t ∈ I
0, otherwise,

and η(x, y) =

{
1
2 , ξ(x(t), y(t)) ≥ 0, t ∈ [0, 1]
2, otherwise.
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Let x, y ∈ C(I) such that α(x, y) ≥ η(x, y). It follows that ξ(x(t), y(t)) ≥ 0 for all t ∈ I. This yields

ψ(d(Tx, Ty)) ≤ β(ψ(d(x, y)))ψ(d(x, y).

Therefore T is an α-η-ψ-Geraghty contraction type mapping. Using (iv), for each x ∈ C(I) such that
α(x, Tx) ≥ η(x, Tx), we obtain that ξ(Tx(t), T 2x(t)) ≥ 0. This implies that α(Tx, T 2x) ≥ η(Tx, T 2x). Let
x, y ∈ C(I) such that α(x, y) ≥ η(x, y) and α(y, Ty) ≥ η(y, Ty). Thus

ξ(x(t), y(t)) ≥ 0 and ξ(y(t), Ty(t)) ≥ 0 for all t ∈ I.

By applying (iii), we obtain that ξ(x(t), T y(t)) ≥ 0 and so α(x, Ty) ≥ η(x, Ty). It follows that T is triangular
α-orbital admissible with respect to η. Using (ii), there exists x1 ∈ C(I) such that α(x1, Tx1) ≥ η(x1, Tx1).
Let {xn} be a sequence in C(I) such that xn → x ∈ C(I) and α(xn, xn+1) ≥ η(xn, xn+1) for all n ∈ N. By
(v), there exists a subsequence {xn(k)} of {xn} such that ξ(xn(k)(t), x(t)) ≥ 0. This implies that α(xn(k), x) ≥
η(xn(k), x). Therefore all assumptions in Theorem 3.2 are satisfied. Hence T has a fixed point in C(I). It
follows that there exists x∗ ∈ C(I) such that Tx∗ = x∗ is a solution of (4.1).

Corollary 4.2. Assume that the following conditions hold:

(i) f : [0, 1]× R→ [0,∞) is continuous and nondecreasing;

(ii) for all t ∈ [0, 1], for all a, b ∈ R with a ≤ b, we have

|f(t, a)− f(t, b)| ≤ 8 ln(|a− b|+ 1);

(iii) there exists x1 ∈ C([0, 1]) such that for all t ∈ [0, 1], we have

x1(t) ≤
∫ 1

0
G(t, s)f(s, x1(s))ds.

Then (4.1) has a solution in C2([0, 1]).

Proof. Define a mapping ξ : R2 → R by

ξ(a, b) = b− a for all a, b ∈ R.

By the analogous proof as in Theorem 4.1, we obtain that (4.1) has a solution.
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