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1. Introduction and Preliminaries

Bifunction equilibrium problem [4], which was introduced two decades ago, have emerged as an interest-
ing and fascinating branch of applicable mathematics with a wide range of applications in industry, finance,
optimization, social, pure and applied sciences; see [3], [11], [12], [20], [22], [23] and the references therein.
Since bifunction equilibrium problem covers variational inequality problems, zero point problems, and vari-
ational inclusion problems, it has been investigated by many authors via fixed point algorithms; see, for
example, [5, 6, 8, 9, 10], [13]-[17], [24]-[28], [30] and the references therein.

Let E be a real Banach space and let E∗ be the dual space of E. Let C be a nonempty subset of E
and let G be a bifunction from C × C to R, where R denotes the set of real numbers. Recall the following
equilibrium problem. Find x̄ ∈ C such that
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G(x̄, y) ≥ 0, ∀y ∈ C. (1.1)

We use Sol(G) to denote the solution set of equilibrium problem (1.1). That is,

Sol(G) = {x ∈ C : 0 ≤ G(x, y) ∀y ∈ C}.

Given a mapping A : C → E∗, let

G(x, y) := 〈y − x,Ax〉 ∀x, y ∈ C.

Then x̄ ∈ Sol(G) if x̄ is a solution of the following variational inequality. Find x̄ such that

〈y − x̄, Ax̄〉 ≥ 0 ∀y ∈ C. (1.2)

In order to study the solution of problem (1.1), we assume that G satisfies the following conditions:

(C-1) G(x, x) = 0 ∀x ∈ C;

(C-2) 0 ≥ G(x, y) +G(y, x) ∀x, y ∈ C;

(C-3) G(x, y) ≥ lim supt↓0G(tz + (1− t)x, y) ∀x, y, z ∈ C;

(C-4) y 7→ G(x, y) is weakly lower semi-continuous and convex for each x ∈ C.

Recall that a Banach space E is said to be strictly convex iff ‖x+y
2 ‖ < 1 for all x, y ∈ E with ‖x‖ = ‖y‖ = 1

and x 6= y. It is said to be uniformly convex if limn→∞ ‖xn − yn‖ = 0 for any two sequences {xn} and {yn}
in E such that

‖xn‖ = ‖yn‖ = 1 and lim
n→∞

‖xn + yn
2

‖ = 1.

Let UE = {x ∈ E : ‖x‖ = 1} be the unit sphere of E. Then the Banach space E is said to be smooth if

lim
t→0

‖x‖ − ‖x+ ty‖
t

exists for each x, y ∈ UE . It is also said to be uniformly smooth if and only if the above limit is attained
uniformly for x, y ∈ UE . It is known that if E is uniformly smooth if and only if E∗ is uniformly convex.

In this paper, we use → and ⇀ to denote the strong convergence and weak convergence, respectively.
Recall that a Banach space E has the Kadec-Klee property if for any sequence {xn} ⊂ E and x ∈ E with
xn ⇀ x and ‖xn‖ → ‖x‖, then ‖xn − x‖ → 0 as n → ∞. It is well known that if E is a uniformly convex
Banach spaces, then E has the Kadec-Klee property.

Recall that the normalized duality mapping J from E to 2E
∗

is defined by

Jx = {f∗ ∈ E∗ : ‖x‖2 = 〈x, f∗〉 = ‖f∗‖2},

where 〈·, ·〉 denotes the generalized duality pairing.
It is known if E is uniformly smooth, then J is uniformly norm-to-norm continuous on every bounded

subset of E; if E is a smooth Banach space, then J is single-valued and demicontinuous, i.e., continuous
from the strong topology of E to the weak star topology of E; if E is smooth, strictly convex and reflexive
Banach space, then J is single-valued, one-to-one and onto.

Consider the functional defined by

φ(x, y) = ‖x‖2 + ‖y‖2 − 2〈x, Jy〉 ∀x, y ∈ E.

Observe that, in a Hilbert space H, the equality is reduced to φ(x, y) = ‖x − y‖2 for all x, y ∈ H. As
we all know that if C is a nonempty closed convex subset of a Hilbert space H and PC : H → C is the
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metric projection of H onto C, then PC is nonexpansive. This fact actually characterizes Hilbert spaces
and consequently, it is not available in more general Banach spaces. In this connection, Alber [2] recently
introduced a generalized projection operator ΠC in a Banach space E which is an analogue of the metric
projection PC in Hilbert spaces.

Recall that generalized projection ΠC : E → C is a map that assigns to an arbitrary point x ∈ E the
minimum point of the functional φ(x, y), that is, ΠCx = x̄, where x̄ is the solution to the minimization
problem

φ(x̄, x) = min
y∈C

φ(y, x).

Existence and uniqueness of the operator ΠC follows from the properties of the functional φ(x, y) and strict
monotonicity of the mapping J . In Hilbert spaces, ΠC = PC . It is obvious from the definition of function φ
that

(‖y‖+ ‖x‖)2 ≥ φ(x, y) ≥ (‖x‖ − ‖y‖)2 ∀x, y ∈ E, (1.3)

and
φ(x, y)− φ(x, z) = φ(z, y) + 2〈x− z, Jz − Jy〉 ∀x, y, z ∈ E. (1.4)

Let T : C → C be a mapping. In this paper, we use Fix(T ) to denote the fixed point set of T. T is said
to be closed if for any sequence {xn} ⊂ C such that limn→∞ xn = x0 and limn→∞ Txn = y0, then Tx0 = y0.

Recall that a point p in C is said to be an asymptotic fixed point of T if C contains a sequence {xn}
which converges weakly to p such that limn→∞ ‖xn − Txn‖ = 0. The set of asymptotic fixed points of T

will be denoted by F̃ ix(T ).

Recall that a mapping T is said to be relatively nonexpansive if

F̃ ix(T ) = Fix(T ) 6= ∅, φ(p, Tx) ≤ φ(p, x) ∀x ∈ C, ∀p ∈ Fix(T ).

Recall that a mapping T is said to be relatively asymptotically nonexpansive if

F̃ ix(T ) = Fix(T ) 6= ∅, φ(p, Tnx) ≤ knφ(p, x) ∀x ∈ C, ∀p ∈ Fix(T ),∀n ≥ 1,

where {kn} ⊂ [1,∞) is a sequence such that kn → 1 as n→∞.

Remark 1.1. The class of relatively asymptotically nonexpansive mappings, which covers the class of rela-
tively nonexpansive mappings, was first considered in [1]. See also [21] and the references therein.

Recall that a mapping T is said to be quasi-φ-nonexpansive if

Fix(T ) 6= ∅, φ(p, Tx) ≤ φ(p, x) ∀x ∈ C, ∀p ∈ Fix(T ).

Recall that a mapping T is said to be asymptotically quasi-φ-nonexpansive if there exists a sequence
{kn} ⊂ [1,∞) with kn → 1 as n→∞ such that

Fix(T ) 6= ∅, φ(p, Tnx) ≤ knφ(p, x) ∀x ∈ C, ∀p ∈ Fix(T ), ∀n ≥ 1.

Remark 1.2. The class of asymptotically quasi-φ-nonexpansive mappings, which covers the class of quasi-φ-
nonexpansive mappings [18], was considered in Qin, Cho and Kang [19] and Agarwal and Qin [17]; see also
Zhou, Gao and Tan [31].

Remark 1.3. The class of quasi-φ-nonexpansive mappings and the class of asymptotically quasi-φ- non-
expansive mappings are more general than the class of relatively nonexpansive mappings and the class
of relatively asymptotically nonexpansive mappings. Quasi-φ-nonexpansive mappings and asymptotically
quasi-φ-nonexpansive do not require the restriction Fix(T ) = F̃ ix(T ).

In order to our main results, we also need the following lemmas.
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Lemma 1.4 ([4]). Let C be a closed convex subset of a smooth, strictly convex and reflexive Banach space
E. Let G be a bifunction from C × C to R satisfying (C-1), (C-2), (C-3) and (C-4). Let r > 0 and x ∈ E.
Then there exists z ∈ C such that

rG(z, y) + 〈z − y, Jx− Jz〉 ≥ 0 ∀y ∈ C.

Lemma 1.5 ([2]). Let E be a reflexive, strictly convex, and smooth Banach space, C a nonempty, closed,
and convex subset of E and x ∈ E. Then

φ(y, x) ≥ φ(y,ΠCx) + φ(ΠCx, x) ∀y ∈ C.

Lemma 1.6 ([2]). Let C be a nonempty, closed, and convex subset of a smooth Banach space E and x ∈ E.
Then

ΠCx = x0,

if and only if
〈x0 − y, Jx0 − Jx〉 ≤ 0 ∀y ∈ C.

Lemma 1.7 ([19]). Let E be a uniformly convex and smooth Banach space and let C be a nonempty closed
and convex subset of E. Let T : C → C be a closed asymptotically quasi-φ-nonexpansive mapping. Then
Fix(T ) is a closed convex subset of C.

Lemma 1.8 ([18]). Let C be a closed convex subset of a smooth, strictly convex and reflexive Banach space
E. Let G be a bifunction from C × C to R satisfying (C-1), (C-2), (C-3) and (C-4). Let r > 0 and x ∈ E.
Define a mapping Sr : E → C by

Srx = {z ∈ C : rG(z, y) + 〈y − z, Jz − Jx〉 ≥ 0 ∀y ∈ C}.

Then the following conclusions hold:

(1) Sr is single-valued;

(2) Sr is a firmly nonexpansive-type mapping, i.e. for all x, y ∈ E,

〈Srx− Sry, Jx− Jy〉 ≥ 〈Srx− Sry, JSrx− JSry〉;

(3) Sr is quasi-φ-nonexpansive;

(4) φ(q, x) ≥ φ(q, Srx) + φ(Srx, x) ∀q ∈ Fix(Sr);

(5) Sol(G) = Fix(Sr) is convex and closed.

2. Main results

Theorem 2.1. Let E be a uniformly convex and smooth Banach space such that E∗ has the Kadec-Klee
property and let C be a nonempty closed and convex subset of E. Let Λ be an index set and let Gi be a
bifunction from C × C to R satisfying (C-1), (C-2), (C-3) and (C-4). Let Ti : C → C be an asymptotically
quasi-φ-nonexpansive mapping for every i ∈ Λ. Assume that Ti is closed and uniformly asymptotically
regular on C for every i ∈ Λ and ∩i∈ΛFix(Ti)

⋂
∩i∈ΛSol(Gi) is nonempty and bounded. Let {xn} be a

sequence generated in the following manner:
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x0 ∈ E chosen arbitrarily,

C(1,i) = C,

C1 = ∩i∈ΛC(1,i),

x1 = ΠC1x0,

y(n,i) = J−1(α(n,i)Jx1 + (1− α(n,i))JT
n
i xn),

u(n,i) ∈ Cn such that r(n,i)Gi(u(n,i), y) + 〈y − u(n,i), Ju(n,i) − Jy(n,i)〉 ≥ 0 ∀y ∈ Cn,

C(n+1,i) = {z ∈ C(n,i) : φ(z, xn) + α(n,i)D ≥ φ(z, u(n,i))},
Cn+1 = ∩i∈ΛC(n+1,i),

xn+1 = ΠCn+1x1,

where D := sup{φ(w, x1) : p ∈ ∩i∈ΛFix(Ti)
⋂
∩i∈ΛSol(Gi)}, {α(n,i)} is a real sequence in (0, 1) such that

limn→∞ α(n,i) = 0 and {r(n,i)} is a real sequence in [ai,∞), where {ai} is a positive real number sequence
for every i ∈ Λ. Then the sequence {xn} converges strongly to Π∩i∈ΛFix(Ti)

⋂
∩i∈ΛSol(Gi)x1.

Proof. Using Lemma 1.7 and Lemma 1.8, we find that ∩i∈ΛFix(Ti)
⋂
∩i∈ΛSol(Gi) is convex and closed so

that the generalization projection onto the set is well defined.
Next, we prove that Cn is convex and closed. To show Cn is convex and closed, it suffices to show that,

for each fixed but arbitrary i ∈ Λ, C(n,i) is convex and closed. This can be proved by induction on n. It is
obvious that C(1,i) = C is convex and closed. Assume that C(m,i) is convex and closed for some m ≥ 1. Let
For z1, z2 ∈ C(m+1,i), we see that z1, z2 ∈ C(m,i). It follows that z = tz1 + (1− t)z2 ∈ C(m,i), where t ∈ (0, 1).
Notice that

φ(z1, xn) + α(m,i)D ≥ φ(z1, u(m,i))

and
φ(z2, xn) + α(m,i)D ≥ φ(z2, u(m,i)).

The above inequalities are equivalent to

‖xm‖2 + α(m,i)D ≥ 2〈z1, Jxm − Ju(m,i)〉+ ‖u(m,i)‖2

and
‖xm‖2 + α(m,i)D ≥ 2〈z2, Jxm − Ju(m,i)〉+ ‖u(m,i)‖2.

Multiplying t and (1− t) on the both sides of the inequalities above, respectively yields that and

‖xm‖2 − ‖u(m,i)‖2 + α(m,i)D ≥ 2〈z, Jxm − Ju(m,i)〉.

That is,
φ(z, xn) + α(m,i)D ≥ φ(z, u(m,i)),

where z ∈ C(m,i). This finds that C(m+1,i) is convex and closed. We conclude that C(n,i) is convex and closed.
This in turn implies that Cn = ∩i∈ΛC(n,i) is convex and closed. This implies that ΠCn+1x1 is well defined.

Now, we are in a position to prove ∩i∈ΛFix(Ti)
⋂
∩i∈ΛSol(Gi) ⊂ Cn. Note that

C = C1 ⊇ ∩i∈ΛFix(Ti)
⋂
∩i∈ΛSol(Gi)

is clear. Suppose that C(m,i) ⊇ ∩i∈ΛFix(Ti)
⋂
∩i∈ΛSol(Gi) for some positive integer m. For any w ∈

∩i∈ΛFix(Ti)
⋂
∩i∈ΛSol(Gi) ⊂ C(m,i), we see that



L. Zhang, X. Li, J. Nonlinear Sci. Appl. 9 (2016), 1323–1333 1328

φ(w, xm) + α(m,i)D ≥ α(m,i)φ(w, x1) + (1− α(m,i))φ(w, Tm
i xm)

= ‖w‖2 − 2α(m,i)〈w, Jx1〉 − 2(1− α(m,i))〈w, JTm
i xm〉

+ α(m,i)‖x1‖2 + (1− α(m,i))‖Tm
i xm‖2

≥ ‖w‖2 − 2〈w,α(m,i)Jx1 + (1− α(m,i))JT
m
i xm〉

+ ‖α(m,i)Jx1 + (1− α(m,i))JT
m
i xm‖2

= φ(w, J−1(α(m,i)Jx1 + (1− α(m,i))JT
m
i xm))

= φ(w, y(m,i))

≥ φ(w, Sr(m,i)
y(m,i))

= φ(w, u(m,i)),

(2.1)

where
D := sup{φ(w, x1) : w ∈ ∩i∈ΛF (Ti)

⋂
∩i∈ΛSol(Gi)}.

This shows that w ∈ C(m+1,i). This implies that C(n,i) ⊇ ∩i∈ΛFix(Ti)
⋂
∩i∈ΛSol(Gi). Hence, ∩i∈ΛC(n,i) ⊇

∩i∈ΛFix(Ti)
⋂
∩i∈ΛSol(Gi). This completes the proof that Cn ⊇ ∩i∈ΛFix(Ti)

⋂
∩i∈ΛSol(Gi). In the light

of the construction ΠCnx1 = xn, we find from Lemma 1.6 that 〈xn−z, Jx1−Jxn〉 ≥ 0 for any z ∈ Cn. Since

Cn ⊇ ∩i∈ΛFix(Ti)
⋂
∩i∈ΛSol(Gi),

we find that
0 ≥ 〈w − xn, Jx1 − Jxn〉, ∀w ∈ ∩i∈ΛFix(Ti)

⋂
∩i∈ΛSol(Gi). (2.2)

Using Lemma 1.5, one sees that

φ(Π∩i∈ΛFix(Ti)
⋂
∩i∈ΛSol(Gi)x1, x1)

≥ φ(Π∩i∈ΛFix(Ti)
⋂
∩i∈ΛSol(Gi)x1, x1)− φ(Π∩i∈ΛFix(Ti)

⋂
∩i∈ΛSol(Gi)x1, xn)

≥ φ(xn, x1).

This implies that {φ(xn, x1)} is bounded. Hence, {xn} is also bounded. Since the space is reflexive, we may
assume that xn ⇀ x̄. Since Cn is convex closed, we find Cn 3 x̄. This implies that φ(x̄, x1) ≥ φ(xn, x1). On
the other hand, we see from the weakly lower semicontinuity of the norm that

φ(x̄, x1) ≥ lim sup
n→∞

φ(xn, x1)

≥ lim inf
n→∞

φ(xn, x1)

= lim inf
n→∞

(‖xn‖2 − 2〈xn, Jx1〉+ ‖x1‖2)

≥ ‖x̄‖2 − 2〈x̄, Jx1〉+ ‖x1‖2

= φ(x̄, x1),

which implies that limn→∞ φ(xn, x1) = φ(x̄, x1). Hence, we have limn→∞ ‖xn‖ = ‖x̄‖. Using the Kadec-Klee
property of E, one has xn → x̄ as n→∞. Since xn = ΠCnx1, and

xn+1 = ΠCn+1x1 ∈ Cn+1 ⊂ Cn,

one sees φ(xn+1, x1) ≥ φ(xn, x1). This shows that {φ(xn, x1)} is nondecreasing. Since it is bounded, we find
that limn→∞ φ(xn, x1) exists. It follows that

φ(xn+1, x1)− φ(xn, x1) ≥ φ(xn+1, xn).

This implies that
lim
n→∞

φ(xn+1, xn) = 0. (2.3)
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In the light of Cn+1 3 ΠCn+1x1 = xn+1, we find that

φ(xn+1, xn) + α(n,i)D ≥ φ(xn+1, u(n,i)).

This implies from (2.3) that
lim
n→∞

φ(xn+1, u(n,i)) = 0. (2.4)

Using inequality (1.3), we see
lim
n→∞

(‖xn+1‖ − ‖u(n,i)‖) = 0.

This implies that
lim
n→∞

‖u(n,i)‖ = ‖x̄‖.

On the other hand, we have

lim
n→∞

‖u(n,i)‖ = ‖x̄‖ = lim
n→∞

‖Ju(n,i)‖ = ‖Jx̄‖. (2.5)

This implies that {Ju(n,i)} is bounded. Since both E and E∗ are reflexive, we may assume that Ju(n,i) ⇀

u(∗,i) ∈ E∗. Since E is reflexive, we see J(E) = E∗. This shows that there exists an element ui ∈ E such
that Jui = u(∗,i). It follows that

φ(xn+1, u(n,i)) = ‖Ju(n,i)‖2 + ‖xn+1‖2 − 2〈xn+1, Ju(n,i)〉.

Therefore, one has

0 ≥ ‖x̄‖2 + ‖u(∗,i)‖2 − 2〈x̄, u(∗,i)〉 = ‖x̄‖2 + ‖ui‖2 − 2〈x̄, Jui〉 = φ(x̄, ui) ≥ 0.

That is, x̄ = ui, which in turn implies that u(∗,i) = Jx̄. It follows that Ju(n,i) ⇀ Jx̄ ∈ E∗. Since E∗ has the
Kadec-Klee property, we obtain from (2.5) that

lim
n→∞

Ju(n,i) = Jx̄.

Since J−1 : E∗ → E is demi-continuous and E has the Kadec-Klee property, we obtain u(n,i) → x̄, as
n→∞. Using (2.1) and (2.3), one has

lim
n→∞

φ(xn+1, y(n,i)) = 0. (2.6)

Using inequality (1.3), we see
lim
n→∞

(‖xn+1‖ − ‖y(n,i)‖) = 0.

This implies that
lim
n→∞

‖y(n,i)‖ = ‖x̄‖.

On the other hand, we have

‖x̄‖ = ‖Jx̄‖ = lim
n→∞

‖Jy(n,i)‖ = lim
n→∞

‖y(n,i)‖. (2.7)

This implies that {Jy(n,i)} is bounded. Since both E and E∗ are reflexive, we may assume that Jy(n,i) ⇀

y(∗,i) ∈ E∗. Since E is reflexive, we see E∗ = J(E). This shows that there exists an element yi ∈ E such
that y(∗,i) = Jyi. It follows that

‖xn+1‖2 + ‖Jy(n,i)‖2 − 2〈xn+1, Jy(n,i)〉 = φ(xn+1, y(n,i)).
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Therefore, one has
0 ≥ ‖x̄‖2 + ‖y(∗,i)‖2 − 2〈x̄, y(∗,i)〉

= ‖x̄‖2 + ‖yi‖2 − 2〈x̄, Jyi〉
= φ(x̄, yi).

That is, x̄ = yi, which in turn implies that y(∗,i) = Jx̄. It follows that Jy(n,i) ⇀ Jx̄ ∈ E∗. Since E∗ has the
Kadec-Klee property, we obtain from (2.7) that

lim
n→∞

Jy(n,i) = Jx̄.

Since J−1 : E∗ → E is demi-continuous and E has the Kadec-Klee property, we obtain y(n,i) → x̄, as n→∞.
In view of Sr(n,i)

y(n,i) = u(n,i), we see that

〈y − u(n,i), Ju(n,i) − Jy(n,i)〉+ r(n,i)Gi(u(n,i), y) ≥ 0 ∀y ∈ Cn.

It follows from (C-2) that

‖y − u(n,i)‖‖Ju(n,i) − Jy(n,i)‖ ≥ r(n,i)Gi(y, u(n,i)) ∀y ∈ Cn.

In view of (C-4), one has Gi(y, x̄) ≤ 0 ∀y ∈ Cn. For 0 < ti < 1 and y ∈ C, define

y(t,i) = tiy + (1− ti)x̄.

It follows that y(t,i) ∈ C, which yields that Gi(y(t,i), x̄) ≤ 0. It follows from the (C-1) and (C-4) that

tiGi(y(t,i), y) ≥ tiGi(y(t,i), y) + (1− ti)Gi(y(t,i), x̄)

≥ Gi(y(t,i), y(t,i))

= 0.

That is, Gi(y(t,i), y) ≥ 0. Letting ti ↓ 0, we obtain from (C-3) that 0 ≤ Gi(x̄, y), ∀y ∈ C. This implies that
x̄ ∈ Sol(Gi) for every i ∈ Λ. This shows that x̄ ∈ ∩i∈ΛSol(Gi).

Next, we prove x̄ ∈ ∩i∈ΛFix(Ti). Using the condition imposed on {α(n,i)}, one has

lim
n→∞

‖Jy(n,i) − JTn
i xn‖ = 0.

Using the fact
‖Jx̄− JTn

i xn‖ ≤ ‖Jy(n,i) − Jx̄‖+ ‖Jy(n,i) − JTn
i xn‖,

one has JTn
i xn → Jx̄ as n → ∞, for every i ∈ Λ. Since J−1 is demi-continuous, we have Tn

i xn ⇀ x̄ for
every i ∈ Λ. Since

‖J(Tn
i xn)− Jx̄‖ ≥ |‖Tn

i xn‖ − ‖x̄‖|,
one has ‖Tn

i xn‖ → ‖x̄‖, as n→∞, for every i ∈ Λ. Since E has the Kadec-Klee property, one obtains

lim
n→∞

‖Tn
i xn − x̄‖ = 0.

On the other hand, we have

‖Tn+1
i xn − x̄‖ ≤ ‖Tn+1

i xn − Tn
i xn‖+ ‖Tn

i xn − x̄‖.

In view of the uniformly asymptotic regularity of Ti, one has

lim
n→∞

‖Tn+1
i xn − x̄‖ = 0,

that is, TiT
n
i xn − x̄→ 0 as n→∞. Since every Ti is closed, we find that Tix̄ = x̄ for every i ∈ Λ.

Finally, we prove x̄ = Π∩i∈ΛFix(Ti)
⋂
∩i∈ΛSol(Gi)x1. Letting n→∞ in (2.2), we see that

〈x̄− w, Jx1 − Jx̄〉 ≥ 0, ∀w ∈ ∩i∈ΛFix(Ti)
⋂
∩i∈ΛSol(Gi).

In view of Lemma 1.6, we find that that x̄ = Π∩i∈ΛFix(Ti)
⋂
∩i∈ΛSol(Gi)x1. This completes the proof.
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Remark 2.2. The algorithm is efficient for an uncountable infinite family of operators and bifunctions. The
space does not require the uniform smoothness. Theorem 2.1, which mainly improve the corresponding
results in [7], [19] and [29], unify the corresponding results announced recently.

From Theorem 2.1, the following result is not hard to derive.

Corollary 2.3. Let E be a uniformly convex and smooth Banach space such that E∗ has the Kadec-Klee
property and let C be a nonempty, convex and closed subset of E. Let G be a bifunction from C × C to
R satisfying (C-1), (C-2), (C-3) and (C-4). Let T : C → C be an asymptotically quasi-φ-nonexpansive
mapping. Assume that T is closed and uniformly asymptotically regular on C and Fix(T ) ∩ Sol(G) is
nonempty and bounded. Let {xn} be a sequence generated in the following manner:

x0 ∈ E chosen arbitrarily,

C1 = C,

x1 = ΠC1x0,

yn = J−1((1− αn)JTnxn + αnJx1),

un ∈ Cn such that rnG(un, y) + 〈y − un, Jun − Jyn〉 ≥ 0 ∀y ∈ Cn,

Cn+1 = {z ∈ Cn : φ(z, xn) + αnD ≥ φ(z, un)},
xn+1 = ΠCn+1x1,

where D := sup{φ(w, x1) : p ∈ Fix(T )∩Sol(G)}, {αn} is a real sequence in (0, 1) such that limn→∞ αn = 0,
and {rn} is a real sequence in [a,∞), where a is a positive real number. Then the sequence {xn} converges
strongly to ΠFix(T )∩Sol(G)x1.

In Hilbert spaces, Theorem 2.1 is reduced to the following.

Corollary 2.4. Let E be a Hilbert space and let C be a nonempty closed and convex subset of E. Let Λ
be an index set and let Gi be a bifunction from C × C to R satisfying (C-1), (C-2), (C-3) and (C-4). Let
Ti : C → C be an asymptotically quasi-nonexpansive mapping for every i ∈ Λ. Assume that Ti is closed
and uniformly asymptotically regular on C for every i ∈ Λ and ∩i∈ΛFix(Ti)

⋂
∩i∈ΛSol(Gi) is nonempty and

bounded. Let {xn} be a sequence generated in the following manner:

x0 ∈ E chosen arbitrarily,

C(1,i) = C,

C1 = ∩i∈ΛC(1,i),

x1 = PC1x0,

y(n,i) = α(n,i)x1 + (1− α(n,i))T
n
i xn,

u(n,i) ∈ Cn such that r(n,i)Gi(u(n,i), y) + 〈y − u(n,i), u(n,i) − y(n,i)〉 ≥ 0 ∀y ∈ Cn,

C(n+1,i) = {z ∈ C(n,i) : ‖z − xn‖2 + α(n,i)D ≥ ‖z − u(n,i)‖2},
Cn+1 = ∩i∈ΛC(n+1,i),

xn+1 = PCn+1x1,

where D := sup{‖w − x1‖2 : p ∈ ∩i∈ΛFix(Ti)
⋂
∩i∈ΛSol(Gi)}, {α(n,i)} is a real sequence in (0, 1) such that

limn→∞ α(n,i) = 0 and {r(n,i)} is a real sequence in [ai,∞), where {ai} is a positive real number sequence
for every i ∈ Λ. Then the sequence {xn} converges strongly to P∩i∈ΛFix(Ti)

⋂
∩i∈ΛSol(Gi)x1.

Proof. In the framework of Hilbert space, the class of asymptotically quasi-φ-nonexpansive mappings is
reduced to the class of asymptotically quasi-nonexpansive mappings and the φ(x, y) = ‖x − y‖2. Using
Theorem 2.1, we can conclude the desired result immediately.
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