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1. Introduction and Preliminaries

As it is well documented, differential evolution equations with time delays have been the subject of a
huge number of articles and a sizeable number of books either from the theoretical point of view or for
practical considerations, see for example [12] and [34]. Also, differential equations with operations on the
space variable received great attention starting with Carleman [6] (equations with shift (involution)) and
followed with great attention by Przewoerska-Rolewicz [17, 18, 19, 20, 21, 22, 23], Aftabizadeh et al. [1],
Andreev [3], [4], Burlutskayaa et al. [5], Gupta [7], [8], [9], Watkins [31], Viner [29], [30], and Wiener
[32], [33]; for spectral problems and inverse problems for equations with involutions we may cite the recent
works of Kaliev et al. [10], [11], Sadybekov et al. [15], [16], [25], Sarsenbi et al. [13], [26] and [27]. The
papers of Aliev [2] and Rus [24] concern the maximum principle for equations with a delay in the space
variable. For general facts about partial functional-differential equations (equations with transformations in
the arguments), we refer to the books of Skubachevskii [28] and Wu [34]. In this paper, we consider inverse
problems for the wave equation with involution.
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2. Statement of the problems

Let Ω = {−π ≤ x ≤ π, 0 ≤ t ≤ T} be a rectangular domain. In this domain, we consider the equation

utt (x, t)− uxx (x, t) + εuxx (−x, t) = f(x), (x, t) ∈ Ω, (2.1)

where, ε is a nonzero real number such that |ε| < 1.
We specifically consider the following two problems.
Problem P1. Find a pair of functions (u (x, t) , f(x)) in the domain Ω satisfying equation (2.1) and

the following conditions:

u (x, 0) = φ(x), ut (x, 0) = ρ(x), u (x, T ) = ψ(x), x ∈ [−π, π] , (2.2)

u (−π, t) = 0, u (π, t) = 0, t ∈ [0, T ] , (2.3)

where φ(x) and ψ(x) are given sufficiently smooth functions.

Problem P2. Find a pair of functions (u (x, t) , f(x)) in the domain Ω satisfying equation (2.1),
conditions (2.2), and

ux (−π, t) = 0, ux (π, t) = 0, t ∈ [0, T ] . (2.4)

By a regular solution to Problem P1 or P2, we mean a pair of functions (u (x, t) , f(x)), where u (x, t) ∈
C2,2
x,t (Ω), f(x) ∈ C [−π, π].

3. The Spectral Problem

Using the method of separation of variables for solving the homogeneous partial differential equation in
problems P1 and P2 leads to the spectral problem consisting of the equation

X ′′(x)− εX ′′ (−x) + λX(x) = 0, −π ≤ x ≤ π, (3.1)

and one of the following boundary conditions

X (−π) = X (π) = 0, (3.2)

X ′ (−π) = X ′ (π) = 0. (3.3)

The Sturm–Liouville problem for the equation (3.1) with one of the boundary conditions (3.2)–(3.3)
is self-adjoint; it has real eigenvalues and their corresponding eigenfunctions form a complete orthonormal
basis in L2 (−π, π) [14]. To further investigate the problems under consideration, we need to calculate the
explicit form of the eigenvalues and eigenfunctions.

By expressing the function X as a sum of even and odd functions [13], it can be shown that the problem
(3.1), (3.2) has the following eigenvalues

λk,1 = (1 + ε) k2, k ∈ N, λk,2 = (1− ε)
(
k +

1

2

)2

, k ∈ N ∪ {0} ,

and the corresponding normalized eigenfunctions are given by

Xk,1 =
1√
π

sin kx, k ∈ N, Xk,2 =
1√
π

cos

(
k +

1

2

)
x, k ∈ N ∪ {0} . (3.4)

Similarly, the eigenvalues for the problem (3.1), (3.3) are given by

λk,1 = (1 + ε)

(
k +

1

2

)2

, λk,2 = (1− ε) k2, k ∈ N ∪ {0} ,

and the corresponding normalized eigenfunctions are

Xk,1 =
1√
π

sin

(
k +

1

2

)
x, Xk,2 =

1√
π

cos kx, k ∈ N ∪ {0} . (3.5)

The systems of functions (3.4) and (3.5) are complete in L2 (−π, π).
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4. Main results

Here we present the existence and uniqueness results for Problems P1 and P2.

Theorem 4.1. Let φ(x), ρ(x), ψ(x) ∈ C4 [−π, π] and φ(i) (±π) = ρ(i) (±π) = ψ(i) (±π) = 0, i = 0, 1, 2, 3.
Then, for a nonzero real number ε such that |ε| < 1, Problem P1 has a unique solution which can be written
in the form

u (x, t) =φ(x) +
1√
π

∞∑
k=0

(
C(4)

)
1k

cos
√

1− ε
(
k + 1

2

)
t(

k + 1
2

)4 cos

(
k +

1

2

)
x

+
1√
π

∞∑
k=0

(
C(4)

)
3k

sin
√

1− ε
(
k + 1

2

)
t−

(
C(4)

)
1k(

k + 1
2

)4 cos

(
k +

1

2

)
x

+
1√
π

∞∑
k=1

(
C(4)

)
2k

cos
√

1 + ε kt+
(
C(4)

)
4k

sin
√

1 + ε kt−
(
C(4)

)
2k

k4
sin kx,

and

f(x) =
1√
π

∞∑
k=0

(1− ε)
((
φ(4)

)
1k
−
(
C(4)

)
1k

)(
k + 1

2

)2 cos

(
k +

1

2

)
x

+
1√
π

∞∑
k=1

(1 + ε)
((
φ(4)

)
2k
−
(
C(4)

)
2k

)
k2

sin kx,

where, (
C(4)

)
1k

=

(
φ(4)

)
1k
−
(
ψ(4)

)
1k

+
(
C(4)

)
3k

sin
√

1− ε
(
k + 1

2

)
T

1− cos
√

1− ε
(
k + 1

2

)
T

,

(
C(4)

)
3k

=

(
ρ(4)
)
1k√

1− ε
(
k + 1

2

) ,
(
C(4)

)
2k

=

(
φ(4)

)
2k
−
(
ψ(4)

)
2k

+
(
C(4)

)
4k

sin
√

1 + ε kT

1− cos
√

1 + ε kT
,

(
C(4)

)
4k

=

(
ρ(4)
)
2k√

1 + ε k
,

and(
g(4)
)
1k

=
1√
π

π∫
−π

g(4)(x) cos

(
k +

1

2

)
x dx,

(
g(4)
)
2k

=
1√
π

π∫
−π

g(4)(x) sin kx dx, for g = φ, ψ, ρ.

Theorem 4.2. Let φ(x), ρ(x), ψ(x) ∈ C4 [−π, π] and φ(i) (±π) = ρ(i) (±π) = ψ(i) (±π) = 0, i = 0, 1, 2, 3.
Then, for a nonzero real number ε such that |ε| < 1, Problem P2 has a unique solution which can be written
in the form

u (x, t) =φ(x) +
1√
π

∞∑
k=0

(
C(4)

)
1k

cos
√

1− ε kt+
(
C(4)

)
3k

sin
√

1− ε kt−
(
C(4)

)
1k

k4
cos kx

+
1√
π

∞∑
k=1

(
C(4)

)
2k

cos
√

1 + ε
(
k + 1

2

)
t(

k + 1
2

)4 sin

(
k +

1

2

)
x,

+
1√
π

∞∑
k=1

(
C(4)

)
4k

sin
√

1 + ε
(
k + 1

2

)
t−

(
C(4)

)
2k(

k + 1
2

)4 sin

(
k +

1

2

)
x,
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and

f(x) =
1√
π

∞∑
k=0

(1− ε)
((
φ(4)

)
1k
−
(
C(4)

)
1k

)
k2

cos kx

+
1√
π

∞∑
k=1

(1 + ε)
((
φ(4)

)
2k
−
(
C(4)

)
2k

)(
k + 1

2

)2 sin

(
k +

1

2

)
x,

where, (
C(4)

)
1k

=

(
φ(4)

)
1k
−
(
ψ(4)

)
1k

+
(
C(4)

)
3k

sin
√

1− ε kT
1− cos

√
1− ε kT

,

(
C(4)

)
3k

=

(
ρ(4)
)
1k√

1− ε k
,

(
C(4)

)
2k

=

(
φ(4)

)
2k
−
(
ψ(4)

)
2k

+
(
C(4)

)
4k

sin
√

1 + ε
(
k + 1

2

)
T

1− cos
√

1 + ε
(
k + 1

2

)
T

,

(
C(4)

)
4k

=

(
ρ(4)
)
2k√

1 + ε
(
k + 1

2

) ,
and(

g(4)
)
1k

=
1√
π

π∫
−π

g(4)(x) cos kx dx,
(
g(4)
)
2k

=
1√
π

π∫
−π

g(4)(x) sin

(
k +

1

2

)
x dx, for g = φ, ψ, ρ.

5. Proofs of Results

5.1. Existence

Here, we give a full proof of the existence of a solution to Problem P1 as given in Theorem 4.1.
As the eigenfunctions system (3.4), corresponding to Problem P1, forms an orthonormal basis in

L2 (−π, π) (this follows from the self-adjoint problem (3.1), (3.2)), the functions u (x, t) and f(x) can be
represented as follows

u (x, t) =
1√
π

∞∑
k=0

uk(t) cos

(
k +

1

2

)
x+

1√
π

∞∑
k=1

vk(t) sin kx, (5.1)

and

f(x) =
1√
π

∞∑
k=0

f1k cos

(
k +

1

2

)
x+

1√
π

∞∑
k=1

f2k sin kx, (5.2)

where uk(t), vk(t), f1k and f2k are unknown. Substituting (5.1) and (5.2) into equation (2.1), we obtain the
following equations for the functions uk(t), vk(t) and the constants f1k, f2k:

u′′k(t) + (1− ε)
(
k +

1

2

)2

uk(t) = f1k,

and
v′′k(t) + (1 + ε) k2vk(t) = f2k.

Solving these two equations, we get

uk(t) = C1k cos
√

1− ε
(
k +

1

2

)
t+ C3k sin

√
1− ε

(
k +

1

2

)
t+

f1k

(1− ε)
(
k + 1

2

)2
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and

vk(t) = C2k cos
√

1 + ε kt+ C4k sin
√

1 + ε kt+
f2k

(1 + ε) k2
,

where the constants C1k, C2k, C3k, C4k, f1k, and f2k are to be determined using the conditions in (2.2);
expanding the functions φ(x), ρ(x) and ψ(x) using the eigenfunctions system (3.4), we obtain

C1k +
f1k

(1− ε)
(
k + 1

2

)2 = φ1k, C2k +
f2k

(1 + ε) k2
= φ2k

√
1− ε

(
k +

1

2

)
C3k = ρ1k,

√
1 + ε kC4k = ρ2k

C1k cos
√

1− ε
(
k +

1

2

)
T + C3k sin

√
1− ε

(
k +

1

2

)
T +

f1k

(1− ε)
(
k + 1

2

)2 = ψ1k,

and

C2k cos
√

1 + ε kT + C4k sin
√

1 + ε kT +
f2k

(1 + ε) k2
= ψ2k,

where, φik, ρik, ψik, i = 1, 2 are the coefficients of the expansions of the functions φ(x), ρ(x), ψ(x) that are
given by

g1k =
1√
π

π∫
−π

g(x) cos

(
k +

1

2

)
x dx, g2k =

1√
π

π∫
−π

g(x) sin kx dx, for g = φ, ρ, ψ.

Solving the above set of equations for C1k, C2k, C3k, C4k, f1k, and f2k, we get

C1k =
φ1k − ψ1k + C3k sin

√
1− ε

(
k + 1

2

)
T

1− cos
√

1− ε
(
k + 1

2

)
T

,

C3k =
ρ1k√

1− ε
(
k + 1

2

) ,
C2k =

φ2k − ψ2k + C4k sin
√

1 + ε kT

1− cos
√

1 + ε kT
,

C4k =
ρ2k√

1 + ε k
,

and

f1k = (1− ε)
(
k +

1

2

)2

(φ1k − C1k) , f2k = (1 + ε) k2 (φ2k − C2k) . (5.3)

Now, substituting uk(t), vk(t), f1k, f2k into (5.1) and (5.2), we obtain

u (x, t) =φ(x) +
1√
π

∞∑
k=0

(
C1k cos

√
1− ε

(
k +

1

2

)
t+ C3k sin

√
1− ε

(
k +

1

2

)
t− C1k

)
cos

(
k +

1

2

)
x

+
1√
π

∞∑
k=1

(
C2k cos

√
1 + ε kt+ C4k sin

√
1 + ε kt− C2k

)
sin kx,

and

f(x) =
1√
π

∞∑
k=0

(1− ε)
(
k +

1

2

)2

(φ1k − C1k) cos

(
k +

1

2

)
x+

1√
π

∞∑
k=1

(1 + ε) k2 (φ2k − C2k) sin kx.
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Moreover, if φ(i) (±π) = ρ(i) (±π) = ψ(i) (±π) = 0, i = 0, 1, 2, 3, then on integration by parts, φik, ρik, ψik,
i = 1, 2, can be written as

g1k =

(
g(4)
)
1k(

k + 1
2

)4 and g2k =

(
g(4)
)
2k

k4

for g = φ, ρ, ψ, where,
(
φ(4)

)
ik
,
(
ρ(4
)
ik
,
(
ψ(4)

)
ik
, i = 1, 2 are the coefficients of the expansions of the functions

φ(4)(x), ρ(4)(x), ψ(4)(x) that are given by

(
g(4)
)
1k

=
1√
π

π∫
−π

g(4)(x) cos

(
k +

1

2

)
x dx,

(
g(4)
)
2k

=
1√
π

π∫
−π

g(4)(x) sin kx dx,

for g = φ, ψ, ρ.
Then the constants C1k, C2k, C3k, C4k, f1k, and f2k can be written as

C1k =

(
C(4)

)
1k(

k + 1
2

)4 , C3k =

(
C(4)

)
3k(

k + 1
2

)4 ,
C2k =

(
C(4)

)
2k

k4
, C4k =

(
C(4)

)
4k

k4
,

and

f1k =
(1− ε)(
k + 1

2

)2 ((φ(4))1k − (C(4)
)
1k

)
, f2k =

(1 + ε)

k2

((
φ(4)

)
2k
−
(
C(4)

)
2k

)
, (5.4)

where,(
C(4)

)
1k

=

(
φ(4)

)
1k
−
(
ψ(4)

)
1k

+
(
C(4)

)
3k

sin
√

1− ε
(
k + 1

2

)
T

1− cos
√

1− ε
(
k + 1

2

)
T

,
(
C(4)

)
3k

=

(
ρ(4)
)
1k√

1− ε
(
k + 1

2

) ,
(
C(4)

)
2k

=

(
φ(4)

)
2k
−
(
ψ(4)

)
2k

+
(
C(4)

)
4k

sin
√

1 + ε kT

1− cos
√

1 + ε kT
,

(
C(4)

)
4k

=

(
ρ(4)
)
2k√

1 + ε k
.

Hence, the solution to Problem P1 can be written as

u (x, t) =φ(x) +
1√
π

∞∑
k=0

(
C(4)

)
1k

cos
√

1− ε
(
k + 1

2

)
t

cos

(
k +

1

2

)
x

+
1√
π

∞∑
k=0

(
C(4)

)
3k

sin
√

1− ε
(
k + 1

2

)
t−

(
C(4)

)
1k(

k + 1
2

)4 cos

(
k +

1

2

)
x

+
1√
π

∞∑
k=1

(
C(4)

)
2k

cos
√

1 + ε kt+
(
C(4)

)
4k

sin
√

1 + ε kt−
(
C(4)

)
2k

k4
sin kx, (5.5)

and

f(x) =
1√
π

∞∑
k=0

(1− ε)
((
φ(4)

)
1k
−
(
C(4)

)
1k

)(
k + 1

2

)2 cos

(
k +

1

2

)
x

+
1√
π

∞∑
k=1

(1 + ε)
((
φ(4)

)
2k
−
(
C(4)

)
2k

)
k2

sin kx. (5.6)

This ends the proof of Theorem 4.1.
Similarly, one can prove the existence of a formal solution to Problem P2 as given in Theorem 4.2.
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5.2. Convergence of the series

In order to justify that the formal solution is indeed a true solution, we will prove that all the operations
performed before are valid.

The convergence of the series in (5.5) and (5.6) are based on the following estimates for u (x, t) and f(x),

|u (x, t)| ≤ |φ (x)|+ 2√
π

∞∑
k=0

√
2
∣∣∣φ(4)1k

∣∣∣+
√

2
∣∣∣ψ(4)

1k

∣∣∣+ 4
∣∣∣ρ(4)1k

∣∣∣(√
1− ε

) (
1− cos

√
1− ε

(
k + 1

2

)
T
) (
k + 1

2

)4
+

2√
π

∞∑
k=1

√
2
∣∣∣φ(4)2k

∣∣∣+
√

2
∣∣∣ψ(4)

2k

∣∣∣+ 2
∣∣∣ρ(4)2k

∣∣∣(√
1 + ε

) (
1− cos

√
1− ε

(
k + 1

2

)
T
)
k4

(5.7)

and

|f(x)| ≤ 1√
π

∞∑
k=0

6
∣∣∣φ(4)1k

∣∣∣+ 2
∣∣∣ψ(4)

1k

∣∣∣+ 2
√

2
∣∣∣ρ(4)1k

∣∣∣(
1− cos

√
1− ε

(
k + 1

2

)
T
) (
k + 1

2

)2 +
1√
π

∞∑
k=1

6
∣∣∣φ(4)2k

∣∣∣+ 2
∣∣∣ψ(4)

2k

∣∣∣+
√

2
∣∣∣ρ(4)2k

∣∣∣(
1− cos

√
1− ε

(
k + 1

2

)
T
)
k2
. (5.8)

Since φ(x), ρ(x), ψ(x) ∈ C4 [−π, π], then by the Bessel inequality for trigonometric series, the following series
converge:

∞∑
k=0

∣∣∣g(4)1k

∣∣∣2 ≤C ∥∥∥g(4)(x)
∥∥∥2
L2(−π,π)

, for g = φ, ρ, ψ (5.9)

and
∞∑
k=1

∣∣∣g(4)2k

∣∣∣2 ≤C ∥∥∥g(4)(x)
∥∥∥2
L2(−π,π)

, for g = φ, ρ, ψ, (5.10)

which implies that the set {
ϕ
(4)
ik , ρ

(4)
ik , ψ

(4)
ik

}
, k = 1, 2.

is bounded. Therefore, by the Weierstrass M-test, the series in (5.7) and (5.8) converge absolutely and
uniformly in the region Ω.

Now, using termwise differentiation of the series in (5.5) twice with respect to the variables x and t, we
get the following estimates for uxx (x, t) and utt (x, t),

|uxx (x, t)| ≤
∣∣φ′′ (x)

∣∣+
2√
π

∞∑
k=0

√
2
∣∣∣φ(4)1k

∣∣∣+
√

2
∣∣∣ψ(4)

1k

∣∣∣+ 4
∣∣∣ρ(4)1k

∣∣∣(√
1− ε

) (
1− cos

√
1− ε

(
k + 1

2

)
T
) (
k + 1

2

)2
+

2√
π

∞∑
k=1

√
2
∣∣∣φ(4)2k

∣∣∣+
√

2
∣∣∣ψ(4)

2k

∣∣∣+ 2
∣∣∣ρ(4)2k

∣∣∣(√
1 + ε

) (
1− cos

√
1− ε

(
k + 1

2

)
T
)
k2

and

|utt (x, t)| ≤ 1√
π

∞∑
k=0

2
∣∣∣φ(4)1k

∣∣∣+ 2
∣∣∣ψ(4)

1k

∣∣∣+ 6
√

2
∣∣∣ρ(4)1k

∣∣∣(
1− cos

√
1− ε

(
k + 1

2

)
T
) (
k + 1

2

)2 +
1√
π

∞∑
k=1

2
∣∣∣φ(4)2k

∣∣∣+ 2
∣∣∣ψ(4)

2k

∣∣∣+ 3
√

2
∣∣∣ρ(4)2k

∣∣∣(
1− cos

√
1− ε

(
k + 1

2

)
T
)
k2
,

which, by using (5.9), (5.10) and the Weierstrass M-test, also converge absolutely and uniformly in Ω.

5.3. Uniqueness

The uniqueness of the solutions to Problems 1 and 2 easily follows from representations of the solutions
given in the theorems above, and from the completeness of systems (3.4) and (3.5).
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