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Abstract

In this paper, we consider the following Schrödinger-Kirchhoff-type problem{
−
(
a+ b

∫
RN |∇u|

2dx
)
4u+ V (x)u = g(x, u), for x ∈ RN ,

u(x)→ 0, as |x| → ∞,
(1.1)

where constants a > 0, b ≥ 0, N = 1, 2 or 3, V ∈ C(RN , R), g ∈ C(RN × R,R). Under more relaxed
assumptions on g(x, u), by using some special techniques, a new existence result of infinitely many energy
solutions is obtained via Symmetric Mountain Pass Theorem. c©2016 All rights reserved.

Keywords: Schrödinger-Kirchhoff type problem, critical point, symmetric Mountain Pass Theorem,
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1. Introduction and main results

In this paper, we consider the following Schrödinger-Kirchhoff type problem{
−
(
a+ b

∫
RN |∇u|

2dx
)
4u+ V (x)u = g(x, u), for x ∈ RN ,

u(x)→ 0, as |x| → ∞,
(1.1)

where constants a > 0, b ≥ 0, N = 1, 2 or 3, V ∈ C(RN , R) and g ∈ C(RN × R,R) satisfy some further
conditions.
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We note that when a = 1, b = 0, the problem (1.1) reduces to the following semilinear Schrödinger
equation {

−4u+ V (x)u = g(x, u), for x ∈ RN ,
u(x)→ 0, as |x| → ∞,

(1.2)

which has been studied extensively by many authors, and there is a large body of literature on the existence
and multiplicity of solutions for the equation (1.2), for example, we refer the reader to [1, 21, 22] and
references therein.

When V ≡ 0 and RN is replaced by a bounded domain Ω ⊂ RN , the problem (1.1) reduces to the
following nonlocal Kirchhoff type problem{

−(a+ b
∫

Ω |∇u|
2dx)4u = g(x, u), in Ω;

u = 0, on ∂Ω.
(1.3)

The problem (1.3) is related to the stationary analogue of the Kirchhoff equation

utt −
(
a+ b

∫
RN
|∇u|2dx

)
4u = g(x, t), (1.4)

which was proposed by Kirchhoff [13] as a model given by the equation of elastic strings

ρ
∂2u

∂t2
−
(P0

h
+
E

2L

∫ L

0
|∂u
∂x
|2dx

)∂2u

∂x2
= 0. (1.5)

The equation (1.5) is an extension of the classical D’Alembert’s wave equation by taking into account the
changes in the length of the string during the transverse vibration.

It was pointed out in [9] that Kirchhoff type problem (1.3) models several physical and biological systems,
where u describes a process which depends on the average of itself (for example, population density).
Moreover, a lot of interesting studies by variational methods can be found in [2, 6, 7, 8, 10, 15, 16, 18, 20, 27]
for Kirchhoff type problem (1.3) on bounded domain with several growth conditions on g.

Recently, Kirchhoff type problems setting on the unbounded domain or the whole space RN have also
attracted a lot of attention. Many solvability conditions on the nonlinearity have been given to obtain
the existence and multiplicity of solutions for Kirchhoff type problems in RN , we refer the readers to
[3, 4, 11, 12, 14, 17, 23, 24, 25, 26] and references therein. Particularly, Wu obtained four results of the
existence of a sequence of high energy solutions for the problem (1.1) by means of symmetric mountain pass
theorem in [25]. Those results had been subsequently unified and improved by Y. Ye and C. Tang with the
aid of fountain theorem in [26].

Motivated by the works mentioned above, in the present paper, under more relaxed assumptions on the
nonlinear term g, we will present a new proof technique to construct infinitely many large energy solutions
for the problem (1.1).

In order to reduce the statements of our result, we make the following assumptions.

(V1) V ∈ C(RN , R) satisfies inf V (x) ≥ V0 > 0 and for each M > 0, meas{x ∈ RN : V (x) ≤ M} < +∞,
where V0 is a constant and meas denote the Lebesgue measure in RN .

(g1) There exist C1 > 0 and p ∈ (4, 2∗) such that

|g(x, t)| ≤ C1(|t|+ |t|p−1), ∀(x, t) ∈ RN ×R.

(g2) G(x,t)
t4
→ +∞ as |t| → +∞ uniformly in x ∈ RN , G(x, t) =

∫ t
0 g(x, s)ds.

(g3) There exists L > 0 such that

4G(x, t)− g(x, t)t ≤ d|t|2, for a.e. x ∈ RN and ∀|t| ≥ L,

where 0 ≤ d ≤ V0
2 .

(g4) g(x,−t) = −g(x, t) for all (x, t) ∈ RN ×R.
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Next, we give some notations. Define the function space

H1(RN ) =
{
u ∈ L2(RN ) : ∇u ∈ L2(RN )

}
with the norm

‖u‖H1 =

(∫
RN

(
|∇u|2 + u2

)
dx

) 1
2

.

Denote

E =

{
u ∈ H1(RN ) :

∫
RN

(
|∇u|2 + V (x)u2

)
dx < +∞

}
with the inner product and the norm

〈u, v〉E =

∫
RN

(∇u · ∇v + V (x)uv)dx, ‖u‖E = 〈u, u〉
1
2
E .

Obviously, under the assumption (V1) on V (x), the following embedding

E ↪→ Ls(RN ), 2 ≤ s ≤ 2∗

is continuous. Hence, for any s ∈ [2, 2∗], there is a constant as > 0 such that

‖u‖Ls ≤ as‖u‖E . (1.6)

It is well known that a weak solution for the problem (1.1) is a critical point of the following functional
I defined on E by

I(u) =
a

2

∫
RN
|∇u|2dx+

b

4

(∫
RN
|∇u|2dx

)2

+
1

2

∫
RN

V (x)u2dx−
∫
RN

G(x, u)dx (1.7)

for all u ∈ E. We say that a weak solutions sequence {un} ⊂ E for the problem (1.1) is a large energy
solutions sequence if the energy I(un)→ +∞ as n→∞.

Now, we can state our result as follows.

Theorem 1.1. Assume that (V1) and (g1) − (g4) hold. Then the problem (1.1) possesses infinitely many
large energy solutions in E.

Remark 1.2. (i) Since the problem (1.1) is defined in RN which is unbounded, the lack of compactness of
the Sobolev embedding becomes more delicate by using variational techniques. To overcome the lack of
compactness, the condition (V1), which was first introduced by Bartsch and Wang in [5], is always assumed
to preserve the compactness of embedding of the working space.

(ii) From Remark 1 in [26], the condition (g1) is much weaker than the combination of usual subcritical
condition and asymptotically linear condition near zero. Furthermore, condition (g3) is much weaker than
the following condition:
(g′3) There exists L > 0 such that

tg(x, t)− 4G(x, t) ≥ 0, for a.e. x ∈ RN and ∀|t| ≥ L,

which was used in Theorem 5 in [26]. Hence, Theorem 1.1 improves Theorem 5 in [26].

2. Some lemmas

In order to apply variational techniques, we first state the key compactness result.

Lemma 2.1 ([28], Lemma 3.4). Under the assumption (V1), the embedding

E ↪→ Ls(RN ), 2 ≤ s < 2∗

is compact.

The following lemma has been proved by Lemma 1 in [26].
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Lemma 2.2. Let assumptions (V1) and (g1) hold. Then I is well defined on E, I ∈ C1(E,R) and for any
u, v ∈ E,

〈I ′(u), v〉 =

(
a+ b

∫
RN
|∇u|2dx

)∫
RN
∇u∇vdx+

∫
RN

V (x)uvdx−
∫
RN

g(x, u)vdx. (2.1)

Moreover, Ψ′ : E → E∗ is compact, where Ψ(u) =
∫
RN G(x, u)dx.

Recall that we say I satisfies the (PS) condition at the level c ∈ R ((PS)c condition for short) if any
sequence {un} ⊂ E along with I(un)→ c and I ′(un)→ 0 as n→∞ possesses a convergent subsequence. If
I satisfies (PS)c condition for each c ∈ R, then we say that I satisfies the (PS) condition.

Lemma 2.3. Let assumption (V1) and (g1) hold. Then any bounded Palais-Smale sequence of I has a
strongly convergent subsequence in E.

Proof. Let {un} ⊂ E be any bounded Palais-Smale sequence of I, then, up to a subsequence, there exist
c1 ∈ R such that

I(un)→ c1, I ′(un)→ 0 and sup
n
‖un‖E < +∞. (2.2)

Since the embedding
E ↪→ Ls(RN ), 2 ≤ s < 2∗

is compact, going if necessary to a subsequence, we can assume that there is a u ∈ E such that
un ⇀ u, weakly in E;
un → u, strongly in Ls(RN );
un(x)→ u(x), a.e.in RN .

(2.3)

In view of (2.1), it has

〈I ′(un)− I ′(u), un − u〉

=

(
a+ b

∫
RN
|∇un|2dx

)∫
RN
∇un · ∇(un − u)dx+

∫
RN

V (x)|un − u|2dx

−
(
a+ b

∫
RN
|∇u|2dx

)∫
RN
∇u · ∇(un − u)dx−

∫
RN

[g(x, un)− g(x, u)](un − u)dx

=

(
a+ b

∫
RN
|∇un|2dx

)∫
RN
|∇(un − u)|2dx+

∫
RN

V (x)|un − u|2dx (2.4)

− b
(∫

RN
|∇u|2dx−

∫
RN
|∇un|2dx

)∫
RN
∇u · ∇(un − u)dx−

∫
RN

[g(x, un)− g(x, u)](un − u)dx

≥ min{a, 1}‖un − u‖2E − b
(∫

RN
|∇u|2dx−

∫
RN
|∇un|2dx

)∫
RN
∇u · ∇(un − u)dx

−
∫
RN

[g(x, un)− g(x, u)](un − u)dx.

Then (2.4) implies that

min{a, 1}‖un − u‖2E ≤ 〈I ′(un)− I ′(un), un − u〉
+b
(∫

RN |∇u|
2dx−

∫
RN |∇un|

2dx
) ∫

RN ∇u · ∇(un − u)dx
+
∫
RN [g(x, un)− g(x, u)](un − u)dx.

(2.5)

Define the functional hu: E → R by

hu(v) =

∫
RN
∇u · ∇vdx, ∀ v ∈ E.
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Obviously, hu is a linear functional on E. Furthermore,

|hu(v)| ≤
∫
RN
|∇u · ∇v|dx ≤ ‖u‖E‖v‖E ,

which implies hu is bounded on E. Hence hu ∈ E∗. Since, un ⇀ u in E, it has lim
n→∞

hu(un) = hu(u), that

is,
∫
RN ∇u · ∇(un − u)dx→ 0 as n→∞. Consequently, by (2.3) and the boundedness of {un}, it has

b

(∫
RN
|∇u|2dx−

∫
RN
|∇un|2dx

)∫
RN
∇u · ∇(un − u)dx→ 0 , n→ +∞. (2.6)

By (g1), using the Hölder inequality, we can conclude∣∣∣∣ ∫
RN

[g(x, un)− g(x, u)](un − u)dx

∣∣∣∣ ≤ C1

∫
RN

[|un|+ |u|+ |un|p−1 + |u|p−1]|un − u|dx

≤ C1(‖un‖L2 + ‖u‖L2)‖un − u‖L2

+ C1(‖un‖p−1
Lp + ‖u‖p−1

Lp )‖un − u‖Lp .

Therefore, it follows from (2.6) that∫
RN

[g(x, un)− g(x, u)](un − u)dx→ 0, as n→∞. (2.7)

Moreover, combining (2.5) with (2.6), then

< I ′(un)− I ′(u), un − u >→ 0, as n→∞. (2.8)

Consequently, (2.5)–(2.8) imply that

un → u, strongly in E as n→∞.

This completes the proof.

Lemma 2.4. Let assumptions (V1), (g1) and (g3) hold. Then any Palais-Smale sequence of I is bounded.

Proof. Let {un} ⊂ E be any Palais-Smale sequence of I, then, up to a subsequence, there exist c1 ∈ R such
that

I(un)→ c1, and I ′(un)→ 0. (2.9)

The combination of (1.6), (1.7), (2.1), (2.9), (V1) with (g3) implies

c1 + 1 + ‖un‖E ≥ I(un)− 1

4
〈I ′(un), un〉

=
a

4

∫
RN
|∇un|2dx+

1

4

∫
RN

V (x)u2
ndx+

∫
RN

G̃(x, un)dx

≥ a

4

∫
RN
|∇un|2dx+

1

4

∫
RN

V (x)u2
ndx−

d

4

∫
RN

u2
ndx+

∫
An

G̃(x, un)dx

≥ a

4

∫
RN
|∇un|2dx+

1

4

∫
RN

V (x)u2
ndx−

1

8

∫
RN

V0u
2
ndx+

∫
An

G̃(x, un)dx

≥ a

4

∫
RN
|∇un|2dx+

1

4

∫
RN

V (x)u2
ndx−

1

8

∫
RN

V (x)u2
ndx+

∫
An

G̃(x, un)dx

≥ 1

16
min{a, 1}‖un‖2E +

1

16

∫
RN

V (x)u2
ndx+

∫
An

G̃(x, un)dx, (2.10)
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where G̃(x, un) = 1
4g(x, un)un − G(x, un) and An = {x ∈ RN : |un| ≤ L}. For x ∈ RN and |un| ≤ L, by

(g1), it has

|G̃(x, un)| ≤ 1

4
|g(x, un)||un|+ |G(x, un)|

≤ 1

4
C1(|un|2 + |un|p) + C1

(1

2
|un|2 +

1

p
|un|p

)
= C1

(3

4
+
p+ 1

p
|un|p−2

)
|un|2

≤ C1

(3

4
+
p+ 1

p
Lp−2

)
|un|2.

Take M > max
{

16C1

(
3
4 + p+1

p Lp−2
)
, V0

}
, then

G̃(x, un) ≥ −M
16
|un|2, ∀ x ∈ RN , |un| ≤ L. (2.11)

Let Ã = {x ∈ RN : V (x) ≤M}. By (V1) and (2.11), we can conclude

1

16

∫
RN

V (x)u2
ndx+

∫
An

G̃(x, un)dx ≥ 1

16

∫
|un|≤L

(V (x)−M)|un|2dx

≥ 1

16

∫
Ã∩An

(V (x)−M)L2dx

≥ 1

16
(V0 −M)L2meas(Ã ∩An)

≥ 1

16
(V0 −M)L2meas(Ã). (2.12)

Note that meas(Ã) < +∞ due to (V1), it follows from (2.10) and (2.12) that

c1 + 1 + ‖un‖E ≥
1

16
min{a, 1}‖un‖2E +

1

16
(V0 −A)L2meas(Ã),

which implies {un} ⊂ E is bounded in E. Hence the proof is completed.

Remark 2.5. Comparing with [26], we present a new proof technique to verify the boundedness of Palais-
Smale sequences, which is much clearer and simpler than them.

3. Proof of theorem 1.1

In this section we will use the classical Symmetric Mountain Pass Theorem of Rabinowitz instead of
Fountain Theorem in [26] to obtain infinitely many large energy solutions for the problem (1.1) and prove
Theorem 1.1. First of all, we state some notations.

In view of E ↪→ L2(RN ) and L2(RN ) is a separable Hilbert space, then E has a countable orthogonal
basis {ej}∞j=1. Let

Ek =

k⊕
j=1

Xj , Zk = E⊥k ,

where Xj = span{ej}. Thus, E = Ek
⊕
Zk and Ek is finite dimensional.

Lemma 3.1. Let the assumption (V1) hold. Define

η(k) := sup
u∈Zk,‖u‖E=1

‖u‖L2 , k ∈ N,

then there exists k0 ∈ N such that 0 < η(k0) ≤
(

min{a,1}
4C1

) 1
2
.
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Proof. Firstly, η(k) is convergent science η(k) ≥ 0 and η(k) is decreasing in k. Furthermore, for any k ∈ N ,
by the definition of η(k), there exists uk ∈ Zk such that

‖uk‖E = 1 and ‖uk‖L2 >
η(k)

2
. (3.1)

For any v ∈ E, v =
∞∑
n=1

anen, it has

| < uk, v >E | =
∣∣∣ < uk,

∞∑
n=1

anen >E

∣∣∣ ≤ ‖uk‖E∥∥∥ ∞∑
n=k+1

anen

∥∥∥
E
≤
∥∥∥ ∞∑
n=k+1

anen

∥∥∥
E
→ 0

as k →∞, which implies that uk ⇀ 0 weakly in E. By virtue of Lemma 2.1, we can conclude

uk → 0 strongly in L2(RN ). (3.2)

The combination (3.1) with (3.2) implies that η(k) → 0, as k → ∞. Then there exists k0 ∈ N such that

0 < η(k0) ≤
(

min{a,1}
4C1

) 1
2
. Hence the proof is completed.

Lemma 3.2. Let assumptions (V1) and (g1) hold, then there exist some constants ρ, α such that I(u) ≥ α
whenever u ∈ Zk0 with ‖u‖E = ρ.

Proof. For any u ∈ Zk0 , by Lemma 3.1, we have

‖u‖L2 ≤ η(k0)‖u‖E and 0 < η(k0) ≤
(

min{a, 1}
4C1

) 1
2

. (3.3)

By (1.6), (1.7), (g1), (3.3) and Hölder inequality, it has

I(u) =
a

2

∫
RN
|∇u|2dx+

b

4

(∫
RN
|∇u|2dx

)2

+
1

2

∫
RN

V (x)u2dx−
∫
RN

G(x, u)dx

≥ min{a, 1}
2

‖u‖2E −
∫
RN

G(x, u)dx

≥ min{a, 1}
2

‖u‖2E − C1(‖u‖2L2 + ‖u‖pLp)

≥ min{a, 1}
2

‖u‖2E − C1η
2(k0)‖u‖2E − C1a

p
p‖u‖

p
E

≥ ‖u‖E
[min{a, 1}

4
‖u‖E − C1a

p
p‖u‖

p−1
E

]
.

Set

l(t) =
min{a, 1}

4
t− C1a

p
pt

p−1, ∀t ≥ 0.

Note that 4 < p < 2∗, we can conclude that there exists a constant ρ > 0 such that

l(ρ) = max
t≥0

l(t) > 0.

Therefore,
I(u) ≥ ρl(ρ) =: α > 0,

whenever u ∈ Zk0 with ‖u‖E = ρ. This completes the proof.
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Lemma 3.3. Let assumptions (g1) − (g2) hold, then for each finite dimensional subspace Ẽ ⊂ E, there is
an r = r(Ẽ) > 0 such that I|

Ẽ\Br < 0.

Proof. With the aid of assumptions (g1)− (g2), for any K > 0, there exists C(K) > 0 such that

G(x, z) ≥ K|z|4 − C(K)|z|2, ∀ (x, z) ∈ RN ×R. (3.4)

For any finite dimensional subspace Ẽ ⊂ E, by the equivalence of norms in the finite dimensional space,
there exists a constant βs > 0 such that

‖u‖Ls ≥ βs‖u‖E , ∀ u ∈ Ẽ, (3.5)

for 2 ≤ s < 2∗. Therefore, Choosing K > 0 such that b
4 − Kβ

4
4 < 0, then the combination of (1.6)–(1.7)

with (3.4)–(3.5) implies

I(u) =
a

2

∫
RN
|∇u|2dx+

b

4

(∫
RN
|∇u|2dx

)2

+
1

2

∫
RN

V (x)u2dx−
∫
RN

G(x, u)dx

≤ 1

2
max{a, 1}‖u‖2E +

b

4
‖u‖4E −K‖u‖4L4 + C(K)‖u‖2L2

≤ 1

2
max{a, 1}‖u‖2E +

( b
4
−Kβ4

4

)
‖u‖4E + C(K)a2

2‖u‖2E
≤ C2‖u‖2E − C3‖u‖4E

for all u ∈ Ẽ, where C2 = 1
2 max{a, 1}+ C(K)a2

2 > 0, C3 = Kβ4
4 − b

4 > 0. Hence there is an r = r(Ẽ) > 0
such that I|

Ẽ\Br < 0. This completes the proof.

Next, we shall prove our Theorem 1.1. To begin with, for convenience to quote, we state the classical
Symmetric Mountain Pass Theorem as in the following.

Theorem 3.4 ([19], Theorem 9.12). Let E be an infinite dimensional Banach space, I ∈ C1(E,R) be even
and satisfy (PS) condition and I(0) = 0. If E = Y

⊕
Z, Y is finite dimensional, and I satisfies

(I1) There exist constants ρ, α > 0 such that I|∂Bρ∩Z ≥ α, and

(I2) for each finite dimensional subspace Ẽ ⊂ E, there is r = r(Ẽ) such that I ≤ 0 on Ẽ \Br.
Then I possesses an unbounded sequence of critical values.

Proof of Theorem 1.1. The proof is to verify I satisfies all the conditions of Theorem 3.4. Set Y = Ek0 , Z =
Zk0 , then E = Y

⊕
Z and Y is finite dimensional. First, I satisfies (I1) and (I2) in Theorem 3.4 by Lemma

3.2 and 3.3, respectively. Second, I satisfies (PS) condition by virtue of Lemma 2.3 and 2.4. Finally,
I(0) = 0, I is even on E due to (g4) and I ∈ C1(E,R) by Lemma 2.2. Hence, the conclusion follows from
Theorem 3.4. The proof is completed.

Remark 3.5. Comparing with Theorem 5 in [26], on one hand, the assumptions imposed on g are much
weaker than them. On the other hand, we present a new proof technique to verify the boundedness of
Palais-Smale sequences, and apply the classical Symmetric Mountain Pass Theorem of Rabinowitz instead
of Fountain Theorem to obtain infinitely many large energy solutions for the problem (1.1). Hence, it is
very different from them.
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