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Abstract

In this paper, we are concerned with the existence and uniqueness of S-asymptotically ω-periodic solu-
tions to a class of fractional integro-differential equations. Some sufficient conditions are established about
the existence and uniqueness of S-asymptotically ω-periodic solutions to the fractional integro-differential
equation by applying fixed point theorem combined with sectorial operator, where the nonlinear perturbation
term f is a Lipschitz case and non-Lipschitz case. c© 2016 All rights reserved.
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1. Introduction

In this article, we study the existence and uniqueness of S-asymptotically ω-periodic solutions of the
following fractional integro-differential equation

Dα
t (u(t)− g(t, u(t))) = A(u(t)− g(t, u(t)) +Dα−1

t f(t, u(t), K̃u(t)),

K̃u(t) =

∫ t

0
R(t− s)h(s, u(s))ds,

u(0) = u0, t ≥ 0,

(1.1)

where 1 < α < 2 and A : D(A) ⊆ X→ X is a linear densely defined operator of sectorial type on a complex
Banach space (X, ‖ · ‖), K̃ is a bounded linear operator, ‖R(t)‖ ≤M0e

−µt for t ≥ 0 and M0, µ are positive
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constants, f : [0,∞)× X× X → X, h : [0,∞)× X → X and g : [0,∞)× X → X are an S-asymptotically ω-
periodic functions satisfying suitable conditions given later. The fractional derivative Dα

t is to be understood
in Riemann-Liouville sense.

Recently emerged the notion of S-asymptotically ω-periodic functions have many applications in several
problems like functional differential equations, integro-differential equations, fractional differential equations
and fractional integro-differential equations. The concept of S-asymptotically ω-periodic function was first
introduced in the literature by Henŕıquez and Pierri et al. in [29, 31]. In these paper the author discussed
the concept of S-asymptotically ω-periodicity, studied the existence of S-asymptotically ω-periodic mild
solutions of abstract differential equations, abstract neutral differential equations and in [31] the authors
introduced a composition theory of such type of functions.

Due to their applications in various branches of science such as physics, mechanics, chemistry engineer-
ing, etc., fractional calculus have gained considerable attention. Significant development has been made in
fractional differential equations and fractional integro-differential equations. For details, including some ap-
plications and recent results, see the monographs [22, 28, 32, 39, 40]. On the S-asymptotically ω-periodicity
and fractional order equations related aspects, in [12] the authors studied the existence of S-asymptotically
ω-periodic mild solutions for semilinear fractional integro-differential equations and extended these results to
certain class of semilinear Volterra equations in [15]. In [4] the authors studied the existence and uniqueness
of asymptotically ω-periodic and weighted S-asymptotically ω-periodic mild solutions for some classes of
integro-differential equations. In[13] the authors studied S-asymptotically ω-periodic solutions of the semi-
linear fractional integro-differential equation in the phase space. In [17] the authors studied the existence
of weighted S-asymptotically ω-periodic mild solutions for a class of abstract fractional integro-differential
equation. In [14] the authors studied the existence of pseudo S-asymptotically ω-periodic mild solutions
for a class of abstract fractional differential equation. In [41] the author discussed the existence of an
S-asymptotically ω-periodic mild solution of semilinear fractional integro-differential equations in Banach
space, where the nonlinear perturbation is S-asymptotically ω-periodic or S-asymptotically ω-periodic in the
Stepanov sense. In [16] the authors proved existence and uniqueness of S-asymptotically ω-periodic mild
solutions for a class of linear and semilinear fractional order differential equations by using a generalization
of the semigroup theory of linear operators. In [46] the authors investigated the existence and uniqueness of
asymptotically ω-periodic mild solutions to semilinear fractional integro-differential equations with Stepanov
asymptotically ω-periodic coefficients.

Also in virtue of their numerous applications value in several fields of sciences and engineering, abstract
integro-differential equations and fractional integro-differential equations relating to topics of interest have
received much attention in recent years. Some properties of the solution for the equations relating to topics
have been studied from different point of view. Abbas[1] studied existence and uniqueness of a pseudo
almost automorphic solution of some nonlinear integro-differential equation in a Banach space. Mishra and
Bahuguna [35] proved weighted pseudo almost automorphic solution of an integro-differential equation, with
weighted Stepanov-like pseudo almost automorphic forcing term in a Banach space. Xia [42] investigated
weighted pseudo almost automorphic solutions of hyperbolic semilinear integro-differential equations in
intermediate Banach spaces. Mophou [36] discussed the existence and uniqueness of weighted pseudo almost
automorphic mild solution to the semilinear fractional equation.

For further literature concerning topic we refer the reader to [2, 3, 6–10, 19–21, 23–27, 30, 33, 37, 38, 43–
45]. The topic about the existence of S-asymptotically ω- periodic solutions for fractional integral-differential
equation (1.1) is untreated in the literature, which is one of the key motivations of this study.

This work is organized as follows. In Section 2, we recall some preliminary facts which will be used
throughout this paper. In Section 3, we establish some sufficient conditions for S-asymptotically ω-periodic
solutions to the problem (1.1).
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2. Preliminaries

In this section, we introduce some preliminary results needed in what follows.
Throughout this paper, we assume that (X, ‖·‖) and (Y, ‖·‖Y) are two Banach spaces. We let C([0,∞),X)

(respectively, C([0,∞) × Y,X)) stand for the collection of all continuous functions from [0,∞) into X (re-
spectively, the collection of all jointly continuous functions f : [0,∞)×Y→ X). BC([0,∞),X) (respectively,
BC([0,∞) × Y,X)) denotes the class of all bounded continuous functions from [0,∞) into X (respectively,
the class of all jointly bounded continuous functions from [0,∞) × Y into X). Note that BC([0,∞),X)
is a Banach space with the sup norm ‖ · ‖∞. Moreover, we denote by B(X) the space of bounded linear
operators form X into X endowed with the operator topology. In this work Cb([0,∞),X) denotes the Banach
space consisting of all continuous and bounded functions from [0,∞) into X with the norm of the uniform
convergence.

Definition 2.1 ([11]). A closed linear operator (A,D(A)) with dense domain D(A) in the Banach space X
is said to be sectorial of type ω̃ and angle θ if there are constants ω̃ ∈ R; θ ∈ (0, π2 ) and M > 0 such that
its resolvent exists outside the sector

ω̃ + Σθ := {λ+ ω̃ : λ ∈ C, |arg(−λ)| < θ}, (2.1)

‖(λ−A)−1‖ ≤ M

|λ− ω̃|
, λ /∈ ω̃ + Σθ. (2.2)

Definition 2.2 ([12]). Let 1 < α < 2 and also A be a closed and linear operator with a domain D(A)
defined on a Banach space X. We say that A is the generator of a solution operator if there exist ω̃ ∈ R and
a strongly continuous function Sα : [0,∞)→ B(X) such that {λα : Reλ > ω̃} ⊂ ρ(A) and

λα−1(λαI −A)−1x =

∫ ∞
0

e−λtSα(t)xdt, Reλ > ω̃, x ∈ X.

From [11], if A is sectional of type ω̃ ∈ R with 0 ≤ θ < π(1 − α/2), then A is a generator of a solution
operator given by

Sα(t) =
1

2πi

∫
G
eλtλα−1(λα −A)−1dλ, t ≥ 0,

with G a suitable path lying outside the sector ω̃ + Σθ. Furthermore, the following lemma holds.

Lemma 2.3 ([11]). Let A : D(A) ⊂ X→ X be a sectorial operator in a complex Banach space X, satisfying
hypothesis (2.1) and (2.2), for some M > 0; ω̃ < 0 and 0 ≤ θ < π(1− α/2). Then there exists C(θ;α) > 0
depending solely on θ and α, such that

‖Sα(t)‖B(X) ≤
C(θ, α)M

1 + |ω̃|tα
, t ≥ 0. (2.3)

Definition 2.4 ([31]). A function f ∈ BC([0,∞),X) is called S-asymptotically ω-periodic if there exists ω
such that limt→∞(f(t+ ω)− f(t)) = 0. In this case we say that ω is an asymptotic period of f and that f
is S-asymptotically ω-periodic. The collection of all such functions will be denoted by SAPω(X).

Definition 2.5 ([31]). A continuous function f : [0,∞) × X → X is said to be uniformly S-asymptotically
ω-periodic on bounded sets if for every bounded set K∗ ⊂ X, the set {f(t, x) : t ≥ 0, x ∈ K∗} is bounded
and limt→∞(f(t, x)− f(t+ ω, x)) = 0 uniformly in x ∈ K∗.

Definition 2.6 ([31]). A continuous function f : [0,∞) × X → X is said to be asymptotically uniformly
continuous on bounded sets if for every ε > 0 and every bounded set K∗ ⊂ X, there exist Lε,K∗ > 0 and
δε,K∗ > 0 such that ||f(t, x)− f(t, y)‖ < ε for all t ≥ Lε,K∗ and all x, y ∈ K∗ with ‖x− y‖ < δε,K∗ .
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Lemma 2.7 ([5]). Let X and Y be two Banach spaces, and denote by B(X,Y), the space of all bounded
linear operators from X into Y. Let A ∈ B(X,Y). Then when f ∈ SAPω(X), we have Af := [t→ Af(t)] ∈
SAPω(Y).

Definition 2.8 ([31]). Let f : [0,∞) × X → X be a function which uniformly S-asymptotically ω-periodic
on bounded sets and asymptotically uniformly continuous on bounded sets. Let u : [0,∞) → X be S-
asymptotically ω-periodic function. Then the Nemytskii operator φ(·) := f(·, u(·)) is S-asymptotically
ω-periodic function.

Lemma 2.9. Assume f : [0,∞) × X → X is uniformly S-asymptotically ω-periodic on bounded sets and
satisfies the Lipschitz condition, that is, there exists a constant L > 0 such that

‖f(t, x)− f(t, y)‖ ≤ L‖x− y‖ ∀t ≥ 0,∀x, y ∈ X.

If u ∈ SAPω(X), then the function t→ f(t, u(t)) belongs to SAPω(X).

Proof. The proof is similar to the following Corollary 3.3 and simplified.

Lemma 2.10 ([13]). Assume that A is sectorial of type ω̃ < 0 , if f ∈ SAPω(X) and Λf : [0,∞) → X is
expressed by

Λf(t) =

∫ t

0
Sα(t− s)f(s)ds,

then Λf ∈ SAPω(X).

The next, we list the useful compactness.
Let h∗ : [0,∞)→ [1,∞) be a continuous function such that h∗(t)→∞ as t→∞. We consider the space

Ch∗(X) = (u ∈ C([0,∞),X) : limt→∞( u(t)h∗(t)) = 0) endowed with the norm ‖u‖h∗ = supt≥0(
‖u(t)‖
h∗(t) ).

Lemma 2.11 ([18]). A set K
′ ⊆ Ch∗ (X) is relatively compact in Ch∗ (X) if it verifies the following condi-

tions:

(c1) For all b > 0, the set K
′
b =

{
u|[0,b] : u ∈ K ′

}
is relatively compact in C ([0, b] ,X).

(c2) limt→∞(‖u(t)‖h∗(t) ) = 0 uniformly for u ∈ K ′.

3. Main results

Definition 3.1. A continuous function u : [0,∞)→ X satisfying the integral equation

u(t) = Sα(t)(u0 − g(0, u0)) + g(t, u(t)) +

∫ t

0
Sα(t− s)f(s, u(s), K̃u(s))ds

is called the mild solution of the problem (1.1).

Now, we list the following basic hypotheses.

(H1) A is a sectorial operator of type ω̃ < 0 with 0 ≤ θ < π(1− α/2);

(H2) there exist constants Lg, Lh > 0, such that

‖g(t, x)− g(t, y)‖ ≤ Lg‖x− y‖
‖h(t, x)− h(t, y)‖ ≤ Lh‖x− y‖

for all t ≥ 0 and each x, y ∈ X;
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(H3) there exist constants Lf1 , Lf2 > 0, such that

‖f(t, x1, y1)− f(t, x2, y2)‖ ≤ Lf1‖x1 − x2‖+ Lf2‖y1 − y2‖

for all t ≥ 0 and each x1, y1, x2, y2 ∈ X;

(H4) f : [0,∞) × X × X → X, g and h : [0,∞) × X → X are uniformly S-asymptotically ω-periodic on
bounded sets;

(H5) f : [0,∞)×X×X→ X, g and h : [0,∞)×X→ X are asymptotically uniformly continuous on bounded
sets function;

(H6) There exists a continuous nondecreasing functionW : [0,∞)→ [0,∞) such that ‖f(t, x, y)‖ ≤W (‖x‖+
‖y‖) for all t ∈ [0,∞)and x ∈ X.

We shall present and prove our main results.

Lemma 3.2. Let f : [0,∞) × X × X → X be a uniformly S-asymptotically ω-periodic on bounded sets
and asymptotically uniformly continuous on bounded sets function and, let u, u1 : [0,∞) → X be an S-
asymptotically ω-periodic function. Then the function v (t) = f(t, u (t) , u1(t)) ∈ SAPω(X).

Proof. Since R(u) = {u(t) | t ≥ 0}, R(u1) = {u1(t) | t ≥ 0} is bounded set, for each ε > 0 there exist
constants δ > 0 and L1

ε > 0 such that

max{‖f(t+ ω, z, z1)− f(t, z, z1)‖, ‖f(t, x, x1)− f(t, y, y1)‖} ≤ ε

for every t ≥ L1
ε and x, y, z ∈ R(u), x1, y1, z1 ∈ R(u1) with ‖x− y‖+ ‖x1 − y1‖ ≤ 2δ. Likewise, there exists

L2
ε > 0 such that ‖u(t+ω)−u(t)‖+ ‖u1(t+ω)−u1(t)‖ ≤ 2δ, for every t ≥ L2

ε . Thus, for t ≥ max{L1
ε, L

2
ε},

we obtain

‖f(t+ ω, u(t+ ω), u1(t+ ω))− f(t, u(t), u1(t))‖ ≤ ‖f(t+ ω, u(t+ ω), u1(t+ ω))− f(t+ ω, u(t), u1(t))‖
+ ‖f(t+ ω, u(t), u1(t))− f(t, u(t), u1(t))‖
≤ 2ε,

which proves the assertion.

Corollary 3.3. Let f : [0,∞) × X × X → X be a uniformly S-asymptotically ω-periodic on bounded sets
and Lipschitzian(H3), let u, u1 : [0,∞) → X be an S-asymptotically ω-periodic function. Then the function
v (t) = f(t, u (t) , u1(t)) ∈ SAPω(X).

Proof. R(u) = {u(t) | t ≥ 0}, R(u1) = {u1(t) | t ≥ 0} is bounded set, which follows that f(t, u (t) , u1(t)) ∈
Cb([0,∞),X,X). For ε > 0 there exist constant Lε > 0 such that

‖f(t+ ω, z, z1)− f(t, z, z1)‖ ≤
ε

3
, ‖u(t+ ω)− u(t)‖ ≤ ε

3Lf1
,

‖u1(t+ ω)− u1(t)‖ ≤
ε

3Lf2

for every t ≥ Lε and z ∈ R(u), z1 ∈ R(u1). Thus, for t ≥ Lε, we have

‖f(t+ ω, u(t+ ω), u1(t+ ω))− f(t, u(t), u1(t))‖
≤ ‖f(t+ ω, u(t+ ω), u1(t+ ω))− f(t+ ω, u(t), u1(t))‖

+ ‖f(t+ ω, u(t), u1(t))− f(t, u(t), u1(t))‖
≤ Lf1‖u(t+ ω)− u(t)‖+ Lf2‖u1(t+ ω)− u1(t)‖

+ ‖f(t+ ω, u(t), u1(t))− f(t, u(t), u1(t))‖
≤ ε,

which proves the assertion.
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A different Lipschitz condition is considered in the following results.

Theorem 3.4. Assume that (H1)-(H4) hold. Then (1.1) has a unique S-asymptotically ω-periodic mild
solution provided

Lg + (Lf1 + Lf2Lh
M0

µ
)C(θ, α)M

|ω̃|−1/απ
α sin(π/α)

< 1.

Proof. We define the nonlinear operator Γ by the expression

(Γu)(t) = Sα(t)(u0 − g(0, u0)) + g(t, u(t)) +

∫ t

0
Sα(t− s)f(s, u(s), K̃u(s))ds, t ≥ 0. (3.1)

For given u ∈ SAPω([0,∞),X), it follows from Lemmas 2.7, 2.9 and Corollary 3.3 that the function t →
f(t, u(t), K̃u(t), t → g(t, u(t)) is in SAPω(X). Moreover, from Lemma 2.10, we deduce that
Γu ∈ SAPω([0,∞),X), that is, Γ maps SAPω([0,∞),X) into itself. Next, we show that the operator Γ
has a unique fixed point in SAPω([0,∞),X). Indeed, for each t ∈ [0,∞), u, v ∈ SAPω([0,∞),X), we have

‖Γu(t)− Γv(t)‖ = ‖[g(t, u(t))− g(t, v(t))] +

∫ t

0
Sα(t− s)[f(s, u(s), K̃u(s))− f(s, v(s), K̃v(s))]ds‖

≤ ‖g(t, u(t))− g(t, v(t))‖

+

∫ t

0
‖Sα(t− s)‖B(u)‖f(s, u(s), K̃u(s))− f(s, v(s), K̃v(s))‖ds

≤ Lg‖u(t)− v(t)‖+

∫ t

0

C(θ, α)M

1 + |ω̃|(t− s)α
[Lf1‖u(s)− v(s)‖+ Lf2‖K̃u(s)− K̃v(s)‖]ds,

(3.2)

note

‖K̃u(s)− K̃v(s)‖ ≤
∫ t

0
‖R(t− s)‖‖h(s, u(s))‖ − h(s, v(s))ds

≤
∫ t

0
‖R(t− s)‖Lh‖u(s)− v(s)‖ds

≤ sup
t≥0
‖u(t)− v(t)‖Lh

∫ t

0
‖R(t− s)‖ds

≤ sup
t≥0
‖u(t)− v(t)‖Lh(

∫ t

0
‖R(s)‖ds)

≤ sup
t≥0
‖u(t)− v(t)‖Lh(

∫ t

0
M0e

−µsds)

≤ sup
t≥0
‖u(t)− v(t)‖Lh(M0

1− e−µt

µ
).

Combining the above estimate, inequality (3.2) implies,

‖(Γu)(t)− (Γv)(t)‖ ≤ Lg sup
t≥0
‖u(t)− v(t)‖+ (Lf1 + Lf2LhM0

1− e−µt

µ
) sup
t≥0
‖u(t)− v(t)‖

∫ t

0

C(θ, α)M

1 + |ω̃|(s)α
ds

≤ [Lg + (Lf1 + Lf2LhM0
1− e−µt

µ
)
|ω̃|−1/απ
α sin(π/α)

C(θ, α)M ]‖u− v‖∞.

Hence,we have

‖Γu− Γv‖∞ ≤ [Lg + (Lf1 + Lf2LhM0
1− e−µt

µ
)
|ω̃|−1/απ
α sin(π/α)

C(θ, α)M ]‖u− v‖∞,

which proves that Γ is a contraction we conclude that Γ has a unique fixed point in SAPω(X). The proof is
complete.
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Next, we establish a local version of the previous result.

Theorem 3.5. Assume that conditions (H1),(H4) hold and there are continuous and nondecreasing func-
tions Lf1 , Lf2 , Lg, Lh : [0,∞) → [0,∞), such that for each positive number R̃, and x, y, x1, y1 ∈ X and
‖x‖, ‖x1‖, ‖y‖, ‖y1‖ ≤ R̃, one has

‖f(t, x1, y1)− f(t, x2, y2)‖ ≤ Lf1(R̃)‖x1 − x2‖+ Lf2(R̃)‖y1 − y2‖,

‖g(t, x)− g(t, y)‖ ≤ Lg(R̃)‖x− y‖,

‖h(t, x)− h(t, y)‖ ≤ Lh(R̃)‖x− y‖

for all t ≥ 0, where Lf1(0) = Lf2(0) = Lg(0) = Lh(0) = 0 and f(t, 0, 0) = g(t, 0) = h(t, 0) = 0 for every
t ≥ 0. Then there exists ε > 0 such that for each u0 satisfying ‖u0‖ ≤ ε , there is a unique S-asymptotically
ω-periodic mild solution of (1.1).

Proof. We choose R̃ > 0 and λ ∈ (0, 1) small enough such that

Θ := C(θ, α)M [1 + Lg(λR̃)]λ+ Lg(R̃)

+
C(θ, α)M |ω̃|−1/απ

α sin(π/α)
Lf2(

M0(1− e−µt)
µ

Lh(R̃)R̃)
M0(1− e−µt)

µ
Lh(R̃) < 1,

where C(θ, α) and M are the constants given in (2.3). We consider u0 such that ‖u0‖ ≤ ε , with ε = λR̃;
we define the space Ξu0 = {u ∈ SAPω([0,∞),X) : u(0) = u0, ‖u‖∞ ≤ R̃} endowed with the metric
d(u, v) = ‖u− v‖∞. We also define the operator Γ on the space Ξu0 by (3.1). Let u be in Ξu0 in a similar
way as that of proof of Theorem 3.4; we have that Γu ∈ SAPω([0,∞),X). Moreover, we obtain the estimate

‖Γu(t)‖ ≤ C(θ, α)M [1 + Lg(λR̃)]λR̃+ Lg(R̃)R̃

+
C(θ, α)M |ω̃|−1/απ

α sin(π/α)
Lf2(

M0(1− e−µt)
µ

Lh(R̃)R̃)
M0(1− e−µt)

µ
Lh(R̃)R̃ = ΘR̃ < R̃.

Therefore, Γ(Ξu0) ⊂ Ξu0. On the other hand, for u, v ∈ Ξu0, we see that

‖Γu− Γv‖∞ ≤ [Lg(R̃) +
C(θ, α)M |ω̃|−1/απ

α sin(π/α)
Lf2(

M0(1− e−µt)
µ

Lh(R̃)R̃)
M0(1− e−µt)

µ
Lh(R̃)]‖u− v‖∞,

which shows that Γ is a contraction from Ξu0 into Ξu0. The assertion is now a consequence of the contraction
mapping principle.

In the following, we discuss the existence of S-asymptotically ω-periodic solutions to the problem (1.1)
when f is not necessarily Lipschitz continuous.

Theorem 3.6. Assume that the conditions (H1) and (H4)–(H6) hold. In addition, suppose the following
properties hold:

(i) For each C ≥ 0

lim
t→∞

1

h∗(t)

∫ t

0

W (1 + ‖K̃‖)Ch∗(s)
1 + |ω̃|(t− s)α

ds = 0,

where h∗ is the function given in Lemma 2.11.
We set

β(C) := C(θ, α)M

∫ t

0

W ((1 + ‖K̃‖)Ch∗(s)
1 + |ω̃|(t− s)α

)ds,

where C(θ, α) and M are constants given in (2.3).



Z.-H. Wu, J. Nonlinear Sci. Appl. 9 (2016), 506–517 513

(ii) There is a constant Lg1 > 0 such that ‖g(t, h∗(t)x) − g(t, h∗(t)y)‖ ≤ Lg1‖x − y‖ for all t ≥ 0 and
x, y ∈ X, h∗ is given in Lemma 2.11.

(iii) For each ε > 0 there is δ > 0 such that for every u, v ∈ Ch∗(X); ‖u− v‖h∗ ≤ δ implies that

C(θ, α)M

∫ t

0

‖f(s, u(s), K̃u(s))− f(s, v(s), K̃v(s))‖
1 + |ω̃|(t− s)α

ds ≤ ε,

for all t ≥ 0.

(iv) Lg1 + lim infξ→∞
β(ξ)
ξ < 1.

(v) For all a, b ≥ 0, a < b, and r > 0, the set {f(s, h∗(s)x, K̃(h∗(s)x)) : a ≤ s ≤ b, x ∈ Ch∗(X), ‖x‖h∗ ≤ r}
is relatively compact in X.

Then equation (1.1) has an S-asymptotically ω-periodic mild solution.

Proof. We consider the nonlinear operator Γ = Γ1 + Γ2 : Ch∗(X)→ Ch∗(X) given by

(Γ1u)(t) := Sα(t)(u0 − g(0, u0)) + g(t, u(t)), t ≥ 0,

(Γ2u)(t) :=

∫ t

0
Sα(t− s)f(s, u(s), K̃s)ds, t ≥ 0.

We will show that the operator Γ1 is contraction and Γ2 is completely continuous. For the sake of
convenience, we divide the proof into several steps.

(I) We show that Γ1 is Ch∗(X)-valued.
For u ∈ Ch∗(X), we have that

‖(Γ1u)(t)‖
h∗(t)

≤ 1

h∗(t)
(‖Sα(t)‖(‖u0‖+ ‖g(0, u0)‖+ ‖g(t, u(t))− g(t, 0)‖+ ‖g(t, 0)‖))

≤ 1

h∗(t)
(‖Sα(t)‖(‖u0‖+ ‖g(0, u0)‖+ ‖g(t, h∗(t)

u(t)

h∗(t)
)− g(t, 0)‖+ ‖g(t, 0)‖))

≤ 1

h∗(t)
(‖Sα(t)‖(‖u0‖+ ‖g(0, u0)‖+ Lg1

‖u(t)‖
h∗(t)

+ ‖g(·, 0)‖∞))

≤ 1

h∗(t)
(C(θ, α)M(‖u0‖+ ‖g(0, u0)‖+ Lg1‖u‖h∗ + ‖g(·, 0)‖∞)).

Therefore, Γ1 is Ch∗(X)-valued.

(II) Γ1 is an Lg1-contraction.
For x, y ∈ Ch∗(X), we have that

‖Γ1x(t)− Γ1y(t)‖ ≤ ‖g(t, x(t))− g(t, y(t))‖ ≤ Lg1
‖x(s)− y(s)‖

h∗(t)
≤ Lg1‖x− y‖h∗ .

Considering that h∗(t) ≥ 1, we get

‖Γ1x− Γ1y‖h∗ ≤ Lg1‖x− y‖h∗ .

By (iv), Γ1 is an Lg1-contraction.
Next we show that Γ2 is completely continuous.

(III) For u ∈ Ch∗(X), we have that

‖(Γ2u)(t)‖ ≤ C(θ, α)M

∫ t

0

W (‖u(s)‖+ K̃‖u(s)‖)
1 + |ω̃|(t− s)α

ds

≤ C(θ, α)M

∫ t

0

W (1 + K̃)‖u‖h∗h∗(s)
1 + |ω̃|(t− s)α

ds.

It follows from condition (i) that Γ2 is well defined.
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(IV) We will show that the operator Γ2 is continuous.
In fact,for any ε > 0, we choose δ > 0 involved in condition (iii) . If u, v ∈ Ch∗(X) and ‖u− v‖h∗ ≤ δ then

(Γ2u)(t)− (Γ2v)(t) ≤ C(θ, α)M

∫ t

0

‖f(s, u(s), K̃u(s))− f(s, v(s), K̃v(s))‖
1 + |ω̃|(t− s)α

ds ≤ ε,

which shows the assertion.

(V) Next, we show that Γ2 is completely continuous.
Let Ṽ = Γ2(B

∗
r (Ch∗(X))) and ṽ = Γ2u for u ∈ B∗r (Ch∗(X))). Initially, we can infer that Ṽb(t) is

a relatively compact subset of X for each t ∈ [0, b]. In fact, using condition (V), we get that N :=
{Sα(s)f(ξ, h∗(ξ)x, K̃(h∗(ξ)x)) : 0 ≤ s ≤ t, 0 ≤ ξ ≤ t, ‖x‖h∗ ≤ r} is relatively compact. It is easy to
see that Ṽb(t) ⊆ tC(N ), which establishes our assertion.

ṽ(t+ s)− ṽ(t) =

∫ t+s

t
Sα(t+ s− ξ)f(ξ, u(ξ), K̃u(ξ))dξ

+

∫ t

0
[Sα(ξ + s)− Sα(ξ)]f(t− ξ, u(t− ξ), K̃u(t− ξ))dξ.

It follows that the set Ṽb is equicontinuous.
For each ε > 0, we can take δ1 > 0 such that

‖
∫ t+s

t
Sα(t+ s− ξ)f(ξ, u(ξ), K̃u(ξ))dξ‖ ≤ C(θ, α)M

∫ t+s

t

W ((1 + ‖K̃‖)Ch∗(s)
1 + |ω̃|(t+ s− ξ)α

dξ ≤ ε

2

for s ≤ δ1. Furthermore, since {f(t − ξ, u(t − ξ), K̃u(t − ξ)) : 0 ≤ ξ ≤ t, u ∈ B∗r (Ch∗(X))} is a relatively
compact set and Sα(·) is strongly continuous, we can choose δ2 > 0 such that ‖[Sα(ξ + s) − Sα(ξ)]f(t −
ξ, u(t− ξ), K̃u(t− ξ))‖ ≤ ε

2t for s ≤ δ2. Combining these estimates, we get ‖ṽ(t+ s)− ṽ(t)‖ ≤ ε for s small
enough and independent of u ∈ B∗r (Ch∗(X)).

From the condition (i), we have,

‖ṽ(t)‖
h∗(t)

≤ 1

h∗(t)
[C(θ, α)M

∫ t

0

W ((1 + ‖K̃‖)Ch∗(s)
1 + |ω̃|(t− s)α

ds]→ 0, as t→∞.

From Lmma 2.11, we deduce that Ṽ is relatively compact set in Ch∗(X). Hence Γ2 is completely continuous.

(VI) Take into account Lemmas 2.10, 3.2 and Definition 2.8, we obtain that Γi(SAPω(X)) ⊂ SAPω(X),
i = 1, 2. Hence, Γ(SAPω(X)) ⊂ SAPω(X) and Γ2 : (SAPω(X)) → SAPω(X) is completely continuous.
Putting B∗r := B∗r (SAPω(X)), we claim that there is r > 0 such that Γ(B∗r ) ⊂ B∗r . In fact, if we assume that
this assertion is false, then for all r > 0 we can choose ur ∈ B∗r and tr ≥ 0 such that ‖Γur(tr)‖/h(tr) > r.
We observe that

‖Γur(tr)‖ ≤ C(θ, α)M(‖u0‖+ ‖g(0, u0)‖+ Lg1r + ‖g(·, 0)‖∞

+ C(θ, α)M

∫ tr

0

W ((1 + ‖K̃‖)rh∗(s)
1 + |ω̃|(tr − s)α

ds.

Thus, 1 ≤ Lg1 + lim infr→∞
β(r)
r , which is contrary to assumption (iv). We get that Γ1 is a contraction on

B∗r and Γ2(B∗r ) is a compact set. It follows from [34, Corollary 4.3.2] that Γ has a fixed point u ∈ SAPω(X).
Let (un)n be sequence in SAPω(X) that converges to u . We see that (Γun)n converges to Γu = u uniformly
in [0,∞). This implies that u ∈ SAPω(X), and this completes the proof.
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Corollary 3.7. Let condition (H1) hold. Assume that f : [0,∞) × X × X → X satisfies assumption (H4)
and the Hölder type condition

‖f(t, x1, x2)− f(t, y1, y2)‖ ≤ C1(‖x1 − y1‖$ + ‖x2 − y2‖$), 0 < $ < 1

for all t ∈ [0,∞) and xi, yi ∈ X for i = 1, 2, where C1 is a positive constant. Moreover, assume the following
conditions:

(a1) f(t, 0, 0) = q.

(a2) For all a, b ∈ [0,∞), a < b, and r > 0, the set {f(s, x, K̃x) :
a ≤ s ≤ b, x ∈ Ch∗(X), ‖x‖h∗ ≤ r} is relatively compact in X.

(a3) supt∈[0,∞)C(θ, α)M
∫ t
0

(1+‖K̃‖)h∗(s)$
1+|ω̃|(t−s)α ds = C2 <∞.

Then (1.1) has an S-asymptotically ω-periodic mild solution.

Proof. By the Hölder type condition, it is not difficult to see that (H4) hold. Let C0 = ‖q‖ and W (ξ1+ξ2) =
C0 + C1(ξ

$
1 + ξ$2 ), then (H6) is hold. By (a3), it is easy to see that (i) in Theorem 3.5 is satisfied. To

verify (iii) in Theorem 3.5, note that for each ε > 0, there exists 0 < δ < ( ε
C1C2

)1/$ such that for each
u, v ∈ Ch∗([0,∞),X),‖u− v‖h∗ ≤ δ, one gets the following that∫ t

0

‖f(s, u(s), K̃u(s))− f(s, v(s), K̃v(s))‖
1 + |ω̃|(t− s)α

ds ≤
∫ t

0

C1h
∗(s)$(‖u1 − v1‖$ + ‖u2 − v2‖)$

1 + |ω̃|(t− s)α
ds

≤ C1C2δ
$ ≤ ε t ≥ 0.

On the other hand, (iv) can be easily proved by applying the definition of W . Accordint to Theorem 3.5,
we conclude that Eq. (1.1) has a mild solution, u(t) ∈ SAPω(X).
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[29] H. R. Henŕıquez, M. Pierri, P. Táboas, Existence of S-asymptotically ω-periodic solutions for abstract neutral
equations, Bull. Aust. Math. Soc., 78 (2008), 365–382.1
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