
Available online at www.tjnsa.com
J. Nonlinear Sci. Appl. 9 (2016), 1261–1284

Research Article

Difference-genetic co-evolutionary algorithm for
nonlinear mixed integer programming problems

Yuelin Gaoa,b, Ying Sunb,∗, Jun Wua

aInstitute of Information and System Science, Beifang University of Nationalities, Yinchuan, 750021, China.
bSchool of Computer Science and Information Engineering, Hefei University of Technology, Hefei, 230009, China.

Communicated by I. Argyros

Abstract

In this paper, the difference genetic co-evolutionary algorithm (D-GCE) is proposed for the mixed in-
teger programming problems. First, the mixed integer programming problem with constrains converted to
unconstrained bi-objective optimization problems. Secondly, selection mechanism combines the Pareto dom-
inance and superiority of feasible solution methods to choose the excellent individual as the next generation.
Final, differential evolution algorithm and genetic algorithm handle the continuous part and discrete part,
respectively. Numerical experiments on 24 test functions have shown that the new approach is efficient.
The comparison results among the D-GCE and other evolutionary algorithms indicate that the proposed
D-GCE algorithm is competitive with and in some cases superior to, other existing algorithms in terms of
the quality, efficiency, convergence rate, and robustness of the final solution. c©2016 All rights reserved.

Keywords: Mixed integer programming, differential evolution, genetic algorithm, co-evolution,
constrained optimization.
2010 MSC: 90C11, 65J08, 65K10.

1. Introduction

Mathematical programming problem is an important branch in the field of operations research. With the
development of operational research, scholars have summed up a lot of programming models. Some models
is called integer nonlinear programming problems, in which some or all decision variables are restricted to
have integer value or discrete value with nonlinear constraints or nonlinear objective. When mixed some

∗Corresponding author
Email addresses: gaoyuelin@263.net (Yuelin Gao), nxsunying@126.com (Ying Sun), wujunmath@163.com (Jun Wu)

Received 2015-09-01

Y. Gao, Y. Sun, J. Wu, J. Nonlinear Sci. Appl. 9 (2016), 1261–1284 1262

continuous variables in the models, this problem is mixed integer nonlinear programming problem. It has
been widely applied to real-world such as power distribution system network optimization, engineering
design problems, the conflict problems in air traffic management system, production scheduling, vehicle
path planning and portfolio selection problem [10, 18, 20, 25, 31] and so on.

Mixed integer nonlinear programming problems can be expressed as follows:

min f(x, y),
s.t. gi(x, y) ≤ 0, i = 1, 2, ...,m,

hj(x, y) = 0, j = 1, 2, ..., n,
xL ≤ x ≤ xU ,
yL ≤ y ≤ yU ,
x = (x1, x2, ..., xnC),
y = (y1, y2, ..., ynI).

(1.1)

Where x is a nC-dimensional real variables and y is a nI-dimensional integer variables, xL , xU are the
lower and upper limits of the real variables, yL , yU are the lower and upper limits of discrete variables,
f(x, y) is the objective function to be optimized, gi(x, y) is the set of inequality constraints, hj(x, y) is the
set of equality constraints. The m and n are the number of inequality constraints and equality constraints,
respectively.

Differential evolutionary (DE) algorithm is an efficient algorithm for solving mixed integer nonlinear
programming problem at present. Although the differential evolution algorithm is easy to fall into lo-
cal optimum, the convergence rate is loved by many scholars in practical applications. Deep[5] improved
crossover and mutation operator based on genetic algorithm, and used Deb constraint rules to choose the
excellent individual into next generation. Maiti [14] proposed a RCGA algorithm with ranking selection,
whole arithmetic crossover and uniform mutation to solve the problem. Lin [12] proposed MIHDE algorithm
which contains the migration operation to avoid candidate individuals clustering together. The population
diversity measure is introduced to inspect when the migration operation should be performed so that the
algorithm can use a smaller population size to obtain a global solution. Kitayama [8] designed the penalty
function to convert discrete variable into continuous variable for mixed integer nonlinear programming prob-
lems and used particle swarm optimization algorithm to solve the problem. Costa [2] through the experiment
demonstrate that the evolutionary algorithm as a valid approach to the optimization of non-linear prob-
lems. Mahdavi [13] employs a novel method for generating new solution vectors that enhances accuracy and
convergence rate of harmony search (HS) algorithm. Yan [29] proposed an improved line-up competition
algorithm and applied this algorithm to handle the mixed integer nonlinear programming problems. Test
results show that the algorithm is efficient and robust.

In the previous study, the scholars only use one single algorithm for solving mixed integer programming
problems. Single algorithm has its own prominent aspect. But for mixed integer programming problems,
there are two types of variables: continuous variables and discrete variables, the single evolutionary algorithm
is flawed, so scholars began to study hybrid algorithm.

Hedar [6] transformed the constrained optimization problem into unconstrained bi-objective optimization
problem, the Pareto dominance is used for individual evaluation, and combine the pattern search algorithm
into genetic algorithm framework to improve the efficiency of the algorithm for solving the problem. Liao
[11] studied the ant colony algorithm, proposed three mixed thoughts. local search algorithm and differ-
ential evolutionary algorithm were introduced in the ant colony algorithm framework respectively. Final,
three algorithm cooperative hybrid enhanced ability of optimization. Srinivas [21] added tabu search in
differential evolution algorithm, avoid a lot of duplication search, greatly improving the computational ef-
ficiency. Liao [10] presented a hybrid algorithm that include differential evolution algorithm, local search
operator and harmony search algorithm. The test results show the hybrid algorithm is effectively for solv-
ing the engineering design optimization problems. Yi [30] combined differential evolution algorithm, local
search operator, harmony search algorithm and particle swarm optimization to three hybrid algorithm based
on the literature [10]. Schluter [19] proposed extended version hybrid algorithm based on ant colony al-

Y. Gao, Y. Sun, J. Wu, J. Nonlinear Sci. Appl. 9 (2016), 1261–1284 1263

gorithm framework which effectively solve the high-dimensional non-convex and computation complicated
optimization problems.

The rest of the paper is organized as follows: in Section 2 some basic information are described, Section
3 describes the original differential evolution algorithm and its variants, Section 4 presents the proposed
method, Section 5 presents the experimental results, Section 6 concludes our study. Appendix shows the
test problem used in this paper.

2. Background information

In this paper, we using the following method transformed the constrained optimization problem into
unconstrained bi-objective optimization problem [2, 5, 6, 8, 12, 13, 14, 29].

g′i(x, y) = (max{0, gi(x, y)})t, i = 1, ...,m,
h′j(x, y) = |hj(x, y)|t, j = 1, ..., n,

where, usually t = 1 or t = 2. Using this method formula (1.1) can be converted to the multi-objective
optimization problem as follows:

min f(x, y),
g′i(x, y), i = 1, 2, ...,m,
h′j(x, y), j = 1, 2, ..., n.

(2.1)

By defining fc =
∑m

i=1 g
′
i+
∑n

j=1 h
′
j , the formula (2.1) can be converted to the bio-objective optimization

problem as follows:

min f(x, y),
fc(x, y).

(2.2)

Pareto dominate is the best method to solve the problem above. The optimal solution of a multi-objective
optimization problem is a set of optimal solution (largely known as Pareto-optimal solutions), that is not
the same as in single-objective optimization. Two basic concept of multi-objective optimization have shown
below

(1) Pareto dominate: A decision vector x0 is said to dominate a decision vector x1 (also written as x0 ≺ x1)
if and only if

∀i ∈ {1, ...,m} : fi(x
0) ≤ fi(x1),

∧∃j ∈ {1, ...,m} : fj(x
0) < fj(x

1).

(2) Pareto optimal set: The Pareto optimal set Ps is defined as Ps = {x0|¬∃x1 � x0} also called non-
dominated optimal set.

3. Differential evolution algorithm

3.1. Basic differential evolution algorithm

Differential evolution (DE) [22, 23, 24] algorithm is a very simple but effective evolutionary algorithm,
which is similar to the genetic algorithm. 1995, Storn and Price first proposed “differential evolution”
this new concept in technical report [22]. A year later, differential evolution algorithm was successful
demonstration at the first session of the International Competition in evolutionary optimization. With
the subsequent development, differential evolution algorithm is used in various fields. Swagatam Das [3]

Y. Gao, Y. Sun, J. Wu, J. Nonlinear Sci. Appl. 9 (2016), 1261–1284 1264

made a detail summary for differential evolution algorithm, from the basic concept to core operators, and
application in multi-objective, constraints, large-scale, uncertainty optimization problems, which reflects the
strong performance of differential evolution algorithm.

Differential evolution algorithm is a swarm intelligence algorithm; its main steps include mutation,
crossover and selection which are described briefly in the following.

Mutation operation: For each individual xmg (m = 1, 2, ..., ps)(where ps is the population size, g is the
current generation)in this generation, differential vector is generated by two different individuals xgr1,x

g
r2

from the parent generation. The differential vector is defined as D1,2 = xgr2 − x
g
r3. The mutation operation

is defined as:

vgm = xgr1 + F ∗ (xgr2 − x
g
r3), (3.1)

where xgr1 = (xgr1,1, x
g
r1,2

, ..., xgr1,D), xgr2 = (xgr2,1, x
g
r2,2

, ..., xgr2,D) and xgr3 = (xgr3,1, x
g
r3,2

, ..., xgr3,D) are randomly
selected from the parent generation and r1 6= r2 6= r3 6= m , F ∈ [0, 2] , which called mutation constant.

Crossover operation: For each mutation individual vgm , a trial individual ugm is generated, using proba-
bility cross operations on the each dimension. The scheme is as follows:

ugmn =

{
vgmn if rand ≤ cp or n = rand n,
xgmn else,

(3.2)

where rand is a random number generator within [0,1], cp ∈ [0, 1] is a crossover rate, the value of cp is larger,
the contribution of vgm to trial individual ugm is greater, rand n is randomly chosen from {1,2,...,D},which
ensures that ugm gets at least one element from vgm.

Selection operation: The purpose of selection operation is to determine which individual is better between
trial individual ugm and target individual xgm. For minimization problem, substituting the target individual
xgm with the trial individual ugm if the fitness of ugm is smaller than the xgm. The scheme is as follows

xg+1
m =

{
ugm if f(ugm) ≤ f(xgm),
xgm else.

(3.3)

3.2. Constraints handling method

For optimization problems with constraints, scholars have made a lot of methods to deal with constraints
in the optimization problem. The penalty function method is one of the easiest and the earliest constraint
handling method. For each infeasible, calculates the fitness and plus a big number which we call penalty
constant thereby reducing the selection probability of this individual. Huang [7] designed a special penalty
function to handle the constraints in the mixed integer problem. A self-adaptive penalty function was
proposed by Tessema [26]. Multi-objective constraint handling method [3, 6, 7, 11, 19, 21, 22, 23, 24, 26,
27, 30] is that handles all the constraints as an objective function, with the original objective function form
the bio-objective unconstrained optimization problems. The individual selected into the new population
based on the fitness and smaller constraint violation. Deb[4] proposed constrained-domination, the quality
of two individual based on the following criteria: if both are infeasible, select the individual who violates
less constraints; if both are feasible, using Pareto-dominate to choose the individual; feasible ones are always
considered as better than the infeasible ones. Mallipeddi in the literature[15] made a detail review for the
constraint handling techniques used with the EAs and proposed a novel constraint handling procedure called
ECHT. The experimental results showed that the ECHT outperforms all constraint handling methods, as
well as the state-of-the-art methods.

In this paper, we propose a new handling constraint method which called (PF). PF benefits from two
methods, multi-objective constraint handling and SF (superiority of feasible solutions). In order to choose
a better individual, we use the following method: If the dominate relationship exists, we use multi-objective
constrained handling method, and if the two individuals are nondominated with respect to each other, we
use SF. The Pseudo-code of the PF is stated as follows.

Y. Gao, Y. Sun, J. Wu, J. Nonlinear Sci. Appl. 9 (2016), 1261–1284 1265

——————————————–Function of constraint handling of PF———————————————–
Input: x denotes parent individual, ff denotes function value of x (size is 1 × 2), xnew denotes offspring
individual, ffnew denotes function value of xnew (size is 1× 2)
Output: xnewg denotes new generation individual, ffnewg denotes function value of xnewg (size is 1× 2)
1)If x ≺ xnew
2) xnewg ← x;ffnewg ← ff ;
3)Elseif x � xnew
4) xnewg ← xnew;ffnewg ← ffnew;
5)Elseif x == xnew
6) xnewg ← xnew or xnewg ← x;ffnewg ← ff
7)Else
8) If ff(2) == 0
9) xnewg ← x;ffnewg ← ff
10) Elseif ffnew(2) == 0
11) xnewg ← xnew;ffnewg ← ffnew
12) Elseif ff(2) < ffnew(2)
13) xnewg ← x;ffnewg ← ff
14) Elseif ff(2) > ffnew(2)
15) xnewg ← xnew;ffnewg ← ffnew;
16) End If
17)End If
18)Return xnewg and ffnewg
———

3.3. Discrete variable handling method

Mixed integer problems are optimization problems with some discrete decision variables and continuous
variables. Satisfying the integer restrictions are very difficult but important. Current approach to discrete
variable is as following:

(1) Truncation procedure: in order to ensure that, after crossover and mutation operations have been
performed, the integer restrictions often use the truncation procedure or round to the integer or
rounding depending on the probability [5].

(2) This method proposed by [10] involves the following operations: 1) replace each discrete variable by a
continuous variable taking values between 1 and n with n being the number of discrete values allowed
for the discrete variable being considered. This variable is called a continuous position variable;
2)truncate or round the value assigned to each continuous position to integer; 3)use the integer position
value to look up the actual value from the corresponding discrete set.

In this paper, discrete part of the individual adopts integer coding. NP sequences of integer are used to
compose the integer part of population, then genetic algorithm takes place to generate the next generation.

4. Differential genetic algorithm co-evolution

4.1. Basic genetic evolution algorithm

Genetic algorithm, as a mature, efficient random search algorithm, is widely used to solve practical
problems [5, 6, 14, 16]. In practical applications, there have been many improvements such as different
genetic expression, crossover and mutation operators, using special operators, different regeneration and
selection methods and so on. In this paper, a co-evolution approach which takes advantage of DE and
GA is adopted for the mixed integer problem. Adopted genetic algorithm handles the integer part in each
individuals. Designed by the following operations:

Y. Gao, Y. Sun, J. Wu, J. Nonlinear Sci. Appl. 9 (2016), 1261–1284 1266

(1) Coding techniques. Using integer coding technique, randomly generate NP individuals that meet the
requirements in integer set.

(2) Selection. Traditional GA selects two individuals from parent generation to the next crossover operation
while DE selects three individuals. So we proposed an improved genetic algorithm with new selection
operation which randomly selects three different individuals from parent generation.

(3) Crossover. The crossover operator is applied on the three selected individuals; randomly generates two
cross bit to generate a new individual. For example, the crossover operation has illustrated in Fig.1,
where the gene fragments must satisfy the integer set {0,1,2,...,9}.

Fig. 1: Crossover operation

(4) Mutation operation. In order to generate trail individual, randomly generate an integer from integer
set {0,1,2,...,9} replace the gene on the mutation position. Specific method is as Fig. 2.:

Fig. 2: Mutation operation

4.2. Differential genetic co-evolution algorithm

DE and GA are all very good swarm intelligence optimization algorithms. These two algorithms, basi-
cally, have a same framework, but they have their own specific operating characteristics. There are some
difficulties which appear in the combination of those two algorithms. So we proposed an improved genetic
algorithm as describe in Section 4.1 that is very effectively to solve the problem. Conventional hybrid al-
gorithms are based on two or more serial algorithm that means the population will go through multiple
algorithms operator which will exponentially increase the algorithm’s time complexity. D-GCE, proposed
in this paper, uses a divide-and-conquer idea that means the differential evolution algorithm and genetic
algorithm respectively handle the continuous part and discrete part. The flowchart of the D-GCE algorithm
is shown in Fig. 3.

Y. Gao, Y. Sun, J. Wu, J. Nonlinear Sci. Appl. 9 (2016), 1261–1284 1267

Figure 3: Flowchart of the D-GCE algorithm

Y. Gao, Y. Sun, J. Wu, J. Nonlinear Sci. Appl. 9 (2016), 1261–1284 1268

The D-GCE algorithm is outlined by pseudo code in the following section to solve the model we proposed.
———
1)Specify DGCE-related parameter values, which include NP (population size), inMAX (max iterations),

F (scaling factor), CR (crossover probability) and MR (mutation value)
2)Initial the global optimal gbest of the minimization problem
3)Randomly generate the initial population P in the feasible region
4)Evaluate the initial population, record the number of function evaluations
5)Determine the best solution xbest, and the best function value fbest
6)Set the current iterations in = 1
7)While in < inMAX and fbest > gbest
9) For each target vector xi(i = 1, 2, ..., NP)
10) Randomly select three individuals (xri, xr2andxr3) from population P ,where i 6= r1 6= r2 6= r3
11) Three individuals are divided into continuous part recorded as xcr1 , xcr2 and xcr3 , and discrete part

recorded as xdr1 , xdr2 and xdr3
12) Update the continuous part xcr1 , xcr2 x

c
r3 to generate the mutated vector according to Eq.(3.1)

13) Generate the trial vector xtri according to Eq.(3.2).DP (i, :) = xtri
14) Update the discrete part xdr1 , xdr2 and xdr3 to generate the new vector according to Fig.1
15) Use new vector to generate the mutated vector xmut according to Fig.2,GP (i, :) = xmut
16) End For
17) Combine DP and GP as the new population , Poff and calculate the function values of Poff ,

record the function evaluations
18) Update population according to Pseudo-code 1
19) Update the best solution xbest, and the best function value fbest
20) Increase iterations in
21)End While
———

5. Experiment and results

In our experiments, 24 mixed-integer test problems [1, 5, 6, 10] are used to investigate the potential of
D-GCE. Those test problems are selected from published literature in several different engineering fields.
Problems p.1−p.14 taken from literature[10] whereas p.2−p.9 also appears in literature[5, 6] and p.15−p.24
taken from literature [1]. All programs were coded in Matlab and all executions were made on a Dell personal
computer with Intel(R)Core(TM) i5-3570K CPU @ 3.40 GHz.

Table 1: Description of test problems

P N Nr Ni f fr(%) ne le ni li

1 4 2 2 Linear 0 0 1 0 2
2 5 2 3 Linear 0 2 0 0 3
3 7 3 4 Nonlinear 25.5231 0 0 4 5
4 2 1 1 Linear 18.2323 0 0 1 1
5 2 1 1 Nonlinear 31.8359 0 0 1 0
6 3 2 1 Quadratic 0.187 0 0 1 2
7 3 2 1 Linear 0 0 0 2 2
8 7 3 4 Nonlinear 15.0124 0 0 4 5
9 5 2 3 Quadratic 100 0 0 3 0
10 10 0 10 Linear 0.0191 0 0 4 0

Y. Gao, Y. Sun, J. Wu, J. Nonlinear Sci. Appl. 9 (2016), 1261–1284 1269

11 4 0 4 Nonlinear 11.7783 0 0 3 0
12 8 4 4 Nonlinear 13.0680 0 0 3 0
13 4 4 0 Nonlinear 1.4667 2 1 1 0
14 2 1 1 Nonlinear 0.0160 0 0 2 0
15 2 2 0 Linear 44.2316 0 0 2 0
16 6 3 3 Nonlinear 0.1452 0 0 2 0
17 2 0 2 Nonlinear 27.5206 0 0 2 1
18 2 0 2 Quadratic 29.9766 0 0 2 1
19 2 1 1 Nonlinear 37.3432 0 0 1 1
20 2 2 0 Nonlinear 73.1288 0 0 0 2
21 2 1 1 Quadratic 49.9616 0 0 0 1
22 2 2 0 Nonlinear 0.0003 0 0 1 0
23 2 2 0 Nonlinear 62.7279 0 0 2 0
24 6 6 0 Linear 0.7846 0 0 5 0

5.1. Test problems and parameters setting

The basic information of 24 test problems are shown in Table 1 where ne denote the number of non-linear
equations, le denotes the number of linear equations, ni denotes the number of non-linear inequalities, li
denotes the number of linear-inequalities, N denote the number of decision variables, Nr denote the number
of real variables, Ni denotes the number of integer variables. From Table 1 we can see that problem 13, 15,
20, 22, 23 and 24 only have real variables, problem 10, 11, 17 and 18 only have integer variables and other
problems have both type of variables. ca denotes the number of active constraints. fr uses the following
formula to calculate, denotes the feasible rate of search.

fr = NS/C, (5.1)

whereand C = 1000000 and NS is the number of feasible solutions.
The population size plays a vital role for the performance of intelligent evolutionary algorithm. If the

population size is too small, reducing the diversity of the solution, on the contrary will increase the time
complexity of the algorithm [9]. Therefore, we must choose an appropriate scale population. Storn [22]
proposed an idea that the population size should increase with the dimension of variables. The population
size in Wang´ s paper [28] equals to the 5-10 times of variable dimension. Mohamed [17] used the following
formulate to calculate the population size:

NP =

20 ∗ n 2 ≤ n < 5,
10 ∗ n 5 ≤ n < 10,
5 ∗ n n ≤ 10.

(5.2)

In this paper, the population size equals to the 5-10 times of variable dimension. The mutation constant
F and crossover constant cp can also affecting the search efficiency of the algorithm. Self-adaptive parameter
setting is proposed by Brest to improve the ability of the algorithm. In this paper, the mutation constant
F = 0.5 and crossover constant cp = 0.3 is a fixed value in DE. GA used the following parameter values:
the crossover constant Gcp = 0.6 and mutation constant Gmp = 0.3. Some scholars use the tolerable
error approach to change the equality constraints into inequality constraints. Different people use different
accuracy, such as in Ali´ s paper [1] δ = 0.01, Mallipeddi [15] adopt δ = 0.0001 , δ = 1.0E− 10 was adopted
by Mohamed [17]. In this paper, we set the tolerable error δ = 1.0E − 6 .

Y. Gao, Y. Sun, J. Wu, J. Nonlinear Sci. Appl. 9 (2016), 1261–1284 1270

5.2. Result obtained by the D-GCE algorithm

Table 2: Result obtained by the D-GCE algorithm

P Optimal Best Median Mean Worst Std

1 87.5 87.500013 87.500907 87.495666 87.509925 0.002892
2 7.667 7.667180 7.667180 7.667180 7.667180 0.000000
3 4.5796 4.579582 4.579603 4.579604 5.632729 0.000005
4 2 2.000000 2.000000 2.000001 2.000001 0.000000
5 2.1247 2.124470 2.124592 2.124662 2.125538 0.000094
6 1.076543 1.076543 1.076543 1.076544 1.076544 0.000000
7 99.245209 99.239554 99.239554 99.239554 99.239555 0.000000
8 3.557463 3.557461 3.557463 3.569764 4.632729 0.107520
9 -32217.4 -32217.427780 -32217.427780 -32217.427780 -32217.427780 0.000000
10 -0.808844 -0.808844 -0.808844 -0.806037 -0.790126 0.006717
11 -0.974565 -0.974565 -0.974565 -0.974222 -0.972759 0.000697
12 -0.999486 -0.999901 -0.999607 -0.999649 -0.999487 0.000108
13 5850.770 5848.122647 6090.526202 6185.328999 6771.596851 218.993775
14 -75.1341 -75.134167 -75.134054 -75.134053 -75.134000 0.000043
15 -5.50796 -5.508010 -5.507984 -5.507985 -5.507970 0.000009
16 -316.27 -316.531661 -305.836287 -298.581657 -216.639945 23.553381
17 0.18301 0.183015 0.183015 0.183015 0.183015 0.000000
18 0 0 0 0 0 0
19 -195.37 -195.370581 -195.370284 -195.370243 -195.367739 0.000296
20 -2.2137 -2.213662 -2.213661 -2.213661 -2.213660 0.000000
21 0.125 0.125000 0.125000 0.125000 0.125000 0.000000
22 0.0821 0.082085 0.082092 0.082092 0.082100 0.000004
23 1.5087 1.508653 1.508691 1.508687 1.508710 0.000016
24 -0.388811 -0.777376 -0.484066 -0.504627 -0.391925 0.089488

Table 3: The result of equality constraint problem using the algorithm D-GCE

p.1 p.2 p.3

[x, y]

12.499998140749165 1.118033988749895 37.9114274237522
0.000002220001002 1.310370697104448 238.4555666064445

1 0 0.7316905492784
0 1 0.3616750176226

1
h1(x, y) 0.000000000000005 2.220446049250313e-016 2.398081733190338e-014
h2(x, y) -4.440892098500626e-016 -1.110223024625157e-014
f(x, y) 87.500001420800686 7.667180068813135 5848.122647741006

Y. Gao, Y. Sun, J. Wu, J. Nonlinear Sci. Appl. 9 (2016), 1261–1284 1271

To avoid the randomness, all the test problems independently ran 100 times. Table 1 shows the result
of 24 test problems using the algorithm D-GCE. For all problems, the algorithm D-GCE can converge to
the global optimal except problem 3, 8,10,11,13 and 16. Problem 3 and 8 not all reach the global optimal
value in 100 times (about 5 times). For problem 10 and 11, the algorithm D-GCE is very close to the global
optimal value. Problem 13 and 16 are most difficult with relatively high standard and the best solution
is far away from the global optimal. But consider about problem 2, 4, 6, 7, 9, 17, 18, 20 and 21, those
problems have perfect result and the Std =0 and problem 3, 5, 14, 15, 22 and 23 obtain relatively low Std.
For all problems, the algorithm D-GCE found the global optimal within error, especially in problem 1, 5,
7, 8, 12, 13, 16 and 24, the best solution obtained by D-GCE algorithm are superior to the known global
optimal. Table 3 show the results of the test problems contain equality constraints using the algorithm
D-GCE. From the Table 3, we can see that D-GCE obtains the solution with very small error compared
with global optimal in all test problems. In summary, we believe that the D-GCE algorithm is an effective
approach to handle mixed integer constrained optimization problem.

It is worth mentioning that there are some errors in the literature [10] (problem 3, problem7 and problem
12) when doing numerical experiments. correct results and test functions are shown in Appendix.

Fig.4 shows the convergence curve of test problems 1-24 (except p.13), where the horizontal axis rep-
resents the number of iteration t, ordinate represents log(f(x) − f(x∗)), x denotes the best solution in t
generation and x∗ is the known best solution. From the Fig.4, we can clearly see that log(f(x) − f(x∗))
decreases with the increase of iterations, that means the solution obtained by D-GCE algorithm is getting
close to the known best solution. Table 4 shows that log(x) is corresponding different precision x which can
reflect the convergence degree of the test problems. The convergence curve of problem 1, 2 and 20 indicate
that log(f(x) − f(x∗)) < −10, it means f(x) − f(x∗) > 0.00001. The result of rest test problems is close
to the known best solution, i.e. f(x)− f(x∗) close to 0.000001. It is worth noting problem 13 is difficult to
obtain the best solution. The algorithm D-GCE with a few iterations converge to the optimal solution in
problem 2, 9, 12, 18 and 24.

Figure 4: Curve of the variation of log(f(x) − f(x∗)) with generation t

Y. Gao, Y. Sun, J. Wu, J. Nonlinear Sci. Appl. 9 (2016), 1261–1284 1272

Table 4: The variation of log(x) with different precision x

x 0.01 0.001 0.0001 0.00001 0.000001 0.0000001

log(x) -4.6052 -6.9078 -9.2103 -11.5129 -13.8155 -16.1181

5.3. Comparison results of D-GCE and algorithms from [10]

In order to detection how competitive of the proposed approach was, it was compared with the algorithms
selected from [10]. The experiments use five indicators to measure the performance of the algorithm,
including the best value, the success rate, the number of function evaluations, mean and standard deviation,
the results have shown in Table 5. Each indicator of the algorithm D-GCE is calculated through 100 runs.
Comparing the results presented in Table 5, notice that the success rate of test problems over 80% especially
the success rate of problem 1, 2, 4-7, 9, 12 and 14 reaches 100% use the algorithm D-GCE. In case of problem
13, the success rate is 10%. mde´ -his[1]is one of the best three algorithm that are from [10], but compared
with the algorithm proposed by this paper, the success rate of problem 10, 11 and 13 are better than the
algorithm D-GCE. Overall the success rate of the proposed algorithm is better than mde´ -his, ma-mde´ and
mdé. Consider about the number of function evaluations, problem 1, 2, 6 and 12 using D-GCE lower than
other three algorithms and with 100% success rate. The number of function evaluations and the success rate
using D-GCE in problem 7 and 8, higher than other three algorithms. We use a higher number of function
evaluations exchange a good result, which is in line with ¨ no free lunch in the world ¨ . Problems 11 and 13
are most difficult with relatively low success rate and high number of function evaluation. The best solution
can not reflect the overall performance of the algorithm, so we calculate the average of solution. From Table
5, we can see that the Mean indicator of problem 1,2,6,7 and 12 using D-GCE is better than other three
algorithms. The Mean indicator of problem 13 is far away from the optimal.

Table 5: Comparison result of D-GCE, mde´ -his, ma-mde´ and mde´

P Optimal Best Indicators D-GCE mde´ -his[1] ma-mde´ [1] mde´ [1]

1 87.5 87.428783

Success rate 1 1 0.867 0.533
Number of
evaluations

1993 5359 4463 7777

Mean 87.495666 87.497550 88.230145 89.879034
Standard 0.018077 0.002118 1.899683 2.768746

2 4.5796 4.579582

Success rate 1 0.2 0.067 0.033
Number of
evaluations

1666 83442 93524 96718

Mean 7.667180 7.848896 7.883841 7.918619
Standard 0.000000 0.121909 0.098982 0.047891

3 7.667 7.667180

Success rate 0.97 0.8 1 0.933
Number of
evaluations

15717 14518 13023 7688

Mean 4.579604 4.579599 4.579595 4.661414
Standard 0.000005 0.000005 0.000003 0.311365

4 2 2.000000

Success rate 1 1 1 0.933
Number of
evaluations

3704 3297 1430 1075

Mean 2.000001 2.000001 2.000000 2.009348
Standard 0.000000 0.000000 0.000000 0.043579

5 2.1247 2.124470

Success rate 1 1 1 0.9
Number of
evaluations

1294 1409 653 827

Y. Gao, Y. Sun, J. Wu, J. Nonlinear Sci. Appl. 9 (2016), 1261–1284 1273

Mean 2.124662 2.124604 2.124574 2.167894
Standard 0.000094 0.000076 0.000071 0.132196

6 1.076543 1.076543

Success rate 1 0.833 0.533 0.4
Number of
evaluations

12416 22146 25766 30986

Mean 1.076544 1.094994 1.099805 1.1244531
Standard 0.000000 0.052898 0.055618 0.075163

7 99.239554 99.239554

Success rate 1 0.967 1 1
Number of
evaluations

1958 449 684 403

Mean 99.240933 99.241271 99.512250 99.239554
Standard 0.001429 0.001842 1.485279 0.000000

8 3.557463 3.557461

Success rate 0.95 0.833 0.867 0.3
Number of
evaluations

43792 27116 20116 37739

Mean 3.569764 3.561157 3.564912 3.599903
Standard 0.107520 0.008381 0.029017 0.059012

9 -32217.4
-32217
.427780

Success rate 1 1 1 1
Number of
evaluations

609 493 1955 1240

Mean
-32217
.427262

-32217
.427780

-32217
.427106

-32217
.427262

Standard 0.000000 0.000000 0.003690 0.002836

10 -0.808844 -0.808844

Success rate 0.85 1 0.9 0.933
Number of
evaluations

7964 9733 35180 21593

Mean -0.806037 -0.808844 -0.807907 -0.807608
Standard 0.006717 0.000000 0.003077 0.005615

11 -0.974565 -0.974565

Success rate 0.82 1 0.933 0.967
Number of
evaluations

5887 176 449 333

Mean -0.974222 -0.974565 -0.974335 -0.974505
Standard 0.000697 0.000000 0.000977 0.000330

12 -0.999486 -0.999486

Success rate 1 1 1 1
Number of
evaluations

769 1800 2742 1669

Mean -0.999649 -0.999635 -0.999638 -0.999631
Standard 0.000108 0.000104 0.000111 0.000104

13 5850.770 5850.770

Success rate 0.1 0.267 0.233 0.067
Number of
evaluations

54907 38237 39902 46868

Mean
6175

.328999
6082

.551078
6040

.005940
6070

.604982
Standard 218.993775 185.056741 168.603518 109.163780

14 -75.1341 -75.1341

Success rate 1 1 1 1
Number of
evaluations

3412 4266 2827 1679

Mean -75.134053 -75.134137 -75.134130 -75.134137
Standard 0.000043 0.000025 0.000024 0.000023

Y. Gao, Y. Sun, J. Wu, J. Nonlinear Sci. Appl. 9 (2016), 1261–1284 1274

Figure 5: Comparison results of D-GCE, mde´ -his, ma-mde´ and mde´ based on success rate

5.4. Comparison results of D-GCE and algorithms from [30]

Four indicators, the best solution, the success rate, the number of function evaluations and the CPU
time, are used to reflect the performance of D-GCE, MDE´ -HJ, MDE´ -IHS-HJ and PSO-MDE´ -HJ. From
Table 6, the value of success rate that use D-GCE algorithm outperforms the other three algorithms except
problem 11and 13. Considering about the CPU time indicator, the result of problem 1, 2, 5, 6, 8, 9, 10,
12 and 14 completely superior to other three algorithms. Problem 11and 13 are still difficult to obtain
the global optimal with the worst number of evaluations when compared with other three algorithm, in
problem 1, 2, 6, 8, 10 and 12, D-GCE obtains competitive results compared to MDE´ -HJ, MDE´ -IHS-HJ
and PSO-MDE´ -HJ.

Table 6: Comparison result of D-GCE, MDE´ -HJ, MDE´ -IHS-HJ and PSO-MDE´ -HJ

P Optimal Best Indicators D-GCE MDE´ -HJ [16] MDE´
-IHS-HJ [16]

PSO-
MDE´ -HJ [16]

1 87.5 87.428783
Success rate 1 1 0.96 1
Number of
evaluations

1993 5859 6589 4596

CPU time 0.18 0.58 0.74 0.33

2 7.667 7.667180
Success rate 1 0.74 0.94 0.73
Number of
evaluations

1666 28389 10522 20910

CPU time 0.024 4.03 1.47 1.70

3 4.5796 4.579582
Success rate 0.97 0 0.48 0
Number of
evaluations

15717 15795 15116 15511

CPU time 1.34 1.8 0.9 1.27

4 2 2.000000
Success rate 1 0.99 0.95 0.88
Number of
evaluations

3704 1787 1211 1863

CPU time 0.33 0.28 0.16 0.19

5 2.1247 2.124470
Success rate 1 0.79 0.86 0.49
Number of
evaluations

1294 1721 1251 2776

CPU time 0.081 0.3 0.18 0.27

6 1.076543 1.076543
Success rate 1 0.9 0.83 0.71
Number of
evaluations

12416 15964 21890 22969

Y. Gao, Y. Sun, J. Wu, J. Nonlinear Sci. Appl. 9 (2016), 1261–1284 1275

CPU time 0.7 2.42 2.71 2.25

7 99.239554 99.239554
Success rate 1 0.91 0.99 1
Number of
evaluations

1446 994 458 412

CPU time 0.14 0.17 0.05 0.04

8 3.557463 3.557461
Success rate 0.93 0.03 0.81 0.28
Number of
evaluations

38522 50210 45821 49206

CPU time 3.65 5.84 4.01 3.63

9 -32217.4 -32217.427780
Success rate 1 1 1 1
Number of
evaluations

609 495 453 555

CPU time 0.04 0.07 0.07 0.05

10 -0.808844 -0.808844
Success rate 0.85 0.47 0.92 0.89
Number of
evaluations

7964 43090 13152 24484

CPU time 0.66 9.95 2.49 3.31

11 -0.974565 -0.974565
Success rate 0.82 1 1 1
Number of
evaluations

5887 285 221 288

CPU time 0.43 0.09 0.07 0.06

12 -0.999486 -0.999486
Success rate 1 1 1 1
Number of
evaluations

796 1704 1762 1414

CPU time 0.06 0.22 0.26 0.15

13 5850.770 5850.770
Success rate 0.1 0.76 0.5 0.99
Number of
evaluations

54907 30138 32618 18265

CPU time 4.03 4.51 3.60 1.90

14 -75.1341 -75.1341
Success rate 1 1 1 1
Number of
evaluations

3412 3058 1747 2419

CPU time 0.16 0.48 0.26 0.23

Figure 6: Comparison result of D-GCE, MDE´ -HJ, MDE´ -IHS-HJ and PSO-MDE´ -HJ based on CPU time

5.5. Comparison results of D-GCE and algorithms from [11]

Liao proposed three hybrid algorithms base on Ant Colony Algorithm [11] and presents the success rate
and CPU time for 14 test problems. The comparison results of D-GCE and other four algorithms based on

Y. Gao, Y. Sun, J. Wu, J. Nonlinear Sci. Appl. 9 (2016), 1261–1284 1276

the success rate and CPU time were shown in Table 7. For all problems, the D-GCE algorithm found the
global optimal in at least one run, whereas problems 2,3and 8 did not found the optimal solution using the
ACOR algorithm, and the algorithm ACOR-DE did not find the optimal solution of problem 2. In case of 9
problems, D-GCE algorithm provides 100% success. Moreover, only in 1 problem its success rate is less than
60%. In case of ACOR algorithm, 100% success rate is achieved in 5 problems, but in 6 problems success
rate is less than 60%. In case of ACOR -HJ algorithm, 100% success rate is achieved in 5 problems but in
5 problems success rate is less than 60%. In case of ACOR-DE algorithm, 100% success rate is achieved
in 6 problems, but in 2 problems success rate is less than 60%. Consider ACOR-DE-HJ algorithm, 100%
success rate is achieved in 5 problems but in 6 problems success rate is less than 60%. D-GCE algorithm also
obtained completely less CPU time than ACOR , ACOR -HJ, ACOR-DE and ACOR -DE-HJ algorithm in
problem 1,2,5,6,9,10 and 12. Overall, D-GCE, proposed by this paper, is superior to the algorithm proposed
by literature [11].

Table 7: Comparison result of textbfD-GCE, ACOR , ACOR -HJ, ACOR-DE and ACOR -DE-HJ algorithm

P
D-GCE ACOR

[14] ACOR -HJ [14] ACOR-DE [14] ACOR -DE-HJ [14]

Success
rate

t-CPU
Success

rate
t-CPU

Success
rate

t-CPU
Success

rate
t-CPU

Success
rate

t-CPU

1 1 0.18 0.0667 5.6485 0.7 0.516 0.8333 1.648 0.7 0.656
2 1 0.024 0 33.625 0.8667 0.4135 0 39.406 0.2333 5.2425
3 0.97 1.34 0 7.4375 0.9333 0.8125 1.0 4.5625 0.9333 0.75
4 1 0.33 0.9 0.2575 0.9 0.1645 1.0 0.188 1.0 0.141
5 1 0.081 0.6 0.1795 0.4 0.219 0.8667 0.109 0.8667 0.094
6 1 0.7 0.0333 11.469 0.0333 2.86 0.5333 12.492 0.5 3.0
7 1 0.14 1.0 0.164 1.0 0.0545 0.8333 0.141 1.0 0.0545
8 0.93 3.65 0 22.969 0.1333 3.532 0.9667 8.2345 0.0667 3.531
9 1 0.04 1.0 0.047 1.0 0.047 1.0 0.078 1.0 0.047
10 0.85 0.66 1.0 10.7025 0.1 5.39 1.0 8.5705 0.3333 5.0235
11 0.82 0.43 1.0 0.141 1.0 0.047 0.9667 0.102 1.0 0.047
12 1 0.06 0.3333 7.047 1.0 0.367 1.0 1.4765 0.0333 1.578
13 0.1 4.03 0.9 6.7885 0.0667 5.5465 0.9 2.5855 0.0667 5.344
14 1 0.16 1.0 0.781 1.0 0.172 1.0 1.0395 1.0 0.203

Total 12.67 11.8250 7.8333 107.2570 9.1333 20.1415 11.9 80.633 8.7333 25.7115

Figure 7: Comparison results of D-GCE,ACOR , ACOR -HJ, ACOR-DE and ACOR -DE-HJ algorithm based on CPU time

Y. Gao, Y. Sun, J. Wu, J. Nonlinear Sci. Appl. 9 (2016), 1261–1284 1277

5.6. Comparison results of D-GCE and algorithms from [1]

In order to get a better insight into the relative performance of D-GCE and the algorithm proposed
by [1], choose the test problems p.15 − p.24, six performance indicators is calculated which including the
optimal, the best, the mean, the standard, the average number of iterations and the average number of
evaluations in respect of those algorithms. For all problems, the D-GCE algorithm found the global optimal
in at least one run, especially in problem 16 and 24 the solution is superior to the global optimal. For
problems 15, 17-24, the best and mean is very close to the optimal, whereas the standard of problem 17, 18,
20 and 21 is close to 0 under the preset accuracy. D-GCE algorithm required less number of iterations than
other four algorithms in all problems except problem 16 and 21. Consider about the number of evaluations,
D-GCE algorithm is also superior to all other algorithms in all problems, the visual comparison can be found
in the histograms 8 and 9.

Table 8: Comparison results of D-GCE, GA SFP, GA PFP, LEDE SFP and LEDE PFP algorithm

P Optimal Indicators D-GCE GA SFP GA PFP EDE SFP LEDE PFP

15 -5.50796

Best -5.508010 -5.51 -5.51 -5.51 -5.51
Mean -5.507985 -5.51 -5.51 -5.51 -5.51

Standard 0.000009 0.0 0.0 0.00 0.00
The average number

of iterations
92.56 110.6 110.9 NA NA

The average number
of evaluations

2806.8 NA NA 11614.4 11593.45

16 -316.27

Best -316.531661 -314.03 -314.391 -316.27 -316.27
Mean -298.581657 -295.43 -295.65 -310.05 -307.8

Standard 23.553381 13.41 12.12 17.76 20.26
The average number

of iterations
777.32 313.1 319.3 NA NA

The average number
of evaluations

23319.6 NA NA 26029.7 27137.01

17 0.18301

Best 0.183015 0.18 0.18 0.18 0.18
Mean 0.183015 0.18 0.18 0.18 0.18

Standard 0.000000 0.00 0.00 0 0
The average number

of iterations
68.02 101.3 101.3 NA NA

The average number
of evaluations

2070 NA NA 10377.07 10404.72

18 0

Best 0 0 0 0 0
Mean 0 0 0 0 0

Standard 0 0.00 0.00 0 0
The average number

of iterations
60 101.8 101.6 NA NA

The average number
of evaluations

1567.2 NA NA 10481.89 10504.99

19 -195.37

Best -195.370581 -195.37 -195.37 -195.37 -195.37
Mean -195.370243 -195.37 -195.37 -195.37 -195.37

Standard 0.000296 0.01 0.00 0 0
The average number

of iterations
114.15 123 121.6 NA NA

The average number
of evaluations

2303 NA NA 13157.11 13252.961

20 -2.2137

Best -2.213662 -2.21 -2.21 -2.21 -2.21
Mean -2.213661 -2.21 -2.21 -2.21 -2.21

Standard 0.000000 0.00 0.00 0 0

Y. Gao, Y. Sun, J. Wu, J. Nonlinear Sci. Appl. 9 (2016), 1261–1284 1278

The average number
of iterations

32.1 100.9 101 NA NA

The average number
of evaluations

616.8 NA NA 10331.63 10314.72

21 0.125

Best 0.125000 0.13 0.13 0.13 0.13
Mean 0.125000 0.13 0.13 0.13 0.13

Standard 0.000000 0.00 0.00 0 0
The average number

of iterations
282 101.1 101.1 NA NA

The average number
of evaluations

8496 NA NA 10357.18 10314.72

22 0.0821

Best 0.082085 0.08 0.08 0.08 0.08
Mean 0.082092 0.08 0.08 0.08 0.08

Standard 0.000004 0.00 0.00 0.00 0.00
The average number

of iterations
41.3 103.86 104.75 NA NA

The average number
of evaluations

1582.9 NA NA 10958.83 11033.13

23 1.5087

Best 1.508653 1.51 1.51 1.51 1.51
Mean 1.508687 1.51 1.51 1.51 1.51

Standard 0.000016 0.00 0.00 0.00 0.oo
The average number

of iterations
53 102.97 103.10 NA NA

The average number
of evaluations

1941 NA NA 10700.91 10687.7

24 -0.388811

Best -0.777376 -0.41 -0.41 -0.41 -0.41
Mean -0.504627 -0.41 -0.41 -0.41 -0.41

Standard 0.089488 0.01 0 0.00 0.00
The average number

of iterations
73 134.3 136 NA NA

The average number
of evaluations

2763.2 NA NA 12922.71 12941.93

Figure 8: Comparison result of D-GCE, GA SFP and GA PFP based on the number of iterations

Y. Gao, Y. Sun, J. Wu, J. Nonlinear Sci. Appl. 9 (2016), 1261–1284 1279

Figure 9: Comparison result of D-GCE, LEDE SFP and LEDE PFP based on the number of evaluations

6. Conclusion

In this paper, a differential genetic co-evolutionary algorithm is proposed for solving of constrained,
integer and mixed integer optimization problems. In this algorithm we use differential evolution algorithm
to handle the continuous part and the genetic algorithm to handle the discrete integer part in each individual.
In order to handle the constraints in the model, we proposed a new method which we called PF is used to
handle the constraints of the optimization problems.

The performance of the proposed D-GCE algorithm is compared with some classic algorithm selected
from literature on a set of 24 test problems. Our results show that the proposed D-GCE algorithm out-
performs other algorithm in most of the case for solving nonlinear mixed integer programming problem.
Especially in some indicators such as the success rate, the efficiency of the search process, the quality of
the solution and the stability of algorithm, etc. These properties can reflect that the D-GCE algorithm is
an effective, stable, competitive evolutionary algorithm. However, this article only focuses on the parallel
of those two algorithms and the control parameters, and self-adaptive would be needed to study about a
stronger algorithm. In addition, in this paper, we used a new method to convert the constrained mixed
integer problems to unconstrained bio-objective optimization problem and achieved better results, so we
will extend this idea to the field of multi-objective optimization.

Appendix

P.1
min F = 6.4x1 + 6x2 + 7.5y1 + 5.5y2
s.t. 0.8x1 + 0.67x2 = 10, x1 − 20y1 ≤ 0, x2 − 20y2 ≤ 0

x1, x2 ∈ [0, 2], y1, y2 ∈ {0, 1}
The known global optimal solution is F ∗ = 87.5, x = [12.5006, 0] and y = [1, 0]

P.2
min F = 2x1 + 3x2 + 1.5y1 + 2y2 − 0.5y3
s.t. x21 + y1 = 1.25, x1.52 + 1.5y2 = 3, x1 + y1 ≤ 1.6

1.333x2 + y2 ≤ 3,−y1 − y2 + y3 ≤ 0
x1, x2 ∈ [0, 2], y1, y2, y3 ∈ {0, 1}

The known global optimal solution is F ∗ = 7.667, x = [1.118, 1.310] and y = [0, 1, 1]

P.3
min (x1 − 1)2 + (x2 − 2)2 + (x3 − 3)2 + (y1 − 1)2 + (y2 − 2)2 + (y3 − 1)2 − ln(y4 + 1)
s.t. x1 + x2 + x3 + y1 + y2 + y3 ≤ 5, x21 + x22 + x23 + y23 ≤ 5.5, x1 + y1 ≤ 1.2

x2 + y2 ≤ 1.8, x3 + y3 ≤ 2.5, x1 + y4 ≤ 1.2, x22 + y22 ≤ 1.64, x23 + y23 ≤ 4.25, x23 + y22 ≤ 4.64
x1 ∈ [0, 1.2], x2 ∈ [0, 1.28], x3 ∈ [0, 2.062], y1, y2, y3, y4 ∈ {0, 1}

Y. Gao, Y. Sun, J. Wu, J. Nonlinear Sci. Appl. 9 (2016), 1261–1284 1280

The known global optimal solution is F ∗ = 4.5796, x = [0.2, 0.8, 1.908] and y = [1, 1, 0, 1]

P.4
min F = 2x+ y
s.t. 1.25− x2 − y ≤ 0, x+ y ≤ 1.6

x ∈ [0, 1.6], y ∈ {0, 1}
The known global optimal solution is F ∗ = 2, x = [0.5] and y = [1]

P.5
min F = −y + 2x1 − ln(x1/2)
s.t. − x1 − ln(x1/2) + y ≤ 0

x1 ∈ [0.5, 1.4], y ∈ {0, 1}
The known global optimal solution is F ∗ = 2.1247, x = [1.375] and y = [1]

P.6
min F = −0.7y + 5(x1 − 0.5)2 + 0.8
s.t. − exp(x1 − 0.2)− x2 ≤ 0, x2 + 1.1y ≤ −1.0, x1 − 1.2y ≤ 1.2

x1 ∈ [0.2, 1], x2 ∈ [−2.22554,−1], y ∈ {0, 1}
The known global optimal solution is F ∗ = 1.076543, x = [0.94194,−2.1] and y = [1]

P.7

min F = 7.5y + 5.5(1− y) + 7x1 + 6x2 +
50(1− y)

0.8[1− exp(−0.4x2)]
+

50y

0.9[1− exp(−0.5x1)]
s.t. 0.9[1− exp(−0.5x1)]− 2y ≤ 0, 0.8[1− exp(−0.4x2)]− 2(1− y) ≤ 0, x1 ≤ 10y, x2 ≤ 10(1− y)

x1, x2 ∈ [0, 10], y ∈ {0, 1}
The known global optimal solution is F ∗ = 99.245209, x = [3.514237, 0] and y = [1]

P.8
min (x1 − 1)2 + (x2 − 2)2 + (x3 − 3)2 + (y1 − 1)2 + (y2 − 1)2 + (y3 − 1)2 − ln(y4 + 1)
s.t. x1 + x2 + x3 + y1 + y2 + y3 ≤ 5, x21 + x22 + x23 + y23 ≤ 5.5, x1 + y1 ≤ 1.2

x2 + y2 ≤ 1.8, x3 + y3 ≤ 2.5, x1 + y4 ≤ 1.2, x22 + y22 ≤ 1.64, x23 + y23 ≤ 4.25, x23 + y22 ≤ 4.64
x1 ∈ [0, 1.2], x2 ∈ [0, 1.8], x3 ∈ [0, 2.5], y1, y2, y3, y4 ∈ {0, 1}

The known global optimal solution is F ∗ = 3.557463, x = [0.2, 1.28062, 1.95448] and y = [1, 0, 0, 1]

P.9
min F = 5.357854x21 + 0.835689y1x3 + 37.29329y1 − 40795.141
s.t. 85.334407 + 0.0056858y2x3 + 0.0006262y1x2 − 0.0022053x1x3 ≤ 92,

80.51249 + 0.0071317y2x3 + 0.0029955y1y2 + 0.0021813x21 − 90 ≤ 20
9.300961 + 0.0047026x1x3 + 0.0012547y1x1 + 0.0019085x1x2 − 20 ≤ 5
x1, x2, x3 ∈ [27, 45], y1 ∈ {78, ..., 102}, y2 ∈ {33, ..., 45}

The known global optimal solution is F ∗ = −32217.4, x = [27, any, 27] and y = [78, any]

P.10
min F = −

∏10
j=1[1− (1− pj)yj]

s.t.
∏10
j=1(aijy

2
j + cijyj) ≤ b, i = 1, 2, 3, 4

[pj] = (0.81, 0.93, 0.92, 0.96, 0.99, 0.89, 0.85, 0.83, 0.94, 0.92)

[aij] =

2 7 3 0 5 6 9 4 8 1
4 9 2 7 1 0 8 3 5 6
5 1 7 4 3 6 0 9 8 2
8 3 5 6 9 7 2 4 0 1

Y. Gao, Y. Sun, J. Wu, J. Nonlinear Sci. Appl. 9 (2016), 1261–1284 1281

[cij] =

7 1 4 6 8 2 5 9 3 3
4 6 5 7 2 6 9 1 0 8
1 10 3 5 4 7 8 9 4 6
2 3 2 5 7 8 6 10 9 1

[bi] = (2.0× 1013, 3.1× 1012, 5.7× 1013, 9.3× 1012)
yj ∈ {1, ..., 6}, j = 1, ..., 10

The known global optimal solution is F ∗ = −0.808844 and y = [2, 2, 2, 1, 1, 2, 3, 2, 1, 2]

P.11
min F = −

∏4
j=1Rj

s.t.
∑4

j=1 d1jy
2
j ≤ 100,

∑4
j=1 d2j(yj + exp(yj/4)) ≤ 150,

∑4
j=1 d3jyjexp(yj/4) ≤ 160,

yj ∈ {1, ..., 6}, j = 1, 2, 4y3 ∈ {1, ..., 5}
where R1 = 1− q1((1− β1)q1 + β1)

y
1 − 1, R2 = 1− (β2q2 + p2q

y2
2)/(p2 + β2q2)

R3 = 1− qy33 , R4 = 1− q4((1− β)q4 + β4)
y4−1

[pj] = (0.93, 0.92, 0.94, 0.91), [qj] = (0.07, 0.08, 0.06, 0.09)
[βj] = (0.2, 0.06, 0.0, 0.3)

[dij] =

1 2 3 4
7 7 5 7
7 8 8 6

The known global optimal solution is F ∗ = −0.974565 and y = [3, 3, 2, 3]

P.12
min F = −

∏4
j=1[1− (1− xj)yj]

s.t.
∑4

j=1 vjy
2
j ≤ 250,∑4

j=1 αj(
−100

ln(xj)
)βj (yj + exp(yj/4)) ≤ 400,∑4

j=1wj ∗ yj ∗ exp(yj/4) ≤ 500,

xj ∈ [0.5, 1− 10−6], j = 1, 2, 3, 4 yj ∈ {1, ..., 10}, j = 1, 2, 3, 4
where [vj] = (1, 2, 3, 2), [wj] = (6, 6, 8, 7), [αj] = (1.0, 2.3, 0.3, 2.3)× 10−5

[βj] = (1.5, 1.5, 1.5, 1.5)
The known global optimal solution is F ∗ = −32217.4, x = [27, any, 27] and y = [78, any]

P.13
min F = 0.6224x1x2x3 + 1.7781x21x4 + 3.1661x2x

2
3 + 19.84x1x

2
3

s.t. 0.0193x1/x3 − 1 = 0, 0.00954x1/x4 − 1 = 0, x2/240− 1 = 0,
(1296000− (4/3)πx31)/(πx

2
1x2)− 1 ≤ 0,

x1 ∈ [25, 150], x2 ∈ [25, 240], x3, x4 ∈ [0.0625, 0.125, 1.1875, 1.25],
The known global optimal solution is F ∗ = 5850.770 and x = [38.858, 221.402, 0.75, 0.375]

P.14
min F = −x1x2
s.t. 0.145x0.19392 x0.70711 y−0.2343 ≤ 0.3, 29.67x0.41672 x−0.83331 ≤ 7,

x1 ∈ [8.6, 13.4], x2 ∈ [5, 30], y ∈ {120, 140, 170, 200, 230, 270, 325, 400, 500},
The known global optimal solution is F ∗ = −75.1341 and x = [13.4, 5.6070]

P.15
min F = −x1 − x2
s.t. − 8x21 + 831 − 2x41 + x2 ≤ 2, 96x1 − 88x21 + 32x31 − 4x41 + x2 ≤ 36,

x1 ∈ [0, 3], x2 ∈ [0, 4]

Y. Gao, Y. Sun, J. Wu, J. Nonlinear Sci. Appl. 9 (2016), 1261–1284 1282

The known global optimal solution is F ∗ = −5.50796 and x = [2.3295, 3.17846]

P.16
min F = −(0.0204 + 0.0607x25)x1x4(x1 + x2 + x3)− (0.0187 + 0.0437x26)x2x3(x1 + 1.57x2 + x4)
s.t. 2070/x1x2x3x4x5x6 − 1 ≤ 0, 6.2x1x4x

2
5(x1 + x2 + x3) + 5.8x2x3x

2
6(x1 + 1.57x2 + x4) ≤ 10000,

x1, x2 ∈ [0, 10], x3, x4 ∈ [0, 15], x5, x4 ∈ [0, 1],
The known global optimal solution is F ∗ = −613.27 and x = [10, 10, 15, 4.609, 0.78511, 0.3814]

P.17
min F =

∑5
i=1 1/[ai(x− pi)(x− pi) + ci]

s.t. x1 + x2 − 5 ≤ 0, 6.x1 − x22 ≤ 0, 5x31 + 1.6x22 ≤ 0,
x1 ∈ {−3,−2, ..., 10}, x2 ∈ {−4,−3, ..., 7}

i ai pi ci
1 0.5 0 5 0.125

2 0.25 2 5 0.25

3 1 3 2 0.1

4 1/12 4 4 0.2

5 2 5 2 1/12

The known global optimal solution is F ∗ = 0.18301 and x = [−3,−4]T

P.18
min F = x21 + x22
s.t. x1 + x2 − 2 ≤ 0, x21 − x2 ≤ 0,

x1 ∈ {−3,−2, ..., 2}, x2 ∈ {0, 1, ..., 5},
The known global optimal solution is F ∗ = 0 and x = [0, 0]

P.19
min F = −(x2 − 1.275x21 + 5x1 − 6)2 − 10(1− 1/8π)cos(πx1)− 10
s.t. − πx1 − x2 ≤ 0,−π2x21 + 4x2 ≤ 0,

x1 ∈ [−1.5, 3.5], x2 ∈ [0, 15]
The known global optimal solution is F ∗ = −195.37 and x = [2.4656, 15]

P.20
min F = −2x1 − 6x2 + x31 + 8x22
s.t. x1 + 6x2 − 6 ≤ 0, 5x1 + 4x2 − 10 ≤ 0,

x1 ∈ [0, 2], x2 ∈ [0, 1]
The known global optimal solution is F ∗ = −2.2137 and x = [0.8165, 0.375]

P.21
min F = (x1 − 0.75)2 + (0.5x2 − 0.75)2

s.t. x1 + 0.5x2 − 1 ≤ 0,
x1 ∈ [0, 1], x2 ∈ [0, 2]

The known global optimal solution is F ∗ = 0.125 and x = [0.5, 1]

P.22
min F = exp(x1 − 2x2)
s.t. sin(−x1 + x2 − 1) ≤ 0,

x1 ∈ [−2, 2], x2 ∈ [−1.5, 1.5]

Y. Gao, Y. Sun, J. Wu, J. Nonlinear Sci. Appl. 9 (2016), 1261–1284 1283

The known global optimal solution is F ∗ = 0.0821 and x = [0.5, 1.5]

P.23
min F = x1

√
1 + x22

s.t. 0.124
√

1 + x22 × (8/x1 + 1/x1x2)− 1 ≤ 0, 0.124
√

1 + x22 × (8/x1 − 1/x1x2)− 1 ≤ 0,
x1 ∈ [0.2, 4], x2 ∈ [0.1, 1.6]

The known global optimal solution is F ∗ = 1.5087 and x = [1.41163, 0.377072]

P.24
min F = −x4
s.t. 0.09755988x1x5 + x1 − 1 ≤ 0, 0.09658428x2x6 + x2 − x1 ≤ 0,

√
x5 +

√
x6 − 4 ≤ 0,

0.0391908x3x5 + x3 + x1 − 1 ≤ 0, 0.03527172x4x6 + x4 − x1 + x2 − x3 ≤ 0
x1, x2, x3, x4 ∈ [0, 1], x,x6 ∈ [0.00001, 16]

The known global optimal solution is F ∗ = −0.388811,
x = [0.771516, 0.516992, 0.204192, 0.388811, 3.03557, 5.09726]

Acknowledgements

This work was supported by the National Natural Science Foundation of P. R. China (61561001) and
the Foundations of research projects of State Ethnic Affairs Commission of P. R. China (14BFZ003) and the
Foundations of research projects of Beifang University of Nationalities (2015KJ10).

References

[1] M. M. Ali, Z. Kajee-Bagdadi, A local exploration-based differential evolution algorithm for constrained global
optimization, Appl. Math. Comput., 208 (2009), 31–48. 5, 5.1, 5.6

[2] L. Costa, P. Oliveira, Evolutionary algorithms approach to the solution of mixed integer non-linear programming
problems, Comput. Chem. Eng., 25 (2001), 257–266. 1, 2

[3] S. Das, Differential Evolution: A Survey of the State-of-the-Art, IEEE Trans. Evol. Comput., 15 (2011), 4–31.
3.1, 3.2

[4] K. Deb, An efficient constraint handing method for genetic algorithms, Comput. Method Appl. M, 186 (2000),
311–338. 3.2

[5] K. Deep, K. P. Singh, M. L. Kansal, C. Mohan, A real coded genetic algorithm for solving integer and mixed
integer optimization problems, Appl. Math. Comput., 212 (2009), 505–518. 1, 2, 3.3, 4.1, 5

[6] A. Hedar, Filter-based genetic algorithm for mixed variable programming, Numer. Algebra Control Optim., 1
(2011), 99–116. 1, 2, 3.2, 4.1, 5

[7] F. Huang, L. Wang, Q. He, An effective co-evolutionary differential evolution for constrained optimization, Appl.
Math. Comput., 186 (2007), 340–356. 3.2

[8] S. Kitayama, K. Yasuda, A method for mixed integer programming problems by particle swarm optimization,
Electr. Eng. Jpn., 157 (2006), 40–49. 1, 2

[9] J. Lampinen, I. Zelinka, On stagnation of the differential evolution algorithm, 6th International Mendel Conference
on Soft Computing, 2000 (2000), 76–83. 5.1

[10] T. W. Liao, Two hybrid differential evolution algorithms for engineering design optimization, Appl. Soft Comput.,
10 (2010), 1188–1199. 1, 1, 3.3, 5, 5.2, 5.3

[11] T. W. Liao, R. J. Kuo, J. T. L. Hu, Hybrid ant colony optimization algorithms for mixed discrete-Ccontinuous
optimization problems, Appl. Math. Comput., 219 (2012), 3241–3252. 1, 3.2, 5.5

[12] Y. C. Lin, K. S Hwang, F. S Wang, A Mixed-Coding Scheme of Evolutionary Algorithms to Solve Mixed-Integer
Nonlinear Programming Problems, Comput. Math. Appl., 47 (2004), 1295–1307. 1, 2

[13] M. Mahdavi, M. Fesanghary, E. Damangir, An improved harmony search algorithm for solving optimization
problems, Appl. Math. Comput., 188 (2007), 1567–1579. 1, 2

[14] A. K. Maiti, A. K. Bhunia, M. Maiti, An application of real-coded genetic algorithm for mixed integer non-linear
programming in two-storage multi-item inventory model with discount policy, Appl. Math. Comput., 183 (2006),
903–915. 1, 2, 4.1

[15] R. Mallipeddi, P. N. Suganthan, Ensemble of Constraint Handling Techniques, Evolutionary Comput., 14 (2010),
561–579. 3.2, 5.1

[16] K. Miettinen, M. Makela, J. Toivanen, Numerical comparison of some penalty based constraint handling techniques
in genetic algorithm, J. Global Optim., 27 (2003), 427–446. 4.1

Y. Gao, Y. Sun, J. Wu, J. Nonlinear Sci. Appl. 9 (2016), 1261–1284 1284

[17] A. W. Mohamed, H. Z. Sabry, Constrained optimization based on modified differential evolution algorithm, Inf.
Sci., 194 (2012), 171–208. 5.1, 5.1

[18] L. Pallottino, E. M. Feron, A. Bicchi, Conflict resolution problems for air traffic management systems solved with
mixed integer programming, IEEE Trans. Intell. Transp. Syst., 3 (2002), 3–11. 1

[19] M. Schluter, J. A. Egea, J. R Banga, Extended ant colony optimization for non-convex mixed integer nonlinear
programming, Comput. Oper. Res., 36 (2009), 2217–2229. 1, 3.2

[20] T. Schouwenaars, B. De Moor, E. Feron, J. How, Mixed integer programming for multi-vehicle path planning,
Eur. Control Conf., 1 (2001), 2603–2608. 1

[21] M. Srinivas, G. P. Rangaiah, Differential evolution with tabu list for solving nonlinear and mixed-integer nonlinear
programming problems, Ind. Eng. Chem. Res., 46 (2007), 7126–7135. 1, 3.2

[22] R. Storn, K. Price, Differential evolution: A simple and efficient adaptive scheme for global optimization over
continuous spaces, Int. Comput. Sci. Inst., Berkeley, (1995). 3.1, 3.2, 5.1

[23] R. Storn, K. Price, Minimizing the real functions of the ICEC 1996 contest by Differential Evolution, IEEE
Conference on Evolutionary Computation, 1996 (1996), 3 pages. 3.1, 3.2

[24] R. Storn, K. Price, Differential evolution-a simple and efficient heuristic for global optimization over continuous
spaces, J. Global Optim., 11 (1997), 341–359. 3.1, 3.2

[25] S. S. Syam, A dual ascent method for the portfolio selection problem with multiple constraints and linked proposals,
Eur. J. Oper. Res. 108 (1998), 196–207. 1

[26] B. Tessema, G. G. Yen, A Self Adaptive Penalty Function Based Algorithm for Constrained Optimization, Evol.
Comput., 2006 (2006), 8 pages. 3.2

[27] Y. Wang, Z. Cai, G. Guo, Y. Zhou, Multiobjective optimization and hybrid evolutionary algorithm to solve
constrained optimization problems, IEEE Trans. Syst. Man Cybern. Part B Cybern., 37 (2007), 560–575. 3.2

[28] L. Wang, L. Li, An effective differential evolution with level comparison for constrained engineering design, Struc.
Multidisciplinary Optim., 41 (2010), 947–963. 5.1

[29] L. Yan, K. Shen, S. Hu, Solving mixed integer nonlinear programming problems with line-up competition algorithm,
Comput. Chem. Eng., 28 (2004), 2647–2657. 1, 2

[30] H. Yi, Q. Duan, T. W. Liao, Three improved hybrid metaheuristic algorithms for engineering design optimization,
Appl. Soft Comput., 13 (2013), 2433–2444. 1, 3.2, 5.4

[31] M. Yuceer, L. Atasoy, R. Berber, A semiheuristic MINLP algorithm for production scheduling, Comput. Aided
Chem. Eng., 14 (2003), 335–340. 1

	1 Introduction
	2 Background information
	3 Differential evolution algorithm
	3.1 Basic differential evolution algorithm
	3.2 Constraints handling method
	3.3 Discrete variable handling method

	4 Differential genetic algorithm co-evolution
	4.1 Basic genetic evolution algorithm
	4.2 Differential genetic co-evolution algorithm

	5 Experiment and results
	5.1 Test problems and parameters setting
	5.2 Result obtained by the D-GCE algorithm
	5.3 Comparison results of D-GCE and algorithms from 1
	5.4 Comparison results of D-GCE and algorithms from 16
	5.5 Comparison results of D-GCE and algorithms from 14
	5.6 Comparison results of D-GCE and algorithms from 29

	6 Conclusion

