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Abstract

In this paper, we study solution and periodic nature of the following difference equations

xn+1 =
xn−1xn−5

xn−3(±1± xn−1xn−5)
, n = 0, 1, ...,

where the initial conditions x−5, x−4, x−3, x−2, x−1, x0 are arbitrary positive real numbers. we studied the
equilibrium points of the given equation. Some qualitative properties such as the global stability, and the
periodic character of the solutions in each case have been studied. We presented some numerical examples
by using random initial values and the coefficients of each case. Some figures have been given to explain
the behavior of the obtained solutions by using MATLAB to confirm the obtained results. c©2016 All rights
reserved.
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1. Introduction

This paper deals with the behavior of the solutions of the recursive sequences

xn+1 =
xn−1xn−5

xn−3(±1± xn−1xn−5)
, n = 0, 1, ..., (1.1)

where the initial conditions x−5, x−4, x−3, x−2, x−1, x0, are arbitrary positive real numbers. Also we obtain
the form and study the solution of some special equations.
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The study and solution of nonlinear rational recursive sequence of high order is quite challenging and
rewarding. Recently, there has been a lot of interest in studying the qualitative properties of rational recursive
sequences, Furthermore diverse nonlinear trend occurring in science and engineering can be modeled by such
equations and the solution about such equations offer prototypes towards the development of the theory.
However, there have not been any suitable general method to deal with the global behavior of rational
difference equations of high order so far. Therefore, the study of rational difference equations of order
greater than one is worth further consideration.

Aloqeili [2] has obtained the solutions of the difference equation

xn+1 =
xn−1

a− xnxn−1
.

Cinar [4] investigated the solutions of the following difference equation

xn+1 =
xn−1

1 + axnxn−1
.

Ibrahim [16] studied the solutions of the rational recursive sequence

xn+1 =
xnxn−2

xn−1(a+ bxnxn−2)
.

Karatas et al [17] gave the solution of the following difference equation

xn+1 =
xn−5

1 + xn−2xn−5
.

Simsek et al. [26] investigated the global stability, periodicity character and gave the solution of some special
cases of the difference equation

xn+1 =
xn−3

1 + xn−1
.

Yalçınkaya [31] has studied the boundedness, global stability, periodicity character and gave the solution of
some special cases of the difference equation

xn+1 =
a.xn−k
b+ cxpn

.

Yalçınkaya [30] has studied the following difference equation

xn+1 = α+
xn−m
xkn

.

See also [1]-[19]. Other related work on rational difference equations see in Refs. [20]-[34].
Here, we recall some basic definitions and some theorems that we need in the sequel.
Let I be some interval of real numbers and let

F : Ik+1 → I (1.2)

be a continuously differentiable function. Then for every set of initial conditions x−k, x−k+1, ...,x0 ∈ I, the
difference equation

xn+1 = F (xn, xn−1, ..., xn−k), n = 0, 1, ... (1.3)

has a unique solution {xn}∞n=−k.

Definition 1.1 (Equilibrium Point). A point x ∈ I is called an equilibrium point of (1.3) if

x = F (x, x, ..., x).

That is, xn = x for n ≥ 0, is a solution of (1.3), or equivalently, x is a fixed point of f .
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Definition 1.2 (Periodicity). A Sequence {xn}∞n=−k is said to be periodic with period p if xn+p = xn for
all n ≥ −k.

Definition 1.3 (Stability).

(i) The equilibrium point x of (1.3) is locally stable if for every ε > 0, there exists δ > 0 such that for
all x−k, x−k+1, ..., x−1, x0 ∈ I with

|x−k − x|+ |x−k+1 − x|+ ...+ |x0 − x| < δ,

we have
|xn − x| < ε for all n ≥ −k.

(ii) The equilibrium point x of (1.3) is locally asymptotically stable if x is locally stable solution of (1.3)
and there exists γ > 0, such that for all x−k, x−k+1, ..., x−1, x0 ∈ I with

|x−k − x|+ |x−k+1 − x|+ ...+ |x0 − x| < γ,

we have
lim
n→∞

xn = x.

(iii) The equilibrium point x of (1.3) is global attractor if for all x−k, x−k+1, ..., x−1, x0 ∈ I, we have

lim
n→∞

xn = x.

(iv) The equilibrium point x of (1.3) is globally asymptotically stable if x is locally stable, and x is also a
global attractor of (1.3).

(v) The equilibrium point x of (1.3) is unstable if x is not locally stable.

(vi) The linearized equation of (1.3) about the equilibrium x is the linear difference equation.

yn+1 =
k∑

i=0

∂F (x,x,...,x)
∂xn−i

yn−i.

Theorem A ([18]). Assume that p, q ∈ R and k ∈ {0, 1, 2, ...}. Then

|p|+ |q| < 1,

is a sufficient condition for the asymptotic stability of the difference equation

xn+1 + pxn + qxn−k = 0, n = 0, 1, ... .

Remark 1.4. Theorem A can be easily extended to a general linear equations of the form

xn−k + p1xn+k−1 + · · ·+ pkxn = 0, n = 0, 1, 2, · · · , (1.4)

where p1, p2, ..., pk ∈ R and k ∈ {1, 2, · · · }. Then Eq. (1.4) is asymptotically stable provided that

k∑
i=1

| pi | < 1.

2. On the Equation xn+1 = xn−1xn−5/(xn−3(1 + xn−1xn−5))

In this section, we give a specific form of the solution of the first equation in the form
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xn+1 =
xn−1xn−5

xn−3(1 + xn−1xn−5)
, n = 0, 1, ..., (2.1)

where the initial values are arbitrary non-zero real numbers.

Theorem 2.1. Let {xn}∞n=−5 be a solution of Eq. (2.1). Then for n = 0, 1, ...,

x8n−5 = f

n−1∏
i=1

(
1 + 4ibf

1 + (4i+ 2)bf

)
, x8n−4 = e

n−1∏
i=1

(
1 + 4iae

1 + (4i+ 2)ae

)
,

x8n−3 = d
n−1∏
i=1

(
1 + (4i+ 1)bf

1 + (4i+ 3)bf

)
, x8n−2 = c

n−1∏
i=1

(
1 + (4i+ 1)ae

1 + (4i+ 3)ae

)
,

x8n−1 = b
n−1∏
i=1

(
1 + (4i+ 2)bf

1 + (4i+ 4)bf

)
, x8n = a

n−1∏
i=1

(
1 + (4i+ 2)ae

1 + (4i+ 4)ae

)
,

x8n+1 =
bf

d(1 + bf)

n−1∏
i=1

(
1 + (4i+ 3)bf

1 + (4i+ 5)bf

)
, x8n+2 =

ae

c(1 + ae)

n−1∏
i=1

(
1 + (4i+ 3)ae

1 + (4i+ 5)ae

)
,

where x−5 = f, x−4 = e, x−3 = d, x−2 = c, x−1 = b, x0 = a.

Proof. For n = 0, the result holds. Now, suppose that n > 0 and that our assumption holds for n− 1. That
is,

x8n−13 = f

n−2∏
i=1

(
1 + 4ibf

1 + (4i+ 1)bf

)
, x8n−12 = e

n−2∏
i=1

(
1 + 4iae

1 + (4i+ 2)ae

)
,

x8n−11 = d

n−2∏
i=1

(
1 + (4i+ 1)bf

1 + (4i+ 3)bf

)
, x8n−10 = c

n−2∏
i=1

(
1 + (4i+ 1)ae

1 + (4i+ 3)ae

)
,

x8n−9 = b
n−2∏
i=1

(
1 + (4i+ 2)bf

1 + (4i+ 4)bf

)
, x8n−8 = a

n−2∏
i=1

(
1 + (4i+ 2)ae

1 + (4i+ 4)ae

)
,

x8n−7 =
bf

d(1 + bf)

n−2∏
i=1

(
1 + (4i+ 3)bf

1 + (4i+ 5)bf

)
, x8n−6 =

ae

c(1 + ae)

n−2∏
i=1

(
1 + (4i+ 3)ae

1 + (4i+ 5)ae

)
.

Now, it follows from (2.1) that,

x8n−5 =
x8n−7x8n−11

x8n−9(1 + x8n−7x8n−11)

=

bf
d(1+bf)

n−2∏
i=1

(
1 + (4i+ 3)bf

1 + (4i+ 5)bf

)
d
n−2∏
i=1

(
1 + (4i+ 1)bf

1 + (4i+ 3)bf

)

b
n−2∏
i=1

(
1 + (4i+ 2)bf

1 + (4i+ 4)bf

)(
1 +

bf

d(1 + bf)

n−2∏
i=1

(
1 + (4i+ 3)bf

1 + (4i+ 5)bf

)
d
n−2∏
i=1

(
1 + (4i+ 1)bf

1 + (4i+ 3)bf

))

=

bf
d(1+bf)

n−2∏
i=1

(
1 + (4i+ 1)bf

1 + (4i+ 5)bf

)

b
n−2∏
i=1

(
1 + (4i+ 2)bf

1 + (4i+ 4)bf

)(
1 +

bf

d(1 + bf)

n−2∏
i=1

(
1 + (4i+ 1)bf

1 + (4i+ 5)bf

))

=

(
bf

1+(4n+1)bf

)
b
n−2∏
i=1

(
1 + (4i+ 2)bf

1 + (4i+ 4)bf

)(
1 +

bf

1 + (4n+ 1)bf

)
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=
f

n−2∏
i=1

(
1 + (4i+ 2)bf

1 + (4i+ 4)bf

)
(1 + (4n+ 1)bf + bf)

= f

n−2∏
i=1

(
1 + (4i+ 4)bf

1 + (4i+ 2)bf

)
1

(1 + (4n+ 2)bf)
.

Hence we have

x8n−5 = f
n−1∏
i=1

(
1 + 4ibf

1 + (4i+ 2)bf

)
.

Similarly we see that,

x8n+1 =
x8n−1x8n−5

x8n−3(1 + x8n−17x8n−5)

=

b
n−2∏
i=1

(
1 + (4i+ 2)bf

1 + (4i+ 4)bf

)
f

n−2∏
i=1

(
1 + 4ibf

1 + (4i+ 2)bf

)

d
n−2∏
i=1

(
1 + (4i+ 1)bf

1 + (4i+ 3)bf

)(
1 + b

n−2∏
i=1

(
1 + (4i+ 2)bf

1 + (4i+ 4)bf

)
f

n−2∏
i=1

(
1 + 4ibf

1 + (4i+ 2)bf

))

=

bf
n−2∏
i=1

(
1 + (4i)bf

1 + (4i+ 4)bf

)

d
n−2∏
i=1

(
1 + (4i+ 1)bf

1 + (4i+ 3)bf

)(
1 + bf

n−2∏
i=1

(
1 + (4i)bf

1 + (4i+ 4)bf

))

=

(
bf

1+4nbf

)
d
n−2∏
i=1

(
1 + (4i+ 1)bf

1 + (4i+ 3)bf

)(
1 +

bf

1 + 4nbf

)
=

bf

d

n−2∏
i=1

(
1 + (4i+ 1)bf

1 + (4i+ 3)bf

)
(1 + 4nbf + bf)

=

n−2∏
i=1

(
1 + (4i+ 3)bf

1 + (4i+ 1)bf

)
bf

d (1 + (4n+ 1)bf)
.

Hence we have,

x8n+1 =
bf

d (1 + bf)

n−1∏
i=1

(
1 + (4i+ 3)bf

1 + (4i+ 5)bf

)
.

Similarly, one can easily obtain the other relations. Thus, the proof is completed.

Theorem 2.2. Eq. (2.1) has a unique equilibrium point which is x = 0, and is not locally asymptotically
stable.

Proof. From Eq. (2.1), we see that

x =
x2

x(1 + x2)
,

or
x2(1 + x2 − 1) = 0,

x4 = 0.



A. Khaliq, E. M. Elsayed, J. Nonlinear Sci. Appl. 9 (2016), 1052–1063 1057

Thus the equilibrium point of Eq. (2.1) is x = 0.
Let f : (0,∞)3 −→ (0,∞) be a continuously differentiable function defined by

f(u, v, w) =
uw

v(1 + uw)
.

Therefore at x = 0, we get (
∂f

∂u

)
x

= 1,

(
∂f

∂v

)
x

= 1,

(
∂f

∂w

)
x

= 1.

The proof follows by using Theorem A.

Now, we consider some numerical examples which represent different types of solutions to Eq. (2.1).

Example 2.3. We assume x−5 = 13, x−4 = 7, x−3 = 19, x−2 = 10, x−1 = 15, x0 = 10. (See Figure 1).
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Figure 1

Example 2.4. See Figure 2, where we put x−5 = 4, x−4 = 7, x−3 = 2, x−2 = 6, x−1 = 9, x0 = 1.
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3. On the Equation xn+1 = xn−1xn−5/(xn−3(−1 + xn−1xn−5))

In this section, we give a specific form of the solution of the second equation in the form

xn+1 =
xn−1xn−5

xn−3(−1 + xn−1xn−5)
, n = 0, 1, ..., (3.1)

where the initial values are arbitrary non zero real numbers with x−1x−5, x0x−4 6= 1.

Theorem 3.1. Let {xn}∞n=−5be a solution of Eq. (3.1) Then every solution of Eq. (3.1) is periodic with
period 8. Moreover, {xn}∞n=−5 takes the form{

f, e, d, c, b, a,
bf

d(−1 + bf)
,

ae

c(−1 + ae)
, f, e, d, c, b, a, ...

}
,

or,

x8n−5 = f, x8n−4 = e, x8n−3 = d, x8n−2 = c,

x8n−1 = b, x8n = a, x8n+1 =
bf

d(−1 + bf)
, x8n+2 =

ae

c(−1 + ae)
.

Proof. As proof of Theorem 2.1 so will be omitted.

Theorem 3.2. Eq. (3.1) has two equilibrium points which are 0,±
√

2 and these equilibrium points are not
locally asymptotically stable.

Proof. For the equilibrium points of Eq. (3.1), we can write

x =
x2

x(−1 + x2)
,

or
x2(x2 − 2) = 0.

Thus, the equilibrium points of Eq. (3.1) are 0 and ±
√

2.
Let f : (0,∞)3 −→ (0,∞) be a continuously differentiable function defined by

f(u, v, w) =
uw

v(1 + uw)
.

Therefore at x = 0 (
∂f

∂u

)
x

= −1,

(
∂f

∂v

)
x

= ±1,

(
∂f

∂w

)
x

= −1.

The proof follows by using Theorem A.

Example 3.3. We assume x−5 = 3, x−4 = 7, x−3 = 9, x−2 = 10, x−1 = 7, x0 = 4/9. ( See Figure 3).

Example 3.4. See Figure 4 when we take x−5 = 4, x−4 = 7, x−3 = 2, x−2 = 6, x−1 = 9, x0 = 1.
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The following cases can be proved similarly.

4. On the Equation xn+1 = xn−1xn−5/(xn−3(1 − xn−1xn−5))

In this section, we obtain the form of the solution of the third equation in the form

xn+1 =
xn−1xn−5

xn−3(1− xn−1xn−5)
, n = 0, 1, ..., (4.1)

where the initial values are arbitrary non zero real numbers.

Theorem 4.1. Let {xn}∞n=−5 be a solution of Eq. (4.1). Then for n = 0, 1, ..., we see that

x8n−5 = f
n−1∏
i=1

(
1− 4ibf

1− (4i+ 2)bf

)
, x8n−4 = e

n−1∏
i=1

(
1− 4iae

1− (4i+ 2)ae

)
,

x8n−3 = d
n−1∏
i=1

(
1− (4i+ 1)bf

1− (4i+ 3)bf

)
, x8n−2 = c

n−1∏
i=1

(
1− (4i+ 1)ae

1− (4i+ 3)ae

)
,
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x8n−1 = b
n−1∏
i=1

(
1− (4i+ 2)bf

1− (4i+ 4)bf

)
, x8n = a

n−1∏
i=1

(
1− (4i+ 2)ae

1− (4i+ 4)ae

)
,

x8n+1 =
bf

d(1− bf)

n−1∏
i=1

(
1− (4i+ 3)bf

1− (4i+ 5)bf

)
, x8n+2 =

ae

c(1− ae)

n−1∏
i=1

(
1− (4i+ 3)ae

1− (4i+ 5)ae

)
.

Theorem 4.2. Eq. (4.1) has a unique equilibrium point which is x = 0, and is not locally asymptotically
stable.

Example 4.3. We put the initial conditions as follows x−5 = 2, x−4 = 5, x−3 = 9, x−2 = 5, x−1 = 1, x0 =
3. (See Figure 5).

Example 4.4. See Figure 6, since x−5 = 3, x−4 = 7, x−3 = 2, x−2 = 6, x−1 = 8, x0 = 2/5.
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5. On the Equation xn+1 = xn−1xn−5/(xn−3(−1 − xn−1xn−5))

In this section, we get the solutions form of the fourth difference equation as follows

xn+1 =
xn−1xn−5

xn−3(−1− xn−1xn−5)
, n = 0, 1, ..., (5.1)

where the initial values are arbitrary non zero real numbers with x−1x−5, x0x−4 6= −1.
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Theorem 5.1. Let {xn}∞n=−5be a solution of Eq. (5.1) Then every solution of it is periodic with period 8.
Moreover, {xn}∞n=−5 takes the form{

f, e, d, c, b, a,
bf

d(−1− bf)
,

ae

c(−1− ae)
, f, e, d, c, b, a, ...

}
,

or,

x8n−5 = f, x8n−4 = e, x8n−3 = d, x8n−2 = c,

x8n−1 = b, x8n = a, x8n+1 =
bf

d(−1− bf)
, x8n+2 =

ae

c(−1− ae)
.

Example 5.2. We suppose that x−5 = 9, x−4 = 7, x−3 = 12, x−2 = 3, x−1 = 2, x0 = 5. ( See Figure 7).

Example 5.3. Figure 8, shows the periodicity of the solution when x−5 = −7, x−4 = 5, x−3 = 8, x−2 = 6,
x−1 = 9, x0 = 5/9.
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