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1. Introduction

Fixed point and equilibrium problems have been extensively studied based on iterative algorithms be-
cause of its applications in nonlinear analysis, optimization, economics, game theory, mechanics, medicine
and so forth, see [1, 2, 8, 9, 10, 11, 12, 15, 19] and the references therein. Viscosity algorithms are first
introduced by Moudafi [18] in Hilbert spaces to study fixed points of nonexpansive mappings. The fixed
point of nonexpansive mappings is revealed that it is also a unique solution of some variational inequality.
The viscosity algorithms recently were extensively studied by many authors in different spaces, for more
detail; see [5]-[7], [13, 14, 20, 21, 24, 23, 27] and the references therein.

In this paper, we consider the problem of approximating a common element of fixed point sets of strict
pseudocontractions and solution sets of generalized equilibrium problems. Theorems of strong convergence
are established in real Hilbert spaces. The organization of this paper is as follows. In Section 2, we provide
some necessary preliminaries. In Section 3, a viscosity algorithm is proposed and analyzed. Theorems of
strong convergence are established, too. Some corollaries are also provided.
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2. Preliminaries

From now on, we always assume that H is a real Hilbert space with the inner product 〈·, ·〉 and the norm
‖ · ‖ and that C is a nonempty closed convex subset of H. PC denotes the metric projection from H onto C.

Let S be a mapping on C. F (S) stands for the fixed point set of S. Recall that S is said to be
nonexpansive if

‖Sx− Sy‖ ≤ ‖x− y‖, ∀x, y ∈ C.

S is said to be κ-strictly pseudocontractive if there exists a constant k ∈ [0, 1) such that

‖Sx− Sy‖2 ≤ ‖x− y‖2 + κ‖(x− Sx)− (y − Sy)‖2, ∀x, y ∈ C.

The class of strict pseudocontractions was introduced by Brower and Petryshyn [4]. It is clear that every
nonexpansive mapping is a 0-strict pseudocontraction.

Let A : C → H be a mapping. Recall that A is said to be monotone if

〈Ax−Ay, x− y〉 ≥ 0, ∀x, y ∈ C.

A is said to be strongly monotone if there exists a constant α > 0 such that

〈Ax−Ay, x− y〉 ≥ α‖x− y‖2, ∀x, y ∈ C.

For such a case, we also call it an α-strongly monotone mapping. A is said to be inverse-strongly monotone
if there exists a constant α > 0 such that

〈Ax−Ay, x− y〉 ≥ α‖Ax−Ay‖2, ∀x, y ∈ C.

For such a case, we also call it an α-inverse-strongly monotone mapping. It is clear that A is inverse-strongly
monotone if and only if A−1 is strongly monotone.

Recall that the classical variational inequality problem is to find x ∈ C such that

〈Ax, y − x〉 ≥ 0, ∀y ∈ C. (2.1)

It is known that x ∈ C is a solution to (2.1) if and only if x is a fixed point of the mapping PC(I − rA),
where r > 0 is a constant and I is the identity mapping. Recently, projection methods have been intensively
investigated for solving solutions of variational inequality (2.1) by many authors in the framework of Hilbert
spaces.

Let F be a bifunction of C × C into R, where R denotes the set of real numbers and A : C → H
an inverse-strongly monotone mapping. In this paper, we consider the following generalized equilibrium
problem.

Find x ∈ C such that F (x, y) + 〈Ax, y − x〉 ≥ 0, ∀y ∈ C. (2.2)

In this paper, the set of such an x ∈ C is denoted by EP (F,A), i.e.,

EP (F,A) = {x ∈ C : F (x, y) + 〈Ax, y − x〉 ≥ 0, ∀y ∈ C}.

To study generalized equilibrium problem (2.2), we may assume that F satisfies the following conditions:

A1. F (x, x) = 0 for all x ∈ C;

A2. F is monotone, i.e., F (x, y) + F (y, x) ≤ 0 for all x, y ∈ C;

A3. for each x, y, z ∈ C,
lim sup
t↓0

F (tz + (1− t)x, y) ≤ F (x, y);

A4. for each x ∈ C, y 7→ F (x, y) is convex and lower semi-continuous.

If F ≡ 0, then generalized equilibrium problem (2.2) is reduced to classical variational inequality (2.1).
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If A ≡ 0, then generalized equilibrium problem (2.2) is reduced to the following equilibrium problem:

Find x ∈ C such that F (x, y) ≥ 0, ∀y ∈ C. (2.3)

In this paper, the set of such an x ∈ C is denoted by EP (F ), i.e.,

EP (F ) = {x ∈ C : F (x, y) ≥ 0, ∀y ∈ C}.

Recently, problems (2.1), (2.2) and (2.3) were studied based on Halpern-like methods by many authors;
see [17], [22], [26], [28]–[31] and the references therein. The advantage of Halpern-like methods is that
compact assumptions are relaxed due to contractive conditions. Motivated by the research going on this
direction, we study the problem of solving common solutions of generalized equilibrium problem (2.2) and
fixed points of a strict pseudocontraction. Possible computation errors are taken into account. Strong
convergence theorems are established in the framework of real Hilbert spaces.

In order to prove our main results, we also need the following lemmas.

Lemma 2.1 ([3]). Let C be a nonempty convex and closed subset of a real Hilbert space H. Let F : C×C → R
be a bifunction satisfying (A1)-(A4). Then, for any r > 0 and x ∈ H, there exists z ∈ C such that

F (z, y) +
1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C.

Further, define

Trx = {z ∈ C : F (z, y) +
1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C}

for all r > 0 and x ∈ H. Then, the following hold:

(a) Tr is single-valued;

(b) Tr is firmly nonexpansive, i.e., for any x, y ∈ H,

‖Trx− Try‖2 ≤ 〈Trx− Try, x− y〉;

(c) F (Tr) = EP (F );

(d) EP (F ) is closed and convex.

Lemma 2.2 ([4]). Let C be a nonempty convex and closed subset of a real Hilbert space H. Let S : C → C
be a strict pseudocontraction. Then I − S is demi-closed, this is, if {xn} is a sequence in C with xn ⇀ x
and xn − Sxn → 0, then x ∈ F (S).

Lemma 2.3 ([4]). Let C be a nonempty convex and closed subset of a real Hilbert space H. Let S : C → C
be a κ-strict pseudocontraction. Define a mapping T by T = λI + (1− λ)S, where λ is a constant in (0, 1).
If λ ∈ [κ, 1) then T is nonexpansive and F (T ) = F (S).

Lemma 2.4 ([25]). Let {xn} and {yn} be bounded sequences in a real Hilbert space H and let {βn} be a
sequence in (0, 1) with 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1. Suppose xn+1 = (1− βn)yn + βnxn for all
integers n ≥ 0 and

lim sup
n→∞

(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0.

Then limn→∞ ‖yn − xn‖ = 0.

Lemma 2.5 ([16]). Assume that {αn} is a sequence of nonnegative real numbers such that

αn+1 ≤ (1− γn)αn + δn + en,

where {γn} is a sequence in (0,1) and {δn}, {en} are real sequences such that
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(i)
∞∑
n=1

γn =∞;

(ii)
∞∑
n=1
|en| <∞;

(iii) lim sup
n→∞

δn/γn ≤ 0 or
∞∑
n=1
|δn| <∞.

Then lim
n→∞

αn = 0.

The following lemma was proved in [26]. For the sake of completeness, we still give the proof.

Lemma 2.6. Let C be a nonempty convex and closed subset of a real Hilbert space H. Let F : C × C → R
be a bifunction satisfying A1-A4. Tr is defined as in Lemma 2.1. Then

‖Tsx− Ttx‖ ≤
|s− t|
s
|Tsx− x|.

Proof. Put u = Tsx and v = Ttx. It follows that F (u, v)+ 1
s 〈v−u, u−x〉 ≥ 0 and F (v, u)+ 1

t 〈u−v, v−x〉 ≥ 0.
Hence, we have

1

s
〈v − u, u− x〉+

1

t
〈u− v, v − x〉 ≥ 0.

This implies that 〈u− v, u− x− t
s(u− x)〉 ≥ 0. It follows that

‖u− v‖2 ≤ s− t
s
〈u− v, u− x〉.

This proves this lemma.

3. Main results

Theorem 3.1. Let C be a nonempty convex and closed subset of a real Hilbert space H. Let A : C → H
be an α-inverse-strongly monotone mapping and let F be a bifunction from C × C to R which satisfies
A1-A4. Let S : C → C be a κ-strict pseudocontraction and let f : C → C be a µ-contraction. Assume that
F (S) ∩ EP (F,A) 6= ∅. Let {rn} be a positive real number sequence. Let {αn}, {βn}, {γn}, {δn} and {λn}
be real number sequences in (0, 1). Let {xn} be a sequence generated in the following process:

x1 ∈ C,
F (yn, y) + 〈Axn, y − yn〉+ 1

rn
〈y − yn, yn − xn〉 ≥ 0,∀y ∈ C,

xn+1 = αnf(xn) + βnxn + γn
(
λnyn + (1− λn)Syn

)
+ δnen,

where {en} is a bounded sequence in C. Assume that the control sequences satisfy the following restrictions:
a. αn + βn + γn + δn = 1;

b. lim
n→∞

αn = and
∞∑
n=1

αn =∞;

c. 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1;

d.
∞∑
n=1

δn <∞ and lim
n→∞

|rn+1 − rn| = lim
n→∞

|λn+1 − λn| = 0;

e. 0 < κ < λn ≤ λ < 1 and 0 < r ≤ rn ≤ r′ < 2α,
where λ, r, r′ are real constants. Then {xn} converges strongly to x̄ = PF (S)∩EP (F,A)f(x̄).

Proof. First, we show that the sequence {xn} is bounded. Let p ∈ F (S) ∩ EP (F,A) be fixed arbitrarily.
For any x, y ∈ C, we see that
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‖(I − rnA)x− (I − rnA)y‖2 = ‖x− y‖2 − 2rn〈x− y,Ax−Ay〉+ r2n‖Ax−Ay‖2

≤ ‖x− y‖2 − rn(2α− rn)‖Ax−Ay‖2.

Using restriction e, we see that ‖(I−rnA)x−(I−rnA)y‖ ≤ ‖x−y‖. This proves that I−rnA is nonexpansive.
Put Sn = λnI + (1− λn)S. It follows from Lemma 2.3 that Sn is nonexpansive and F (Sn) = F (S). Hence,
we have

‖xn+1 − p‖ ≤ αn‖f(xn)− p‖+ βn‖xn − p‖+ γn‖Snyn − p‖+ δn‖en − p‖
≤ αnµ‖xn − p‖+ αn‖f(p)− p‖+ βn‖xn − p‖+ γn‖yn − p‖+ δn‖en − p‖
≤ (1− αn(1− µ))‖xn − p‖+ αn‖f(p)− p‖+ δn‖en − p‖

≤ max

{
‖xn − p‖,

‖f(p)− p‖
1− µ

}
+ δn‖en − p‖

≤ max

{
‖xn−1 − p‖,

‖f(p)− p‖
1− µ

}
+ δn−1‖en−1 − p‖+ δn‖en − p‖

≤ · · ·

≤ max

{
‖x1 − p‖,

‖f(p)− p‖
1− µ

}
+M

∞∑
i=1

δi,

where M = sup
n≥1
{‖en − p‖}. This shows that {xn} is bounded, so is {yn}. Putting zn = (I − rnA)xn, we see

that
‖zn+1 − zn‖ ≤ ‖(I − rn+1A)xn+1 − (I − rn+1A)xn‖+ ‖(I − rn+1A)xn − (I − rnA)xn‖

≤ ‖xn+1 − xn‖+ |rn+1 − rn|‖Axn‖.
This implies from Lemma 2.6 that

‖yn+1 − yn‖ = ‖Trn+1zn+1 − Trnzn‖
≤ ‖Trn+1zn+1 − Trn+1zn‖+ ‖Trn+1zn − Trnzn‖

≤ ‖zn+1 − zn‖+
|rn+1 − rn|

rn+1
‖Trn+1zn − zn‖

≤ ‖xn+1 − xn‖+ |rn+1 − rn|‖Axn‖+
|rn+1 − rn|

rn+1
‖Trn+1zn − zn‖.

Hence, we have

‖Sn+1yn+1 − Snyn‖ ≤ ‖Sn+1yn+1 − Sn+1yn‖+ ‖Sn+1yn − Snyn‖
≤ ‖yn+1 − yn‖+ ‖Sn+1yn − Snyn‖

≤ ‖xn+1 − xn‖+ |rn+1 − rn|‖Axn‖+
|rn+1 − rn|

rn+1
‖Trn+1zn − zn‖

+ |λn+1 − λn|‖Syn − yn‖.

(3.1)

Let ζn = xn+1−βnxn
1−βn . It follows that

ζn+1 − ζn =
αn+1f(xn+1) + γn+1Sn+1yn+1 + δn+1en+1

1− βn+1
− αnf(xn) + γnSnyn + δnen

1− βn

=
αn+1(f(xn+1)− Sn+1yn) + (1− βn+1)Sn+1yn+1 + δn+1(en+1 − Sn+1yn)

1− βn+1

− αn(f(xn)− Snyn) + (1− βn)Snyn + δn(en − Snyn)

1− βn

=
αn+1(f(xn+1)− Sn+1yn+1)

1− βn+1
+
δn+1(en+1 − Sn+1yn+1)

1− βn+1
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− αn(f(xn)− Snyn)

1− βn
− δn(en − Snyn)

1− βn
+ Sn+1yn+1 − Snyn.

This implies from (3.1) that

‖ζn+1 − ζn‖ − ‖xn+1 − xn‖

≤ αn+1‖f(xn+1)− Sn+1yn+1‖
1− βn+1

+
δn+1‖en+1 − Sn+1yn+1‖

1− βn+1

+
αn‖f(xn)− Snyn‖

1− βn
+
δn‖en − Snyn‖

1− βn
‖xn+1 − xn‖+ |rn+1 − rn|‖Axn‖

+
|rn+1 − rn|

rn+1
‖Trn+1zn − zn‖+ |λn+1 − λn|‖Syn − yn‖.

It follows from restrictions b-e that

lim sup
n→∞

(‖ζn+1 − ζn‖ − ‖xn+1 − xn‖) ≤ 0.

With the aid of Lemma 2.4, we see that lim
n→∞

‖ζn − xn‖ = 0, which in turn implies that

lim
n→∞

‖xn+1 − xn‖ = 0. (3.2)

Notice that
‖yn − p‖2 ≤ ‖(xn − p)− rn(Axn −Ap)‖2

= ‖xn − p‖2 − 2rn〈xn − p,Axn −Ap〉+ rn
2‖Axn −Ap‖2

≤ ‖xn − p‖2 − rn(2α− rn)‖Axn −Ap‖2.
(3.3)

Since ‖ · ‖2 is convex, we see from (3.3) that

‖xn+1 − p‖2 ≤ αn‖f(xn)− p‖2 + βn‖xn − p‖2 + γn‖Snyn − p‖2 + δn‖en − p‖2

≤ αn‖f(xn)− p‖2 + βn‖xn − p‖2 + γn‖yn − p‖2 + δn‖en − p‖2

≤ αn‖f(xn)− p‖2 + ‖xn − p‖2 − rn(2α− rn)γn‖Axn −Ap‖2 + δn‖en − p‖2.

This yields that

rn(2α− rn)γn‖Axn −Ap‖2

≤ ‖xn − p‖2 + αn‖f(xn)− p‖2 − ‖xn+1 − p‖2 + δn‖en − p‖2

≤ (‖xn − p‖+ ‖xn+1 − p‖)‖xn+1 − xn‖+ αn‖f(xn)− p‖2 + δn‖en − p‖2.

In view of restrictions b-e, we obtain from (3.2) that

lim
n→∞

‖Axn −Ap‖ = 0. (3.4)

On the other hand, we have

‖yn − p‖2 = ‖Trn(xn − rnAxn)− Trn(p− rnAp)‖2

≤ 〈(xn − rnAxn)− (p− rnAp), yn − p〉

=
1

2

(
‖(xn − rnAxn)− (p− rnAp)‖2 + ‖yn − p‖2

− ‖(xn − rnAxn)− (p− rnAp)− (yn − p)‖2

≤ 1

2

(
‖xn − p‖2 + ‖yn − p‖2 − ‖xn − yn − rn(Axn −Ap)‖2

)
≤ 1

2

(
‖xn − p‖2 + ‖yn − p‖2 − ‖xn − yn‖2 − r2n‖Axn −Ap‖2

+ 2rn‖xn − yn‖‖Axn −Ap‖
)

≤ 1

2

(
‖xn − p‖2 + ‖yn − p‖2 − ‖xn − yn‖2 + 2rn‖xn − yn‖‖Axn −Ap‖

)
.
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It follows that
‖yn − p‖2 ≤ ‖xn − p‖2 − ‖xn − yn‖2 + 2rn‖xn − yn‖‖Axn −Ap‖.

This further implies that

‖xn+1 − p‖2 ≤ αn‖f(xn)− p‖2 + βn‖xn − p‖2 + γn‖Snyn − p‖2 + δn‖en − p‖2

≤ αn‖f(xn)− p‖2 + βn‖xn − p‖2 + γn‖yn − p‖2 + δn‖en − p‖2

≤ αn‖f(xn)− p‖2 + ‖xn − p‖2 − γn‖xn − yn‖2 + δn‖en − p‖2

+ 2rnγn‖xn − yn‖‖Axn −Ap‖,

which yields that

γn‖xn − yn‖2 ≤ αn‖f(xn)− p‖2 + ‖xn − p‖2 − ‖xn+1 − p‖2

+ 2rnγn‖xn − yn‖‖Axn −Ap‖+ δn‖en − p‖2

≤ αn‖f(xn)− p‖2 + (‖xn − p‖+ ‖xn+1 − p‖)‖xn+1 − xn‖
+ 2rnγn‖xn − yn‖‖Axn −Ap‖+ δn‖en − p‖2.

In view of restrictions b-e, we obtain from (3.2) and (3.4) that

lim
n→∞

‖xn − yn‖ = 0. (3.5)

Notice that
γn(Snyn − xn) = (xn+1 − xn) + αn(xn − f(xn)) + δn(xn − en).

By use of restrictions b-d, we obtain from (3.2) that

lim
n→∞

‖xn − Snyn‖ = 0. (3.6)

Since ‖Snxn − xn‖ ≤ ‖Snxn − Snyn‖ + ‖Snyn − xn‖, and Sn is nonexpansive, we see from (3.5) and (3.6)
that

lim
n→∞

‖xn − Snxn‖ = 0. (3.7)

Notice that
‖Sxn − xn‖ ≤ ‖Sxn −

(
λnxn + (1− λn)Sxn

)
‖

+ ‖
(
λnxn + (1− λn)Sxn

)
− xn‖

≤ λn‖Sxn − xn‖+ ‖Snxn − xn‖.

It follows from (3.7) and restriction e that

lim
n→∞

‖xn − Sxn‖ = 0. (3.8)

Next, we show that lim sup
n→∞

〈f(x̄)− x̄, xn − x̄〉 ≤ 0, where x̄ = PF (S)∩EP (F,A)f(x̄). To show it, we can choose

a subsequence {xni} of {xn} such that

lim sup
n→∞

〈f(x̄)− x̄, xn − x̄〉 = lim
i→∞
〈f(x̄)− x̄, xni − x̄〉.

Since {xni} is bounded, we can choose a subsequence {xnij
} of {xni} which converges weakly some point x.

We may assume, without loss of generality, that {xni} converges weakly to x. Now, we are in a position to
show x ∈ F (S) ∩ EP (F,A). By use of Lemma 2.2, we see that x ∈ F (S).

Next, we show x ∈ EP (F,A). From (3.5), we see that {yni} converges weakly to x. It follows that

F (yn, y) + 〈Axn, y − yn〉+
1

rn
〈y − yn, yn − xn〉 ≥ 0, ∀y ∈ C.
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By use of condition A2, we see that

〈Axn, y − yn〉+
1

rn
〈y − yn, yn − xn〉 ≥ F (y, yn), ∀y ∈ C.

Replacing n by ni, we arrive at

〈Axni , y − yni〉+ 〈y − yni ,
yni − xni

rni

〉 ≥ F (y, yni), ∀y ∈ C. (3.9)

For t with 0 < t ≤ 1 and y ∈ C, let ut = ty + (1− t)x. Since y ∈ C and x ∈ C, we have ut ∈ C. In view of
(3.9), we find that

〈ut − yni , Aut〉 ≥ 〈ut − yni , Aut〉 − 〈Axni , ut − yni〉 − 〈ut − yni ,
yni − xni

rni

〉

+ F (ut, yni)

= 〈ut − yni , Aut −Ayni〉+ 〈ut − yni , Ayni −Axni〉

− 〈ut − yni ,
yni − xni

rni

〉+ F (ut, yni).

Since A is monotone, we see that 〈ut − yni , Aut −Ayni〉 ≥ 0. By use of condition A4, we arrive at

〈ut − x,Aut〉 ≥ F (ut, x). (3.10)

Using conditions A1 and A4, we find from (3.10) that

0 = F (ut, ut) ≤ tF (ut, y) + (1− t)F (ut, x)

≤ tF (ut, y) + (1− t)〈ut − x,Aut〉
= tF (ut, u) + (1− t)t〈y − x,Aut〉.

Hence, we have F (ut, y) + (1− t)〈y − x,Aut〉 ≥ 0. Letting t→ 0, we find

F (x, y) + 〈y − x,Ax〉 ≥ 0,

which implies that x ∈ EP (F,A). It follows that

lim sup
n→∞

〈f(x̄)− x̄, xn − x̄〉 ≤ 0.

Note that

‖xn+1 − x̄‖2

≤ αn〈f(xn)− x̄, xn+1 − x̄〉+ βn‖xn − x̄‖‖xn+1 − x̄‖
+ γn‖Snyn − x̄‖‖xn+1 − x̄‖+ δn‖en − x̄‖‖xn+1 − x̄‖
≤ αn〈f(xn)− f(x̄), xn+1 − x̄〉+ αn〈f(x̄)− x̄, xn+1 − x̄〉+ βn‖xn − x̄‖‖xn+1 − x̄‖

+ γn‖xn − x̄‖‖xn+1 − x̄‖+ δn‖en − x̄‖‖xn+1 − x̄‖

≤ αnµ+ βn + γn
2

(‖xn − x̄‖2 + ‖xn+1 − x̄‖2) + αn〈f(x̄)− x̄, xn+1 − x̄〉

+
δn
2

(‖en − x̄‖2 + ‖xn+1 − x̄‖2).

It follows that
‖xn+1 − x̄‖2 ≤

(
1− αn(1− µ)

)
‖xn − x̄‖2 + 2αn〈f(x̄)− x̄, xn+1 − x̄〉

+ δn‖en − x̄‖.

By use of Lemma 2.5, we find that lim
n→∞

‖xn − x̄‖ = 0. This completes the proof.
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If S is nonexpansive, we draw from Theorem 3.1 the following result.

Corollary 3.2. Let C be a nonempty convex and closed subset of a real Hilbert space H. Let A : C → H
be an α-inverse-strongly monotone mapping and let F be a bifunction from C × C to R which satisfies
A1-A4. Let S : C → C be a nonexpansive mapping and let f : C → C be a µ-contraction. Assume that
F (S) ∩ EP (F,A) 6= ∅. Let {rn} be a positive real number sequence. Let {αn}, {βn}, {γn} and {δn} be real
number sequences in (0, 1). Let {xn} be a sequence generated in the following process:

x1 ∈ C,
F (yn, y) + 〈Axn, y − yn〉+ 1

rn
〈y − yn, yn − xn〉 ≥ 0,∀y ∈ C,

xn+1 = αnf(xn) + βnxn + γnSyn + δnen,

where {en} is a bounded sequence in C. Assume that the control sequences satisfy the following restrictions:
a. αn + βn + γn + δn = 1;

b. lim
n→∞

αn = and
∞∑
n=1

αn =∞;

c. 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1;

d.
∞∑
n=1

δn <∞ and lim
n→∞

|rn+1 − rn| = 0;

e. 0 < r ≤ rn ≤ r′ < 2α,
where r, r′ are real constants. Then {xn} converges strongly to x̄ = PF (S)∩EP (F,A)f(x̄).

Further, if S is the identity on C, then we have the following result on generalized equilibrium problem
(2.2).

Corollary 3.3. Let C be a nonempty convex and closed subset of a real Hilbert space H. Let A : C → H be
an α-inverse-strongly monotone mapping and let F be a bifunction from C ×C to R which satisfies A1-A4.
Let f : C → C be a µ-contraction. Assume that EP (F,A) 6= ∅. Let {rn} be a positive real number sequence.
Let {αn}, {βn}, {γn} and {δn} be real number sequences in (0, 1). Let {xn} be a sequence generated in the
following process: 

x1 ∈ C,
F (yn, y) + 〈Axn, y − yn〉+ 1

rn
〈y − yn, yn − xn〉 ≥ 0,∀y ∈ C,

xn+1 = αnf(xn) + βnxn + γnyn + δnen,

where {en} is a bounded sequence in C. Assume that the control sequences satisfy the following restrictions:
a. αn + βn + γn + δn = 1;

b. lim
n→∞

αn = and
∞∑
n=1

αn =∞;

c. 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1;

d.
∞∑
n=1

δn <∞ and lim
n→∞

|rn+1 − rn| = 0;

e. 0 < r ≤ rn ≤ r′ < 2α,
where r, r′ are real constants. Then {xn} converges strongly to x̄ = PEP (F,A)f(x̄).

Next, we give a result on equilibrium problem (2.3).

Corollary 3.4. Let C be a nonempty convex and closed subset of a real Hilbert space H. Let F be a
bifunction from C × C to R which satisfies A1-A4. Let S : C → C be a κ-strict pseudocontraction and let
f : C → C be a µ-contraction. Assume that F (S)∩EP (F ) 6= ∅. Let {rn} be a positive real number sequence.
Let {αn}, {βn}, {γn}, {δn} and {λn} be real number sequences in (0, 1). Let {xn} be a sequence generated
in the following process:
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x1 ∈ C,
F (yn, y) + 1

rn
〈y − yn, yn − xn〉 ≥ 0, ∀y ∈ C,

xn+1 = αnf(xn) + βnxn + γn
(
λnyn + (1− λn)Syn

)
+ δnen,

where {en} is a bounded sequence in C. Assume that the control sequences satisfy the following restrictions:
a. αn + βn + γn + δn = 1;

b. lim
n→∞

αn = and
∞∑
n=1

αn =∞;

c 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1;

d.
∞∑
n=1

δn <∞ and lim
n→∞

|rn+1 − rn| = lim
n→∞

|λn+1 − λn| = 0;

e. 0 < κ < λn ≤ λ < 1 and 0 < r ≤ rn,
where λ, r, r′ are real constants. Then {xn} converges strongly to x̄ = PF (S)∩EP (F )f(x̄).

Finally, we give a result on common solutions of solution sets of variational inequality (2.1) and fixed
point set of a strict pseudocontraction.

Corollary 3.5. Let C be a nonempty convex and closed subset of a real Hilbert space H. Let A : C → H be
an α-inverse-strongly monotone mapping. Let S : C → C be a κ-strict pseudocontraction and let f : C → C
be a µ-contraction. Assume that F (S) ∩ V I(C,A) 6= ∅. Let {rn} be a positive real number sequence. Let
{αn}, {βn}, {γn}, {δn} and {λn} be real number sequences in (0, 1). Let {xn} be a sequence generated in
the following process: 

x1 ∈ C,
yn = PC(xn − rnAxn),

xn+1 = αnf(xn) + βnxn + γn
(
λnyn + (1− λn)Syn

)
+ δnen,

where {en} is a bounded sequence in C. Assume that the control sequences satisfy the following restrictions:
a. αn + βn + γn + δn = 1;

b. lim
n→∞

αn = and
∞∑
n=1

αn =∞;

c. 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1;

d.
∞∑
n=1

δn <∞ and lim
n→∞

|rn+1 − rn| = lim
n→∞

|λn+1 − λn| = 0;

e. 0 < κ < λn ≤ λ < 1 and 0 < r ≤ rn ≤ r′ < 2α,
where λ, r, r′ are real constants. Then {xn} converges strongly to x̄ = PF (S)∩V I(F,A)f(x̄).
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