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Abstract

We present two nonlinear viral infection models with humoral immune response and investigate their global
stability. The first model describes the interaction of the virus, uninfected cells, infected cells and B cells.
This model is an improvement of some existing models by incorporating more general nonlinear functions
for: (i) the intrinsic growth rate of uninfected cells; (ii) the incidence rate of infection; (iii) the removal rate of
infected cells; (iv) the production, death and neutralize rates of viruses; (v) the activation and removal rate
of B cells. In the second model, we introduce an additional population representing the latently infected
cells. The latent-to-active conversion rate is also given by a more general nonlinear function. For each
model, we derive two threshold parameters and establish a set of conditions on the general functions which
are sufficient to determine the global dynamics of the models. By using suitable Lyapunov functions and
LaSalle’s invariance principle, we prove the global asymptotic stability of all equilibria of the models. c©2016
All rights reserved.
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1. Introduction

There have been serious attempts from mathematicians and biologists to formulate mathematical models
that characterize the interaction between the target cells and viruses with the aim of helping to guide
treatment strategies [29]. Mathematical analysis for these models is necessary to obtain an integrated view
for the virus dynamics in vivo. Studying the qualitative analysis such as global stability of equilibria for
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these models, will give us a detailed information and enhance our understanding about the virus dynamics.
In the literature, several researchers have studied the global stability of mathematical models which describe
the dynamics of viruses that infect the human body, such as human immunodeficiency virus (HIV) [31].
[1], [5], [9], [11], [25], [36], [39], [41], hepatitis B virus (HBV) [4], [14], [24], [27], [33], [40], hepatitis C virus
(HCV) [38] and human T cell leukemia virus (HTLV) [23].

In reality, the humoral immune response is universal and necessary to eliminate or control the disease
after viral infection [2]. Therefore, several mathematical models have been proposed to describe the virus
dynamics with humoral immunity [7, 8, 10, 28, 30, 34, 35, 37]. The basic virus dynamics model with humoral
immune response has four state variables: x, the population of uninfected target cells; y, the population of
productive infected cells; v, the population of free virus particles in the blood; and z, the population of B
cells. The model equations are as follow [28]:

ẋ = s− dx− βxv, (1.1)

ẏ = βxv − ay, (1.2)

v̇ = ky − cv − qzv, (1.3)

ż = rzv − µz, (1.4)

where s, k and r represent the rate at which new healthy cells are generated from the source within the body,
the production rate constant of free viruses from infected cells and the proliferation rate constant of B cells,
respectively. Parameters d, a, c and µ are the natural death rate constants of the uninfected target cells,
infected cells, free virus particles and B cells, respectively. The parameter β is the infection rate constant
and q is the neutralization rate constant of the viruses. All the parameters given in model (1.1)–(1.4) are
positive.

In model (1.1)–(1.4), it is assumed that the incidence rate of infection is given by bilinear one which is
based on the law of mass action. In reality, bilinear incidence rate is not accurate enough to describe the
virus dynamics during the full course of infection (see e.g. [3, 6, 13, 17, 19, 22, 26]). Recently, several works
have been done to generalize model (1.1)–(1.4) by choosing general incidence rate in the forms ψ(x, v)v [35]
and ψ(x, v) [7]. However, the infection rate does not depend on the infected cells y. In some viral infections
such as HBV, the infection rate depends on x, y and v (see e.g. [4, 14, 27]). In [27], the bilinear form has
been modified by considering an incidence function of the form βxv

x+y . In [16], the infection rate is given by
ψ(x, y, v)v. A more general infection rate in the form ψ(x, y, v) has been considered in [32]. However, in
[4, 14, 16, 27, 32], the humoral immune response has been neglected.

The death rates of the four compartments and the production rate of viruses presented in model (1.1)–
(1.4) are given by linear functions; moreover, the activation rate of the B cells and the neutralization rate
of viruses are given by specific forms. However, all of these rates may be different in different situations and
different infections.

In this paper we aim to propose and analyze two general nonlinear viral infection models with humoral
immune response which contain most of the above mentioned models as special cases. In the second model,
we include the latently infected cells into the model, which is due to the delay between the moment when
the virus contacts an uninfected cell and the moment when the infected cell becomes active to produce
infectious viruses. For both models we derive two threshold parameters, the basic infection reproduction
number and the humoral immune response activation number. We established a set of conditions which are
sufficient for the global stability of all equilibria of the models.

The rest of the paper is organized as follows. We propose the models to be studied in Sections 2 and 3.
For each model, we study some properties of its solutions, derive two threshold parameters, and investigate
the existence and stability of the equilibria. The conclusion of our paper is given in Section 4.

2. Nonlinear humoral immunity viral infection model

In this section, we propose a viral infection model with humoral immune response. The model can be
seen as a generalization of several viral infection models by considering general function for: (i) the intrinsic
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growth rate of uninfected cells; (ii) the incidence rate of infection; (iii) the death rate of infected cells; (iv)
the production, death and neutralization rates of viruses; (v) the activation and removal rates of B cells.

ẋ = n(x)− ψ(x, y, v), (2.1)

ẏ = ψ(x, y, v)− aϕ1(y), (2.2)

v̇ = kϕ1(y)− cϕ2(v)− qϕ3(z)ϕ2(v), (2.3)

ż = rϕ3(z)ϕ2(v)− µϕ3(z), (2.4)

where n(x) represents the intrinsic growth rate of uninfected cells accounting for both production and natural
mortality; ψ(x, y, v) denotes the incidence rate of infection; aϕ1(y) refers to the removal rate of infected cells;
kϕ1(y) and cϕ2(v) denote the production and death rates of free virus particles; qϕ3(z)ϕ2(v) represents the
neutralization rate of viruses; rϕ3(z)ϕ2(v) and µϕ3(z) refer to the activation and removal rates of B cells,
respectively. Functions n, ψ, ϕi, i = 1, 2, 3 are continuously differentiable and satisfy:

Assumption A1.
(i) there exists x0 such that n(x0) = 0, n(x) > 0 for x ∈ [0, x0),
(ii) n′(x) < 0 for all x > 0,
(iii) there are s, s̄ > 0 such that n(x) ≤ s− s̄x for x ≥ 0.
Assumption A2.
(i) ψ(x, y, v) > 0 and ψ(0, y, v) = ψ(x, y, 0) = 0 for all x > 0, y ≥ 0, v > 0,

(ii)
∂ψ(x, y, v)

∂x
> 0,

∂ψ(x, y, v)

∂y
< 0,

∂ψ(x, y, v)

∂v
> 0 and

∂ψ(x, 0, 0)

∂v
> 0 for all x > 0, y ≥ 0, v > 0,

(iii)
d

dx

(
∂ψ(x, 0, 0)

∂v

)
> 0 for all x > 0.

Assumption A3.
(i) ϕj(u) > 0 for all u > 0, ϕj(0) = 0, j = 1, 2, 3,
(ii) ϕ′j(u) > 0, for all u > 0, j = 1, 3, ϕ′2(u) > 0, for all u ≥ 0,
(iii) there are αj ≥ 0, j = 1, 2, 3 such that ϕj(u) ≥ αju, for all u ≥ 0.
Assumption A4.
ψ(x, y, v)

ϕ2(v)
is decreasing with respect to v for all v > 0.

2.1. Properties of solutions

In this subsection, we study some properties of the solution of the model such as non-negativity and
boundedness of solutions.

Proposition 2.1. Assume that Assumptions A1–A3 are satisfied. Then there exist positive numbers Li,
i = 1, 2, 3, such that the compact set

Γ1 =
{

(x, y, v, z) ∈ R4
≥0 : 0 ≤ x, y ≤ L1, 0 ≤ v ≤ L2, 0 ≤ z ≤ L3

}
is positively invariant.

Proof. We have

ẋ |x=0= n(0) > 0,

ẏ |y=0= ψ(x, 0, v) ≥ 0 for all x ≥ 0, v ≥ 0,

v̇ |v=0= kϕ1(y) ≥ 0 for all y ≥ 0,

ż |z=0= 0.

Hence, the orthant R4
≥0 is positively invariant for system (2.1)–(2.4) [12]. Next, we show that the solutions

of the system are bounded. Let T1(t) = x(t) + y(t) + a
2kv(t) + aq

2rkz(t); then

Ṫ1(t) = n(x)− a

2
ϕ1(y)− ac

2k
ϕ2(v)− aqµ

2rk
ϕ3(z) ≤ s− s̄x−

a

2
α1y −

ac

2k
α2v −

aqµ

2rk
α3z
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≤ s− σ1
(
x+ y +

a

2k
v +

aq

2rk
z
)

= s− σ1T1(t),

where σ1 = min{s̄, a2α1, cα2, µα3}. Then,

T1(t) ≤ T1(0)e−σ1t +
s

σ1

(
1− e−σ1t

)
= e−σ1t

(
T1(0)− s

σ1

)
+

s

σ1
.

Hence, 0 ≤ T1(t) ≤ L1 if T1(0) ≤ L1 for t ≥ 0 where L1 = s
σ1

. It follows that 0 ≤ x(t), y(t) ≤ L1,

0 ≤ v(t) ≤ L2 and 0 ≤ z(t) ≤ L3 for all t ≥ 0 if x(0) + y(0) + a
2kv(0) + aq

2rkz(0) ≤ L1, where L2 =
2kL1

a
and

L3 =
2rkL1

aq
. Therefore, x(t), y(t), v(t), and z(t) are all bounded.

2.2. The equilibria and threshold parameters

Lemma 2.2. Assume that Assumptions A1–A4 are satisfied. Then there exist two threshold parameters
R0 > 0 and R1 > 0 with R1 < R0 such that

(i) if R0 ≤ 1, then there exists only one positive equilibrium E0 ∈ Γ1,
(ii) if R1 ≤ 1 < R0, then there exist only two positive equilibria E0 ∈ Γ1 and E1 ∈ Γ1, and

(iii) if R1 > 1, then there exist three positive equilibria E0 ∈ Γ1, E1 ∈ Γ1 and E2 ∈
◦
Γ1, where

◦
Γ1 is the

interior of Γ1.

Proof. At any equilibrium we have

n(x)− ψ(x, y, v) = 0, (2.5)

ψ(x, y, v)− aϕ1(y) = 0, (2.6)

kϕ1(y)− cϕ2(v)− qϕ2(v)ϕ3(z) = 0, (2.7)

(rϕ2(v)− µ)ϕ3(z) = 0. (2.8)

From (2.8), either ϕ3(z) = 0 or ϕ3(z) 6= 0. If ϕ3(z) = 0, then from Assumption A3 we get, z = 0 and from
(2.5)–(2.7) we have

n(x) = ψ(x, y, v) = aϕ1(y) =
acϕ2(v)

k
. (2.9)

From (2.9), we have ϕ1(y) = n(x)
a , ϕ2(v) = kn(x)

ac . Since ϕ1, ϕ2 are continuous and strictly increasing
functions with ϕ1(0) = ϕ2(0) = 0, then ϕ−11 , ϕ−12 exist and they are also continuous and strictly increasing

[21]. Let κ1(x) = ϕ−11

(
n(x)
a

)
and κ2(x) = ϕ−12

(
kn(x)
ac

)
; then

y = κ1(x), v = κ2(x). (2.10)

Obviously from Assumption A1, κ1(x),κ2(x) > 0 for x ∈ [0, x0) and κ1(x0) = κ2(x0) = 0. Substituting y
and v from (2.10) into (2.9), we get

ψ (x,κ1(x),κ2(x))− ac

k
ϕ2(κ2(x)) = 0. (2.11)

We note that, x = x0 is a solution of (2.11). Then, from (2.10) we have y = v = 0, and this case leads to
the infection-free equilibrium E0 = (x0, 0, 0, 0). Let

Φ1 (x) = ψ (x,κ1(x),κ2(x))− ac

k
ϕ2(κ2(x)) = 0.

Then from Assumptions A1–A3, we have

Φ1(0) = −ac
k
ϕ2(κ2(0)) < 0,
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Φ1(x0) = ψ (x0, 0, 0)− ac

k
ϕ2(0) = 0.

Moreover,

Φ
′
1 (x0) =

∂ψ(x0, 0, 0)

∂x
+ κ′1(x0)

∂ψ(x0, 0, 0)

∂y
+ κ′2(x0)

∂ψ(x0, 0, 0)

∂v
− ac

k
ϕ′2(0)κ′2(x0).

Assumption A2 implies that ∂ψ(x0,0,0)
∂x = ∂ψ(x0,0,0)

∂y = 0. Also, from Assumption A3, we have ϕ′2(0) > 0, and
then

Φ
′
1 (x0) =

ac

k
κ′2(x0)ϕ′2(0)

(
k

acϕ′2(0)

∂ψ(x0, 0, 0)

∂v
− 1

)
.

From (2.10), we get

Φ
′
1 (x0) = n′(x0)

(
k

acϕ′2(0)

∂ψ(x0, 0, 0)

∂v
− 1

)
.

From Assumption A1, we have n′(x0) < 0. Therefore, if
k

acϕ′2(0)

∂ψ(x0, 0, 0)

∂v
> 1. Then Φ

′
1 (x0) < 0 and

there exists an x1 ∈ (0, x0) such that Φ1(x1) = 0. From (2.10), we have y1 = κ1(x1) > 0 and v1 = κ2(x1) > 0.
It follows that a chronic-infection equilibrium without humoral immune response E1 = (x1, y1, v1, 0) exists

when
k

acϕ′2(0)

∂ψ(x0, 0, 0)

∂v
> 1. Let us define

R0 =
k

acϕ′2(0)

∂ψ(x0, 0, 0)

∂v
,

which represents the basic infection reproduction number and determines whether a chronic-infection can

be established. The other possibility of (2.8) is v = v2 = ϕ−12

(µ
r

)
> 0. From (2.10) and by letting v = v2

in (2.5), we get
Φ2(x) = n(x)− ψ(x,κ1(x), v2) = 0.

Clearly,
Φ2(0) = n(0) > 0 and Φ2(x0) = −ψ(x0, 0, v2) < 0.

According to Assumptions A1 and A2, Φ2(x) is a strictly decreasing function of x. Thus, there exists a unique

x2 ∈ (0, x0) such that Φ2(x2) = 0. It follows that y2 = κ1(x2) > 0 and z2 = ϕ−13

(
c

q

(
kψ(x2, y2, v2)

acϕ2(v2)
− 1

))
.

From Assumption A3, we have: if
kψ(x2, y2, v2)

acϕ2(v2)
> 1, then z2 > 0. Now we define

R1 =
kψ(x2, y2, v2)

acϕ2(v2)
,

which represents the humoral immune response activation number and determines whether a persistent

humoral immune response can be established. Hence, z2 can be rewritten as z2 = ϕ−13

(
c
q (R1 − 1)

)
. It

follows that there exists a chronic-infection equilibrium with humoral immune response E2 = (x2, y2, v2, z2)
if R1 > 1.

Now, we show that E0, E1 ∈ Γ1 and E2 ∈
◦
Γ1. Clearly, E0 ∈ Γ1. We have x1 < x0; then from Assumption

A1
0 = n(x0) < n(x1) ≤ s− s̄x1.

It follows that
0 < x1 <

s

s̄
≤ s

σ1
= L1.
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From (2.5)–(2.6), we get

aα1y1 ≤ aϕ1(y1) = n(x1) < n(0) ≤ s⇒ 0 < y1 <
s

aα1
<

s
a
2α1
≤ L1.

Eq. (2.9) implies that,

cα2v1 ≤ cϕ2(v1) = kϕ1(y1) =
k

a
n(x1) <

k

a
n(0) ≤ ks

a
⇒ 0 < v1 <

ks

acα2
<

2ks

acα2
≤ L2.

Moreover, we have z1 = 0, so E1 ∈ Γ1. Let R1 > 1; then one can show that 0 < x2 < L1, 0 < y2 < L1. Now
we show that 0 < v2 < L2 and 0 < z2 < L3. From (2.7), we have

cϕ2(v2) + qϕ2(v2)ϕ3(z2) = kϕ1(y2).

Then

cϕ2(v2) < kϕ1(y2)⇒ cα2v2 <
k

a
n(x2) <

ks

a
⇒ 0 < v2 <

ks

acα2
<

2ks

acα2
≤ L2,

and

qϕ2(v2)ϕ3(z2) < kϕ1(y2)⇒
qµ

r
α3z2 <

k

a
n(x2) <

ks

a
⇒ 0 < z2 <

krs

aqµα3
<

2krs

aqµα3
≤ L3.

Then, E2 ∈
◦
Γ1. Clearly from Assumptions A2 and A4, we obtain

R1 =
kψ(x2, y2, v2)

acϕ2(v2)
<
kψ(x2, 0, v2)

acϕ2(v2)
≤ k

ac
lim
v→0+

ψ(x2, 0, v)

ϕ2(v)

=
k

acϕ′2(0)

∂ψ(x2, 0, 0)

∂v
<

k

acϕ′2(0)

∂ψ(x0, 0, 0)

∂v
= R0.

2.3. Global stability analysis

In this subsection, the global asymptotic stability of the three equilibria of model (2.1)–(2.4) will be
established by using direct Lyapunov method and applying LaSalle’s invariance principle.

Theorem 2.3. Let Assumptions A1–A4 be true and R0 ≤ 1. Then the infection-free equilibrium E0 is
globally asymptotically stable (GAS) in Γ1.

Proof. We construct a Lyapunov functional by

U0(x, y, v, z) = x− x0 −
∫ x

x0

lim
v→0+

ψ(x0, 0, v)

ψ(η, 0, v)
dη + y +

a

k
v +

aq

rk
z. (2.12)

It is obvious that U0(x, y, v, z) > 0 for all x, y, v, z > 0 while U0(x, y, v, z) reaches its global minimum at E0.
We calculate dU0

dt along the solutions of model (2.1)–(2.4) as:

dU0

dt
=

(
1− lim

v→0+

ψ(x0, 0, v)

ψ(x, 0, v)

)
(n(x)− ψ(x, y, v)) + ψ(x, y, v)− aϕ1(y)

+
a

k
(kϕ1(y)− cϕ2(v)− qϕ2(v)ϕ3(z)) +

aq

rk
(rϕ3(z)ϕ2(v)− µϕ3(z))

= n(x)

(
1− lim

v→0+

ψ(x0, 0, v)

ψ(x, 0, v)

)
+ ψ(x, y, v) lim

v→0+

ψ(x0, 0, v)

ψ(x, 0, v)
− ac

k
ϕ2(v)− aqµ

rk
ϕ3(z). (2.13)
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Since n(x0) = 0, we get

dU0

dt
= (n(x)− n(x0))

(
1− lim

v→0+

ψ(x0, 0, v)

ψ(x, 0, v)

)
+
ac

k

(
k

ac

ψ(x, y, v)

ϕ2(v)
lim
v→0+

ψ(x0, 0, v)

ψ(x, 0, v)
− 1

)
ϕ2(v)− aqµ

rk
ϕ3(z).

(2.14)

From Assumptions A2 and A4, we have

ψ(x, y, v)

ϕ2(v)
<
ψ(x, 0, v)

ϕ2(v)
≤ lim

v→0+

ψ(x, 0, v)

ϕ2(v)
=

1

ϕ′2(0)

∂ψ(x, 0, 0)

∂v
.

Then,

dU0

dt
≤ (n(x)− n(x0))

(
1− (∂ψ(x0, 0, 0)/∂v)

(∂ψ(x, 0, 0)/∂v)

)
+
ac

k

(
k

acϕ′2(0)

∂ψ(x0, 0, 0)

∂v
− 1

)
ϕ2(v)− aqµ

rk
ϕ3(z)

= (n(x)− n(x0))

(
1− (∂ψ(x0, 0, 0)/∂v)

(∂ψ(x, 0, 0)/∂v)

)
+
ac

k
(R0 − 1)ϕ2(v)− aqµ

rk
ϕ3(z). (2.15)

From Assumptions A1 and A2, we have

(n(x)− n(x0))

(
1− (∂ψ(x0, 0, 0)/∂v)

(∂ψ(x, 0, 0)/∂v)

)
≤ 0.

Therefore, if R0 ≤ 1, then dU0
dt ≤ 0 for all x, v, z > 0. We note that the solutions of system (2.1)–(2.4) are

limited by Υ, the largest invariant subset of
{
dU0
dt = 0

}
[15]. We see that dU0

dt = 0 if and only if x(t) = x0,

v(t) = 0, and z(t) = 0 for all t. Each element of Υ satisfies v(t) = 0 and z(t) = 0. Then from (2.3), we have

v̇(t) = 0 = kϕ1(y(t)).

It follows from Assumption A3 that y(t) = 0 for all t. Using LaSalle’s invariance principle, we derive that
E0 is GAS.

To prove the global stability of the equilibria E1 and E2, we need the following condition on the incidence
rate function.

Assumption A5.(
ψ(x, y, v)

ψ(x, yi, vi)
− ϕ2(v)

ϕ2(vi)

)(
1− ψ(x, yi, vi)

ψ(x, y, v)

)
≤ 0, x, y, v > 0, i = 1, 2.

Lemma 2.4. Suppose that Assumptions A1–A4 are satisfied and R0 > 1. Then x1, x2, y1, y2, v1, v2 exist
satisfying

sgn(x2 − x1) = sgn(v1 − v2) = sgn(y1 − y2) = sgn(R1 − 1).

Proof. It follows from Assumptions A1 and A2 that

(n(x2)− n(x1)) (x1 − x2) > 0, (2.16)

(ψ(x2, y2, v2)− ψ(x1, y2, v2))(x2 − x1) > 0, (2.17)

(ψ(x1, y2, v2)− ψ(x1, y1, v2))(y1 − y2) > 0, (2.18)

(ψ(x1, y1, v2)− ψ(x1, y1, v1)) (v2 − v1) > 0. (2.19)

First, we claim sgn(x2 − x1) = sgn(v1 − v2). Suppose this is not true, i.e., sgn(x2 − x1) = sgn(v2 − v1).
Using the conditions of the equilibria E1 and E2 we would have
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n(x2)− n(x1) = ψ(x2, y2, v2)− ψ(x1, y1, v1) = a(ϕ1(y2)− ϕ1(y1)). (2.20)

Since ϕ1 is an increasing function of y, then from (2.20) we would have, sgn(x1 − x2) = sgn(y2 − y1).
Moreover

n(x2)− n(x1) = ψ(x2, y2, v2)− ψ(x1, y1, v1)

= (ψ(x2, y2, v2)− ψ(x1, y2, v2)) + (ψ(x1, y2, v2)− ψ(x1, y1, v2))

+ (ψ(x1, y1, v2)− ψ(x1, y1, v1)).

Therefore, from (2.17)–(2.20) we would get:

sgn (x1 − x2) = sgn (x2 − x1) ,

which leads to a contradiction. Thus, sgn (x2 − x1) = sgn (v1 − v2). Assumption A4 implies that(
ψ(x1, y1, v2)

ϕ2(v2)
− ψ(x1, y1, v1)

ϕ2(v1)

)
(v1 − v2) > 0. (2.21)

Using the equilibrium conditions for E1, we have
kψ(x1, y1, v1)

acϕ2(v1)
= 1. Then

R1 − 1 =
kψ(x2, y2, v2)

acϕ2(v2)
− kψ(x1, y1, v1)

acϕ2(v1)
=

k

ac

[
ψ(x2, y2, v2)

ϕ2(v2)
− ψ(x1, y1, v1)

ϕ2(v1)

]
=

k

ac

[
1

ϕ2(v2)
(ψ(x2, y2, v2)− ψ(x1, y2, v2)) +

1

ϕ2(v2)
(ψ(x1, y2, v2)− ψ(x1, y1, v2))

+

(
ψ(x1, y1, v2)

ϕ2(v2)
− ψ(x1, y1, v1)

ϕ2(v1)

)]
.

Thus, from (2.18), (2.19), (2.20), and (2.21) we get sgn(R1 − 1) = sgn(v1 − v2).

Theorem 2.5. Let Assumptions A1–A5 be true and R1 ≤ 1 < R0. Then the chronic-infection equilibrium
without humoral immune response E1 is GAS in Γ1.

Proof. Define

U1(x, y, v, z) = x−x1−
∫ x

x1

ψ(x1, y1, v1)

ψ(η, y1, v1)
dη+y−y1−

y∫
y1

ϕ1(y1)

ϕ1(η)
dη+

a

k

v − v1 − v∫
v1

ϕ2(v1)

ϕ2(η)
dη

+
aq

rk
z. (2.22)

It is seen that U1(x, y, v, z) > 0 for all x, y, v, z > 0 while U1(x, y, v, z) reaches its global minimum at E1.
Calculating the time derivative of U1 along the trajectories of system (2.1)–(2.4), we obtain

dU1

dt
=

(
1− ψ(x1, y1, v1)

ψ(x, y1, v1)

)
(n(x)− ψ(x, y, v)) +

(
1− ϕ1(y1)

ϕ1(y)

)
(ψ(x, y, v)− aϕ1(y))

+
a

k

(
1− ϕ2(v1)

ϕ2(v)

)
(kϕ1(y)− cϕ2(v)− qϕ2(v)ϕ3(z)) +

aq

rk
(rϕ2(v)ϕ3(z)− µϕ3(z))

=

(
1− ψ(x1, y1, v1)

ψ(x, y1, v1)

)
n(x) + ψ(x1, y1, v1)

ψ(x, y, v)

ψ(x, y1, v1)
− ϕ1(y1)

ϕ1(y)
ψ(x, y, v)

+ aϕ1(y1)−
ac

k
ϕ2(v)− aϕ1(y)

ϕ2(v1)

ϕ2(v)
+
ac

k
ϕ2(v1) +

aq

k
ϕ2(v1)ϕ3(z)−

aqµ

rk
ϕ3(z). (2.23)

Using the equilibrium conditions for E1

n(x1) = ψ(x1, y1, v1) = aϕ1(y1) =
ac

k
ϕ2(v1),
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we obtain

dU1

dt
= (n(x)− n(x1))

(
1− ψ(x1, y1, v1)

ψ(x, y1, v1)

)
+ 3aϕ1(y1)− aϕ1(y1)

ψ(x1, y1, v1)

ψ(x, y1, v1)
+ aϕ1(y1)

ψ(x, y, v)

ψ(x, y1, v1)

− aϕ1(y1)
ϕ1(y1)ψ(x, y, v)

ϕ1(y)ψ(x1, y1, v1)
− aϕ1(y1)

ϕ2(v)

ϕ2(v1)
− aϕ1(y1)

ϕ2(v1)ϕ1(y)

ϕ2(v)ϕ1(y1)
+
aq

k

(
ϕ2(v1)−

µ

r

)
ϕ3(z).

(2.24)

Collecting terms of (2.24), we get

dU1

dt
= (n(x)− n(x1))

(
1− ψ(x1, y1, v1)

ψ(x, y1, v1)

)
+ aϕ1(y1)

(
ψ(x, y, v)

ψ(x, y1, v1)
− ϕ2(v)

ϕ2(v1)
− 1 +

ϕ2(v)ψ(x, y1, v1)

ϕ2(v1)ψ(x, y, v)

)
+ aϕ1(y1)

[
4− ψ(x1, y1, v1)

ψ(x, y1, v1)
− ϕ1(y1)ψ(x, y, v)

ϕ1(y)ψ(x1, y1, v1)
− ϕ2(v1)ϕ1(y)

ϕ2(v)ϕ1(y1)
− ϕ2(v)ψ(x, y1, v1)

ϕ2(v1)ψ(x, y, v)

]
+
aq

k
(ϕ2(v1)− ϕ2(v2))ϕ3(z). (2.25)

This can be simplified as

dU1

dt
= (n(x)− n(x1))

(
1− ψ(x1, y1, v1)

ψ(x, y1, v1)

)
+ aϕ1(y1)

(
ψ(x, y, v)

ψ(x, y1, v1)
− ϕ2(v)

ϕ2(v1)

)(
1− ψ(x, y1, v1)

ψ(x, y, v)

)
+ aϕ1(y1)

[
4− ψ(x1, y1, v1)

ψ(x, y1, v1)
− ϕ1(y1)ψ(x, y, v)

ϕ1(y)ψ(x1, y1, v1)
− ϕ2(v1)ϕ1(y)

ϕ2(v)ϕ1(y1)
− ϕ2(v)ψ(x, y1, v1)

ϕ2(v1)ψ(x, y, v)

]
+
aq

k
(ϕ2(v1)− ϕ2(v2))ϕ3(z). (2.26)

From Assumptions A1–A5, we get that the first and second terms of (2.26) are less than or equal to zero.
Since the geometrical mean is less than or equal to the arithmetical mean, then the third term of (2.26)
is also less than or equal to zero. Lemma 2 implies that if R1 ≤ 1, then ϕ2(v1) < ϕ2(v2). It follows that,
dU1
dt ≤ 0 for all x, y, v, z > 0. The solutions of system (2.1)–(2.4) are limited by Ω, the largest invariant subset

of
{

(x, y, v, z) : dU1
dt = 0

}
[15]. We have dU1

dt = 0 if and only if x(t) = x1, y(t) = y1, v(t) = v1 and z(t) = 0.

So, Ω contains a unique point, that is E1. Thus, the global asymptotic stability of the chronic-infection
equilibrium without humoral immune response E1 follows from LaSalle’s invariance principle.

Theorem 2.6. Let Assumptions A1–A5 be true and R1 > 1. Then the chronic-infection equilibrium with

humoral immune response E2 is GAS in
◦
Γ1.

Proof. We construct a Lyapunov functional by

U2(x, y, v, z) = x− x2 −
∫ x

x2

ψ(x2, y2, v2)

ψ(η, y2, v2)
dη + y − y2 −

y∫
y2

ϕ1(y2)

ϕ1(η)
dη +

a

k

v − v2 − v∫
v2

ϕ2(v2)

ϕ2(η)
dη


+
aq

rk

z − z2 − z∫
z2

ϕ3(z2)

ϕ3(η)
dη

 . (2.27)

It can be seen that U2(x, y, v, z) > 0 for all x, y, v, z > 0 while U2(x, y, v, z) reaches its global minimum at
E2. The function U2 satisfies

dU2

dt
=

(
1− ψ(x2, y2, v2)

ψ(x, y2, v2)

)
(n(x)− ψ(x, y, v)) +

(
1− ϕ1(y2)

ϕ1(y)

)
(ψ(x, y, v)− aϕ1(y))

+
a

k

(
1− ϕ2(v2)

ϕ2(v)

)
(kϕ1(y)− cϕ2(v)− qϕ2(v)ϕ3(z))

+
aq

rk

(
1− ϕ3(z2)

ϕ3(z)

)
(rϕ2(v)ϕ3(z)− µϕ3(z)). (2.28)

Collecting the terms of (2.28) and using n(x2) = aϕ1(y2), we obtain
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dU2

dt
= (n(x)− n(x2))

(
1− ψ(x2, y2, v2)

ψ(x, y2, v2)

)
+ aϕ1(y2)− aϕ1(y2)

ψ(x2, y2, v2)

ψ(x, y2, v2)

+ ψ(x, y, v)
ψ(x2, y2, v2)

ψ(x, y2, v2)
− ϕ1(y2)ψ(x, y, v)

ϕ1(y)
+ aϕ1(y2)−

ac

k
ϕ2(v)− aϕ1(y)

ϕ2(v2)

ϕ2(v)

+
ac

k
ϕ2(v2) +

aq

k
ϕ2(v2)ϕ3(z)−

aqµ

rk
ϕ3(z)−

aq

k
ϕ3(z2)ϕ2(v) +

aqµ

rk
ϕ3(z2). (2.29)

By using the equilibrium conditions of E2

ψ(x2, y2, v2) = aϕ1(y2) =
ac

k
ϕ2(v2) +

aq

k
ϕ2(v2)ϕ3(z2), µ = rϕ2(v2),

we get

dU2

dt
= (n(x)− n(x2))

(
1− ψ(x2, y2, v2)

ψ(x, y2, v2)

)
+ aϕ1(y2)− aϕ1(y2)

ψ(x2, y2, v2)

ψ(x, y2, v2)

+ aϕ1(y2)
ψ(x, y, v)

ψ(x, y2, v2)
− aϕ1(y2)

ϕ1(y2)ψ(x, y, v)

ϕ1(y)ψ(x2, y2, v2)
+ aϕ1(y2)

−
(
aϕ1(y2)−

aq

k
ϕ2(v2)ϕ3(z2)

) ϕ2(v)

ϕ2(v2)
− aϕ1(y2)

ϕ2(v2)ϕ1(y)

ϕ2(v)ϕ1(y2)

+ aϕ1(y2)−
aq

k
ϕ2(v2)ϕ3(z2) +

aq

k
ϕ2(v2)ϕ3(z)−

aq

k
ϕ2(v2)ϕ3(z)

− aq

k
ϕ3(z2)ϕ2(v) +

aq

k
ϕ2(v2)ϕ3(z2). (2.30)

Collecting the terms of (2.30), we get

dU2

dt
= (n(x)− n(x2))

(
1− ψ(x2, y2, v2)

ψ(x, y2, v2)

)
+ aϕ1(y2)

(
ψ(x, y, v)

ψ(x, y2, v2)
− ϕ2(v)

ϕ2(v2)
− 1 +

ϕ2(v)ψ(x, y2, v2)

ϕ2(v2)ψ(x, y, v)

)
+ aϕ1(y2)

[
4− ψ(x2, y2, v2)

ψ(x, y2, v2)
− ϕ1(y2)ψ(x, y, v)

ϕ1(y)ψ(x2, y2, v2)
− ϕ2(v2)ϕ1(y)

ϕ2(v)ϕ1(y2)
− ϕ2(v)ψ(x, y2, v2)

ϕ2(v2)ψ(x, y, v)

]
. (2.31)

We can rewrite (2.31) as

dU2

dt
= (n(x)− n(x2))

(
1− ψ(x2, y2, v2)

ψ(x, y2, v2)

)
+ aϕ1(y2)

(
ψ(x, y, v)

ψ(x, y2, v2)
− ϕ2(v)

ϕ2(v2)

)(
1− ψ(x, y2, v2)

ψ(x, y, v)

)
+ aϕ1(y2)

[
4− ψ(x2, y2, v2)

ψ(x, y2, v2)
− ϕ1(y2)ψ(x, y, v)

ϕ1(y)ψ(x2, y2, v2)
− ϕ2(v2)ϕ1(y)

ϕ2(v)ϕ1(y2)
− ϕ2(v)ψ(x, y2, v2)

ϕ2(v2)ψ(x, y, v)

]
. (2.32)

We note that from Assumptions A1–A5 and the relationship between the arithmetical and geometrical
means, we obtain dU2

dt ≤ 0 for all x, y, v, z > 0. The solutions of model (2.1)–(2.4) are limited by Λ, the largest

invariant subset of
{

(x, y, v, z) : dU2
dt = 0

}
[15]. We have dU2

dt = 0 if and only if x(t) = x2, y(t) = y2 and v(t) =

v2. Therefore, if v(t) = v2 and y(t) = y2, then from (2.3), we have kϕ1(y2)− cϕ2(v2)− qϕ2(v2)ϕ3(z(t)) = 0,
which gives z(t) = z2. Thus, dU2

dt = 0 occurs at E2. The global asymptotic stability of the chronic-infection
equilibrium with humoral immune response E2 follows from LaSalle’s invariance principle.

3. Model with latently infected cells

As pointed out by Krakauer and Nowak [20] that, in case of HIV infection, once in a cell not each
virus initiates active virion production. A large proportion of CD4+ cells are latently infected following the
integration of pro-viral DNA into the host cell genome. Much of this DNA is not replication competent.
Some of this material can remain quiescent for long periods of time before becoming activated [20]. Our
goal in this section is to study a viral infection model taking into account both the latently and productively
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infected cells . Latently infected cells have been considered in the virus dynamics models in several works
(see e.g. [1, 11, 18, 20]). However, the humoral immune response was neglected in those papers. Therefore,
in this section we propose the following model:

ẋ = n(x)− φ(x,w, y, v), (3.1)

ẇ = (1− p)φ(x,w, y, v)− (e+ δ)ξ(w), (3.2)

ẏ = pφ(x,w, y, v) + δξ(w)− aϕ1(y), (3.3)

v̇ = kϕ1(y)− cϕ2(v)− qϕ2(v)ϕ3(z), (3.4)

ż = rϕ2(v)ϕ3(z)− µϕ3(z), (3.5)

where w and y represent, respectively, the populations of the latently infected and productively infected
cells. Eq. (3.2) describes the population dynamics of the latently infected cells and shows that they die
with rate eξ(w) and they are converted to productively infected cells with rate δξ(w) where e and δ are
positive constants. The fractions (1 − p) and p, with 0 < p < 1, are the probabilities that upon infection,
an uninfected cell will become either latently infected or productively infected. The functions n, ϕ1, ϕ2 and
ϕ3 are assumed to satisfy Assumptions A1 and A3. All other parameters and variables of model (3.1)–(3.5)
have the same biological identifications as those given in Sections 1 and 2. Moreover, the functions φ and ξ
are continuously differentiable and satisfy

Assumption B1.
(i) φ(x,w, y, v) > 0 and φ(0, w, y, v) = φ(x,w, y, 0) = 0 for all x > 0, w ≥ 0, y ≥ 0, v > 0,

(ii)
∂φ(x,w, y, v)

∂x
> 0,

∂φ(x,w, y, v)

∂w
< 0,

∂φ(x,w, y, v)

∂y
< 0,

∂φ(x,w, y, v)

∂v
> 0 and

∂φ(x, 0, 0, 0)

∂v
> 0 for

all x > 0, w ≥ 0, y ≥ 0, v > 0 and

(iii)
d

dx

(
∂φ(x, 0, 0, 0)

∂v

)
> 0 for all x > 0.

Assumption B2.
(i) ξ(w) > 0 for w > 0, ξ(0) = 0,
(ii) ξ′(w) > 0 for w > 0 and
(iii) there is an α4 ≥ 0 such that ξ(w) ≥ α4w for w ≥ 0.
Assumption B3.
φ(x,w, y, v)

ϕ2(v)
is decreasing with respect to v for all v > 0.

3.1. Properties of solutions

In this subsection, we study some properties of the solutions of the model such as the non-negativity
and boundedness.

Proposition 3.1. Assume that Assumptions A1, A3, B1 and B2 are satisfied. Then there exist positive
numbers Mi, i = 1, 2, 3, such that the compact set

Γ2 =
{

(x,w, y, v, z) ∈ R5
≥0 : 0 ≤ x,w, y ≤M1, 0 ≤ v ≤M2, 0 ≤ z ≤M3

}
is positively invariant.

Proof. Similar to the proof of Proposition 1, one can show that the orthant R5
≥0 is positively invariant for

system (3.1)–(3.5). To show boundedness of the solutions we let T2(t) = x(t)+w(t)+y(t)+ a
2kv(t)+ aq

2rkz(t).
Then

Ṫ2(t) = n(x)− eξ(w)− a

2
ϕ1(y)− ac

2k
ϕ2(v)− aqµ

2rk
ϕ3(z)

≤ s− s̄x− eα4w −
a

2
α1y −

ac

2k
α2v −

aqµ

2rk
α3z

≤ s− σ2T2(t),
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where σ2 = min{s̄, eα4,
a
2α1, cα2, µα3}. It follows that 0 ≤ x(t), w(t), y(t) ≤ M1, 0 ≤ v(t) ≤ M2, and

0 ≤ z(t) ≤ M3 for all t ≥ 0 if x(0) + w(0) + y(0) + a
2kv(0) + aq

2rkz(0) ≤ M1, where M1 = s
σ2
, M2 =

2kM1

a

and M3 =
2rkM1

aq
. Therefore, x(t), w(t), y(t), v(t), and z(t) are all bounded.

3.2. The equilibria and threshold parameters

In this subsection, we calculate the equilibria of model (3.1)–(3.5) and derive two threshold parameters.

Lemma 3.2. Assume that Assumptions A1, A3 and B1–B3 are satisfied; then there exist two threshold
parameters RL0 > 0 and RL1 > 0 with RL1 < RL0 such that

(i) if RL0 ≤ 1, then there exists only one positive equilibrium E0 ∈ Γ2,
(ii) if RL1 ≤ 1 < RL0 , then there exist only two positive equilibria E0 ∈ Γ2 and E1 ∈ Γ2, and

(iii) if RL1 > 1, then there exist three positive equilibria E0 ∈ Γ2, E1 ∈ Γ2, and E2 ∈
◦
Γ2.

Proof. The equilibria of (3.1)–(3.5) satisfy

n(x)− φ(x,w, y, v) = 0, (3.6)

(1− p)φ(x,w, y, v)− (e+ δ)ξ(w) = 0, (3.7)

pφ(x,w, y, v) + δξ(w)− aϕ1(y) = 0, (3.8)

kϕ1(y)− cϕ2(v)− qϕ2(v)ϕ3(z) = 0, (3.9)

(rϕ2(v)− µ)ϕ3(z) = 0. (3.10)

Equation (3.10) has two possible solutions, ϕ3(z) = 0 or ϕ2(v) = µ/r. Let us consider the case ϕ3(z) = 0.
Then from Assumption A3 we get, z = 0. From Assumptions A3 and B2, we have that ϕ−11 and ξ−1 exist
and are strictly increasing functions. Let us define

f(x) = ξ−1
(

(1− p)n(x)

e+ δ

)
, g(x) = ϕ−11

(
(ep+ δ)n(x)

a(e+ δ)

)
, `(x) = ϕ−12

(
k(ep+ δ)n(x)

ac(e+ δ)

)
.

Equations (3.7)–(3.9) imply that
w = f(x), y = g(x), v = `(x). (3.11)

Obviously, f , g, and ` are strictly decreasing functions with f(x), g(x), `(x) > 0 for x ∈ [0, x0) and f(x0) =
g(x0) = `(x0) = 0. Substituting (3.11) into (3.9), we obtain

k(ep+ δ)φ(x, f(x), g(x), `(x))

a(e+ δ)
− cϕ2(`(x)) = 0. (3.12)

Equation (3.12) admits a solution x = x0 which gives w = y = v = 0 and leads to the infection-free
equilibrium E0 = (x0, 0, 0, 0, 0). Let

Ψ1(x) =
k(ep+ δ)

a(e+ δ)
φ (x, f(x), g(x), `(x))− cϕ2(`(x)) = 0.

It is clear from Assumptions A1, A3 and B1–B2 that,

Ψ1(0) = −cϕ2(`(0)) < 0,

Ψ1(x0) =
k(ep+ δ)

a(e+ δ)
φ (x0, 0, 0, 0)− cϕ2(0) = 0.

Moreover,

Ψ′1 (x0) =
k(ep+ δ)

a(e+ δ)

[
∂φ(x0, 0, 0, 0)

∂x
+ f ′(x0)

∂φ(x0, 0, 0, 0)

∂w
+ g′(x0)

∂φ(x0, 0, 0, 0)

∂y

+`′(x0)
∂φ(x0, 0, 0, 0)

∂v

]
− cϕ′2(0)`′(x0).

We note that ∂φ(x0,0,0,0)
∂x = ∂φ(x0,0,0,0)

∂w = ∂φ(x0,0,0,0)
∂y = 0. Then,
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Ψ′1 (x0) = c`′(x0)ϕ
′
2(0)

(
k(ep+ δ)

ac(e+ δ)ϕ′2(0)

∂φ(x0, 0, 0, 0)

∂v
− 1

)
=
k(ep+ δ)n′(x0)

a(e+ δ)

(
k(ep+ δ)

ac(e+ δ)ϕ′2(0)

∂φ(x0, 0, 0, 0)

∂v
− 1

)
.

Therefore, from Assumption A1, we have n′(x0) < 0 and if

k(ep+ δ)

ac(e+ δ)ϕ′2(0)

∂φ(x0, 0, 0, 0)

∂v
> 1,

then Ψ′1(x0) < 0 and there exists an x1 ∈ (0, x0) such that Ψ1(x1) = 0. It follows from (3.11) that
w1 = f (x1) > 0, y1 = g(x1) > 0, and v1 = `(x1) > 0. It means that a chronic-infection equilibrium without

humoral immune response E1 = (x1, w1, y1, v1, 0) exists when k(ep+δ)
ac(e+δ)ϕ′2(0)

∂φ(x0,0,0,0)
∂v > 1. Let us define RL0

by

RL0 =
k(ep+ δ)

ac(e+ δ)ϕ′2(0)

∂φ(x0, 0, 0, 0)

∂v
.

which represents the basic infection reproduction number and determines whether a chronic-infection can

be established. The other possibility of (3.10) is v = v2 = ϕ−12

(µ
r

)
> 0. Insert the value of v2 in (3.6) and

define
Ψ2(x) = n(x)− φ(x, f(x), g(x), v2) = 0.

Clearly, Ψ2 is a strictly decreasing function of x, Ψ2(0) = n(0) > 0 and Ψ2(x0) = −φ(x0, 0, 0, v2) < 0. Thus,
there exists a unique x2 ∈ (0, x0) such that Ψ2(x2) = 0. It follows that

w2 = f (x2) > 0, y2 = g (x2) > 0, z2 = ϕ−13

(
c

q

(
k(ep+ δ)φ(x2, w2, y2, v2)

ac(e+ δ)ϕ2(v2)
− 1

))
.

Clearly, z2 > 0 when k(ep+δ)φ(x2,w2,y2,v2)
ac(e+δ)ϕ2(v2)

> 1. Now we define RL1 by

RL1 =
k(ep+ δ)φ(x2, w2, y2, v2)

ac(e+ δ)ϕ2(v2)
,

which represents the humoral immune response activation number and determines whether a persistent

humoral immune response can be established. Hence, z2 can be rewritten as z2 = ϕ−13

(
c

q
(RL1 − 1)

)
. It fol-

lows that there exists a chronic-infection equilibrium with humoral immune response E2 = (x2, w2, y2, v2, z2)
when RL1 > 1.

Now we show that E0, E1 ∈ Γ2 and E2 ∈
◦
Γ2. Clearly, E0 ∈ Γ2. Since x1 < x0, Assumption A1 implies

that
0 = n(x0) < n(x1) ≤ s− s̄x1.

It follows that
0 < x1 <

s

s̄
≤ s

σ2
= M1.

From (3.6)–(3.8), we get

α4w1 ≤ ξ (w1) =
(1− p)n(x1)

e+ δ
<

(1− p)n(0)

(e+ δ)
≤ (1− p)s

(e+ δ)
.

Since 0 < p < 1, we have

0 < w1 <
s

eα4
≤M1.
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Also,

aα1y1 ≤ aϕ1(y1) =
(ep+ δ)n(x1)

(e+ δ)
<

(ep+ δ)n(0)

(e+ δ)
≤ (ep+ δ)s

(e+ δ)
.

Since 0 < p < 1, we have

0 < y1 <
s

aα1
<

s
a
2α1
≤M1.

Equation (3.11) implies that

cα2v1 ≤ cϕ2(v1) =
k(ep+ δ)n(x1)

a(e+ δ)
<
k(ep+ δ)n(0)

a(e+ δ)
≤ ks(ep+ δ)

a(e+ δ)
≤ ks

a
⇒ 0 < v1 <

ks

acα2
<

2ks

acα2
≤M2.

We have also z1 = 0. Then E1 ∈ Γ2. Similarly, one can show that 0 < x2 < M1, 0 < w2 < M1, 0 < y2 < M1.
Now we show that 0 < v2 < M2 and 0 < z2 ≤M3. From (3.9), if RL1 > 1, then we have

cϕ2(v2) + qϕ2(v2)ϕ3(z2) = kϕ1(y2).

Then

cϕ2(v2) ≤ kϕ1(y2)⇒ cα2v2 ≤
k

a
n(x2) <

ks

a
⇒ 0 < v2 <

ks

acα2
<

2ks

acα2
≤M2,

and

qϕ2(v2)ϕ3(z2) ≤ kϕ1(y2)⇒
qµ

r
α3z2 ≤

k

a
n(x2) <

ks

a
⇒ 0 < z2 <

krs

aqµα3
<

2krs

aqµα3
≤M3.

Then, E2 ∈
◦
Γ2. Clearly, from Assumptions B1 and B3, we have

RL1 =
k(ep+ δ)φ(x2, w2, y2, v2)

ac(e+ δ)ϕ2(v2)
<
k(ep+ δ)φ(x2, 0, 0, v2)

ac(e+ δ)ϕ2(v2)
≤ k(ep+ δ)

ac(e+ δ)
lim
v→0+

φ(x2, 0, 0, v)

ϕ2(v)

=
k(ep+ δ)

ac(e+ δ)ϕ′2(0)

∂φ(x2, 0, 0, 0)

∂v
<

k(ep+ δ)

ac(e+ δ)ϕ′2(0)

∂φ(x0, 0, 0, 0)

∂v
= RL0 .

3.3. Global stability analysis

Theorem 3.3. For system (3.1)–(3.5), let Assumptions A1, A3 and B1–B3 be true and RL0 ≤ 1. Then E0

is GAS in Γ2.

Proof. Define a Lyapunov functional W0 by

W0(x,w, y, v, z) = x− x0 −
x∫

x0

lim
v→0+

φ(x0, 0, 0, v)

φ(η, 0, 0, v)
dη + k1w + k2y + k3v + k4z. (3.13)

where
k1(1− p) + k2p = 1, k1(e+ δ) = k2δ, k2a = k3k, k3q = k4r. (3.14)

The solution of (3.14) is given by

k1 =
δ

ep+ δ
, k2 =

e+ δ

ep+ δ
, k3 =

a(e+ δ)

k(ep+ δ)
, k4 =

aq(e+ δ)

kr(ep+ δ)
. (3.15)

It is clear that W0(x,w, y, v, z) > 0 for all x,w, y, v, z > 0 while W0(x,w, y, v, z) reaches its global minimum
at E0. The time derivative of W0 along the trajectories of (3.1)–(3.5) satisfies
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dW0

dt
=

(
1− lim

v→0+

φ(x0, 0, 0, v)

φ(x, 0, 0, v)

)
(n(x)− φ(x,w, y, v)) + k1 ((1− p)φ(x,w, y, v)− (e+ δ)ξ(w))

+ k2 (pφ(x,w, y, v) + δξ(w)− aϕ1(y)) + k3 (kϕ1(y)− cϕ2(v)− qϕ2(v)ϕ3(z))

+ k4 (rϕ2(v)ϕ3(z)− µϕ3(z))

= (n(x)− n(x0))

(
1− lim

v→0+

φ(x0, 0, 0, v)

φ(x, 0, 0, v)

)
+

(
φ(x,w, y, v)

ϕ2(v)
lim
v→0+

φ(x0, 0, 0, v)

φ(x, 0, 0, v)
− k3c

)
ϕ2(v)

− k4µϕ3(z)

≤ (n(x)− n(x0))

(
1− lim

v→0+

φ(x0, 0, 0, v)

φ(x, 0, 0, v)

)
+

(
φ(x, 0, 0, v)

ϕ2(v)
lim
v→0+

φ(x0, 0, 0, v)

φ(x, 0, 0, v)
− k3c

)
ϕ2(v)

− k4µϕ3(z)

≤ (n(x)− n(x0))

(
1− lim

v→0+

φ(x0, 0, 0, v)

φ(x, 0, 0, v)

)
+

(
lim
v→0+

φ(x, 0, 0, v)

ϕ2(v)
lim
v→0+

φ(x0, 0, 0, v)

φ(x, 0, 0, v)
− k3c

)
ϕ2(v)

− k4µϕ3(z)

≤ (n(x)− n(x0))

(
1− ∂φ(x0, 0, 0, 0)/∂v

∂φ(x, 0, 0, 0)/∂v

)
+ k3c

(
1

k3cϕ′2(0)

∂φ(x0, 0, 0, 0)

∂v
− 1

)
ϕ2(v)− k4µϕ3(z)

= (n(x)− n(x0))

(
1− ∂φ(x0, 0, 0, 0)/∂v

∂φ(x, 0, 0, 0)/∂v

)
+ k3c(R

L
0 − 1)ϕ2(v)− k4µϕ3(z). (3.16)

Similarly to the previous section, one can show that E0 is GAS.

The global stability of the equilibria E1 and E2 requires the following condition:
Assumption B4.(

φ(x,w, y, v)

φ(x,wi, yi, vi)
− ϕ2(v)

ϕ2(vi)

)(
1− φ(x,wi, yi, vi)

φ(x,w, y, v)

)
≤ 0, x,w, y, v > 0, i = 1, 2.

Lemma 3.4. Suppose that Assumptions A1, A3 and B1–B3 are satisfied and RL0 > 1. Then x1, x2, w1, w2, y1,
y2, v1, v2 exist satisfying

sgn(x2 − x1) = sgn(v1 − v2) = sgn(w1 − w2) = sgn(y1 − y2) = sgn(RL1 − 1).

Proof. It follows from Assumptions A1 and B2 that for x1, x2, w1, w2, y1, y2, v1, v2 > 0, we have

(n(x2)− n(x1)) (x1 − x2) > 0, (3.17)

(φ(x2, w2, y2, v2)− φ(x1, w2, y2, v2))(x2 − x1) > 0, (3.18)

(φ(x1, w2, y2, v2)− φ(x1, w1, y2, v2))(w1 − w2) > 0, (3.19)

(φ(x1, w1, y2, v2)− φ(x1, w1, y1, v2))(y1 − y2) > 0, (3.20)

(φ(x1, w1, y1, v2)− φ(x1, w1, y1, v1)) (v2 − v1) > 0. (3.21)

First, we claim sgn(x2 − x1) = sgn(v1 − v2). Suppose this is not true, i.e., sgn(x2 − x1) = sgn(v2 − v1).
Using the conditions of the equilibria E1 and E2 we would have

n(x2)− n(x1) = φ(x2, w2, y2, v2)− φ(x1, w1, y1, v1) =
e+ δ

1− p
(ξ(w2)− ξ(w1)) , (3.22)

and

n(x2)− n(x1) = φ(x2, w2, y2, v2)− φ(x1, w1, y1, v1) =
a (e+ δ)

ep+ δ
(ϕ1(y2)− ϕ1(y1)). (3.23)
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Since ξ and ϕ1 are increasing functions of w and y, respectively, then from (3.22) and (3.23) we would have
sgn(x1 − x2) = sgn(w2 − w1) = sgn(y2 − y1). Moreover,

n(x2)− n(x1) = φ(x2, w2, y2, v2)− φ(x1, w1, y1, v1)

= (φ(x2, w2, y2, v2)− φ(x1, w2, y2, v2)) + (φ(x1, w2, y2, v2)− φ(x1, w1, y2, v2))

+ (φ(x1, w1, y2, v2)− φ(x1, w1, y1, v2)) + (φ(x1, w1, y1, v2)− φ(x1, w1, y1, v1)).

Therefore, from (3.17)–(3.23) we would get

sgn (x1 − x2) = sgn (x2 − x1) ,

which leads to a contradiction. Thus, sgn (x2 − x1) = sgn (v1 − v2). Assumption B3 implies that(
φ(x1, w1, y1, v2)

ϕ2(v2)
− φ(x1, w1, y1, v1)

ϕ2(v1)

)
(v1 − v2) > 0. (3.24)

Using the equilibrium conditions for E1 we have k(ep+δ)φ(x1,w1,y1,v1)
ac(e+δ)ϕ2(v1)

= 1. Then

RL1 − 1 =
k(ep+ δ)φ(x2, w2, y2, v2)

ac(e+ δ)ϕ2(v2)
− k(ep+ δ)φ(x1, w1, y1, v1)

ac(e+ δ)ϕ2(v1)

=
k(ep+ δ)

ac(e+ δ)

[
φ(x2, w2, y2, v2)

ϕ2(v2)
− φ(x1, w1, y1, v1)

ϕ2(v1)

]
=
k(ep+ δ)

ac(e+ δ)

[
1

ϕ2(v2)
(φ(x2, w2, y2, v2)− φ(x1, w2, y2, v2))

+
1

ϕ2(v2)
(φ(x1, w2, y2, v2)− φ(x1, w1, y2, v2)) +

1

ϕ2(v2)
(φ(x1, w1, y2, v2)− φ(x1, w1, y1, v2))

+

(
φ(x1, w1, y1, v2)

ϕ2(v2)
− φ(x1, w1, y1, v1)

ϕ2(v1)

)]
.

Thus, from (3.18)–(3.20) and (3.22)–(3.24) we get sgn(RL1 − 1) = sgn(v1 − v2).

Theorem 3.5. For system (3.1)–(3.5), let Assumptions A1, A3 and B1–B4 be satisfied and RL1 ≤ 1 < RL0 .
Then E1 is GAS in Γ2.

Proof. We construct the following Lyapunov functional

W1(x,w, y, v, z) = x− x1 −
x∫

x1

φ(x1, w1, y1, v1)

φ(η, w1, y1, v1)
dη + k1

w − w1 −
w∫

w1

ξ(w1)

ξ(η)
dη


+ k2

y − y1 − y∫
y1

ϕ1(y1)

ϕ1(η)
dη

+ k3

v − v1 − v∫
v1

ϕ2(v1)

ϕ2(η)
dη

+ k4z, (3.25)

where ki, i = 1, 2, 3, 4, are defined by (3.15). It is obvious that W1(x,w, y, v, z) > 0 for all x,w, y, v, z > 0
while W1(x,w, y, v, z) reaches its global minimum at E1. The time derivative of W1 along the trajectories
of (3.1)–(3.5) is given by

dW1

dt
=

(
1− φ(x1, w1, y1, v1)

φ(x,w1, y1, v1)

)
(n(x)− φ(x,w, y, v)) + k1

(
1− ξ(w1)

ξ(w)

)
((1− p)φ(x,w, y, v)

−(e+ δ)ξ(w)) + k2

(
1− ϕ1(y1)

ϕ1(y)

)
(pφ(x,w, y, v) + δξ(w)− aϕ1(y))

+ k3

(
1− ϕ2(v1)

ϕ2(v)

)
(kϕ1(y)− cϕ2(v)− qϕ2(v)ϕ3(z)) + k4 (rϕ2(v)ϕ3(z)− µϕ3(z)) . (3.26)

Collecting the terms of (3.26) and applying n(x1) = φ(x1, w1, y1, v1), kϕ1(y1) = cϕ2(v1) we get
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dW1

dt
= (n(x)− n(x1))

(
1− φ(x1, w1, y1, v1)

φ(x,w1, y1, v1)

)
+ φ(x1, w1, y1, v1)

(
1− φ(x1, w1, y1, v1)

φ(x,w1, y1, v1)

)
+ φ(x,w, y, v)

φ(x1, w1, y1, v1)

φ(x,w1, y1, v1)
+ k1

(
−(1− p)φ(x,w, y, v)

ξ(w1)

ξ(w)
+ (e+ δ)ξ(w1)

)
+ k2

(
−pφ(x,w, y, v)

ϕ1(y1)

ϕ1(y)
− δϕ1(y1)ξ(w)

ϕ1(y)
+ aϕ1(y1)

)
+ k3

(
−cϕ2(v)− kϕ1(y)ϕ2(v1)

ϕ2(v)
+ kϕ1(y1) + qϕ2(v1)ϕ3(z)

)
+ k4 (−µϕ3(z)) . (3.27)

Using the equilibrium conditions for E1, one can easily obtain that

k1(1− p)φ(x1, w1, y1, v1) = k1(e+ δ)ξ(w1) = k2δξ(w1), k2aϕ1(y1) = φ(x1, w1, y1, v1).

Then, we have

dW1

dt
= (n(x)− n(x1))

(
1− φ(x1, w1, y1, v1)

φ(x,w1, y1, v1)

)
+ φ(x1, w1, y1, v1)

(
1− φ(x1, w1, y1, v1)

φ(x,w1, y1, v1)

)
+ φ(x1, w1, y1, v1)

φ(x,w, y, v)

φ(x,w1, y1, v1)
− k1(1− p)φ(x1, w1, y1, v1)

ξ(w1)φ(x,w, y, v)

ξ(w)φ(x1, w1, y1, v1)

+ k1(1− p)φ(x1, w1, y1, v1)− k2pφ(x1, w1, y1, v1)
ϕ1(y1)φ(x,w, y, v)

ϕ1(y)φ(x1, w1, y1, v1)

− k2δξ(w1)
ϕ1(y1)ξ(w)

ϕ1(y)ξ(w1)
+ φ(x1, w1, y1, v1)− k2aϕ1(y1)

ϕ2(v)

ϕ2(v1)
− k2aϕ1(y1)

ϕ1(y)ϕ2(v1)

ϕ1(y1)ϕ2(v)

+ k2aϕ1(y1) +
k2aq

k
ϕ2(v1)ϕ3(z)−

k2aqµ

rk
ϕ3(z)

= (n(x)− n(x1))

(
1− φ(x1, w1, y1, v1)

φ(x,w1, y1, v1)

)
+ (k1(1− p) + k2p)φ(x1, w1, y1, v1)

(
1− φ(x1, w1, y1, v1)

φ(x,w1, y1, v1)

)
+ φ(x1, w1, y1, v1)

(
φ(x,w, y, v)

φ(x,w1, y1, v1)
− ϕ2(v)

ϕ2(v1)

)
− k1(1− p)φ(x1, w1, y1, v1)

ξ(w1)φ(x,w, y, v)

ξ(w)φ(x1, w1, y1, v1)

+ k1(1− p)φ(x1, w1, y1, v1)− k2pφ(x1, w1, y1, v1)
ϕ1(y1)φ(x,w, y, v)

ϕ1(y)φ(x1, w1, y1, v1)

− k1(1− p)φ(x1, w1, y1, v1)
ϕ1(y1)ξ(w)

ϕ1(y)ξ(w1)
+ k1(1− p)φ(x1, w1, y1, v1) + k2pφ(x1, w1, y1, v1)

− k1(1− p)φ(x1, w1, y1, v1)
ϕ1(y)ϕ2(v1)

ϕ1(y1)ϕ2(v)
− k2pφ(x1, w1, y1, v1)

ϕ1(y)ϕ2(v1)

ϕ1(y1)ϕ2(v)

+ k1(1− p)φ(x1, w1, y1, v1) + k2pφ(x1, w1, y1, v1) + k2
aq

k
(ϕ2(v1)− ϕ2(v2))ϕ3(z). (3.28)

Collecting the terms of (3.28) we get

dW1

dt
= (n(x)− n(x1))

(
1− φ(x1, w1, y1, v1)

φ(x,w1, y1, v1)

)
+ φ(x1, w1, y1, v1)

(
φ(x,w, y, v)

φ(x,w1, y1, v1)
− ϕ2(v)

ϕ2(v1)

)(
1− φ(x,w1, y1, v1)

φ(x,w, y, v)

)
+ (1− p)k1φ(x1, w1, y1, v1)

[
5− φ(x1, w1, y1, v1)

φ(x,w1, y1, v1)
− ξ(w1)φ(x,w, y, v)

ξ(w)φ(x1, w1, y1, v1)

−ϕ1(y1)ξ(w)

ϕ1(y)ξ(w1)
− ϕ1(y)ϕ2(v1)

ϕ1(y1)ϕ2(v)
− ϕ2(v)φ(x,w1, y1, v1)

ϕ2(v1)φ(x,w, y, v)

]
+ pk2φ(x1, w1, y1, v1)

[
4− φ(x1, w1, y1, v1)

φ(x,w1, y1, v1)
− ϕ1(y1)φ(x,w, y, v)

ϕ1(y)φ(x1, w1, y1, v1)
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−ϕ1(y)ϕ2(v1)

ϕ1(y1)ϕ2(v)
− ϕ2(v)φ(x,w1, y1, v1)

ϕ2(v1)φ(x,w, y, v)

]
+ k2

aq

k
(ϕ2(v1)− ϕ2(v2))ϕ3(z). (3.29)

Assumptions A1, A3 and B1–B4 imply that the first and second terms of (3.29) are less than or equal to
zero. Because the geometrical mean is less than or equal to the arithmetical mean, the third and fourth
terms of (3.29) are less than or equal to zero. Lemma 4 implies that if RL1 ≤ 1, then ϕ2(v1) ≤ ϕ2(v2).
Therefore, if RL1 ≤ 1, then dW1

dt ≤ 0 for all x,w, y, v, z > 0 where the equality occurs at the equilibrium E1.
LaSalle’s invariance principle implies the global asymptotic stability of E1.

Theorem 3.6. For system (3.1)–(3.5), let Assumptions A1, A3 and B1–B4 be satisfied and RL1 > 1. Then

E2 is GAS in
◦
Γ2.

Proof. We construct the following Lyapunov functional

W2(x,w, y, v, z) = x− x2 −
x∫

x2

φ(x2, w2, y2, v2)

φ(η, w2, y2, v2)
dη + k1

w − w2 −
w∫

w2

ξ(w2)

ξ(η)
dη


+ k2

y − y2 − y∫
y2

ϕ1(y2)

ϕ1(η)
dη

+ k3

v − v2 − v∫
v2

ϕ2(v2)

ϕ2(η)
dη


+ k4

z − z2 − z∫
z2

ϕ3(z2)

ϕ3(η)
dη

 , (3.30)

where ki, i = 1, 2, 3, 4, are defined by (3.15). It can be seen that W2(x,w, y, v, z) > 0 for all x,w, y, v, z > 0
while W2(x,w, y, v, z) reaches its global minimum at E2. The time derivative of W2 along the trajectories
of (3.1)–(3.5) is given by

dW2

dt
=

(
1− φ(x2, w2, y2, v2)

φ(x,w2, y2, v2)

)
(n(x)− φ(x,w, y, v)) + k1

(
1− ξ(w2)

ξ(w)

)
((1− p)φ(x,w, y, v)

−(e+ δ)ξ(w)) + k2

(
1− ϕ1(y2)

ϕ1(y)

)
(pφ(x,w, y, v) + δξ(w)− aϕ1(y))

+ k3

(
1− ϕ2(v2)

ϕ2(v)

)
(kϕ1(y)− cϕ2(v)− qϕ2(v)ϕ3(z))

+ k4

(
1− ϕ3(z2)

ϕ3(z)

)
(rϕ2(v)ϕ3(z)− µϕ3(z)) . (3.31)

Applying n(x2) = φ(x2, w2, y2, v2) and collecting the terms of (3.31) we get

dW2

dt
= (n(x)− n(x2))

(
1− φ(x2, w2, y2, v2)

φ(x,w2, y2, v2)

)
+ φ(x2, w2, y2, v2)

(
1− φ(x2, w2, y2, v2)

φ(x,w2, y2, v2)

)
+ φ(x,w, y, v)

φ(x2, w2, y2, v2)

φ(x,w2, y2, v2)
+ k1

(
−(1− p)φ(x,w, y, v)

ξ(w2)

ξ(w)
+ (e+ δ)ξ(w2)

)
+ k2

(
−pφ(x,w, y, v)

ϕ1(y2)

ϕ1(y)
− δϕ1(y2)ξ(w)

ϕ1(y)
+ aϕ1(y2)

)
+ k3

(
−cϕ2(v)− kϕ1(y)ϕ2(v2)

ϕ2(v)
+ cϕ2(v2) + qϕ2(v2)ϕ3(z)

)
+ k4 (−µϕ3(z)− rϕ3(z2)ϕ2(v) + µϕ3(z2)) . (3.32)

Using the equilibrium conditions for E2, one can easily obtain

k1(1− p)φ(x2, w2, y2, v2) = k1(e+ δ)ξ(w2) = k2δξ(w2), k2aϕ1(y2) = φ(x2, w2, y2, v2),
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kϕ1(y2) = cϕ2(v2) + qϕ2(v2)ϕ3(z2), µ = rϕ2(v2).

Then, we get

dW2

dt
= (n(x)− n(x2))

(
1− φ(x2, w2, y2, v2)

φ(x,w2, y2, v2)

)
+ φ(x2, w2, y2, v2)

(
1− φ(x2, w2, y2, v2)

φ(x,w2, y2, v2)

)
+ φ(x2, w2, y2, v2)

φ(x,w, y, v)

φ(x,w2, y2, v2)
− k1(1− p)φ(x2, w2, y2, v2)

ξ(w2)φ(x,w, y, v)

ξ(w)φ(x2, w2, y2, v2)

+ k1(1− p)φ(x2, w2, y2, v2)− k2pφ(x2, w2, y2, v2)
ϕ1(y2)φ(x,w, y, v)

ϕ1(y)φ(x2, w2, y2, v2)

− k2δξ(w2)
ϕ1(y2)ξ(w)

ϕ1(y)ξ(w2)
+ φ(x2, w2, y2, v2)−

k2a

k
cϕ2(v2)

ϕ2(v)

ϕ2(v2)

− k2aϕ1(y2)
ϕ1(y)ϕ2(v2)

ϕ1(y2)ϕ2(v)
+
k2a

k
cϕ2(v2)−

k2aq

k
ϕ2(v2)ϕ3(z2)

ϕ2(v)

ϕ2(v2)
+
k2aq

k
ϕ2(v2)ϕ3(z2)

= (n(x)− n(x2))

(
1− φ(x2, w2, y2, v2)

φ(x,w2, y2, v2)

)
+ φ(x2, w2, y2, v2)

(
3− φ(x2, w2, y2, v2)

φ(x,w2, y2, v2)

)
+ φ(x2, w2, y2, v2)

φ(x,w, y, v)

φ(x,w2, y2, v2)
− k1(1− p)φ(x2, w2, y2, v2)

ξ(w2)φ(x,w, y, v)

ξ(w)φ(x2, w2, y2, v2)

+ k1(1− p)φ(x2, w2, y2, v2)− k2pφ(x2, w2, y2, v2)
ϕ1(y2)φ(x,w, y, v)

ϕ1(y)φ(x2, w2, y2, v2)

− k1(1− p)φ(x2, w2, y2, v2)
ϕ1(y2)ξ(w)

ϕ1(y)ξ(w2)
− φ(x2, w2, y2, v2)

ϕ2(v)

ϕ2(v2)

− φ(x2, w2, y2, v2)
ϕ1(y)ϕ2(v2)

ϕ1(y2)ϕ2(v)
. (3.33)

Collecting the terms we get

dW2

dt
= (n(x)− n(x2))

(
1− φ(x2, w2, y2, v2)

φ(x,w2, y2, v2)

)
+ φ(x2, w2, y2, v2)

(
φ(x,w, y, v)

φ(x,w2, y2, v2)
− ϕ2(v)

ϕ2(v2)

)(
1− φ(x,w2, y2, v2)

φ(x,w, y, v)

)
+ (1− p)k1φ(x2, w2, y2, v2)

[
5− φ(x2, w2, y2, v2)

φ(x,w2, y2, v2)
− ξ(w2)φ(x,w, y, v)

ξ(w)φ(x2, w2, y2, v2)

−ϕ1(y2)ξ(w)

ϕ1(y)ξ(w2)
− ϕ1(y)ϕ2(v2)

ϕ1(y2)ϕ2(v)
− ϕ2(v)φ(x,w2, y2, v2)

ϕ2(v2)φ(x,w, y, v)

]
+ pk2φ(x2, w2, y2, v2)

[
4− φ(x2, w2, y2, v2)

φ(x,w2, y2, v2)
− ϕ1(y2)φ(x,w, y, v)

ϕ1(y)φ(x2, w2, y2, v2)

−ϕ1(y)ϕ2(v2)

ϕ1(y2)ϕ2(v)
− ϕ2(v)φ(x,w2, y2, v2)

ϕ2(v2)φ(x,w, y, v)

]
. (3.34)

Thus, if RL1 > 1, then x2, w2, y2, v2 and z2 > 0. From Assumptions A1, A3 and B1–B4, we get that the first
and second terms of (3.34) are less than or equal to zero. Since the arithmetical mean is greater than or
equal to the geometrical mean, we have dW2

dt ≤ 0 for all x,w, y, v, z > 0. Similar to the proof of Theorem 3,

one can easily show that E2 is GAS in
◦
Γ2.

4. Conclusion

We proposed and analyzed two nonlinear viral infection models with humoral immune response. The first
model contains four compartments, the uninfected target cells, productively infected cells, free virus particles
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and B cells. In the second model, two classes of infected cells were considered, productively infected cells
and latently infected cells. We considered more general nonlinear functions for the incidence, production
and removal rates. We derived a set of conditions on these general functions and determined the threshold
parameters to prove the existence and the global stability of the model’s equilibria. The global asymptotic
stability of the three equilibria for each model, infection-free, chronic-infection without humoral immune
response and chronic-infection with humoral immune response is proven using direct Lyapunov method and
LaSalle’s invariance principle.
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