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Abstract

In this paper, we study several types of Generalized Vector Equilibrium Problems (GVEP) on Hadamard
manifolds. We prove sufficient conditions under which the solution set of (GVEP)’s is nonempty. As an
application, we prove existence theorems for the system of generalized vector variational inequality problems
and the system of generalized Pareto optimization problems. c©2016 All rights reserved.
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1. Introduction

Equilibrium problems provide a unifying framework for many important problems, such as optimization
problems, variational inequality problems, complementarity problems, minimax inequality problems, fixed
point problems and have been widely applied to study real world applications arising in economics, mechanics
and engineering science. In recent decades, many results concerned the existence of solutions for equilibrium
problems and vector equilibrium problems has been established; please see, Ansari and Yao [1]; Bianchi and
Schaible [4]; Blum and Oettli [5]; Fang and Huang [10]; Farajzadeh et al. [11, 12] and the references therein.

On the other hand, recently many researchers are focused on extending some concepts and techniques
of nonlinear analysis from Euclidean spaces to Riemannian manifolds. There are some advantages of such
generalizations as many nonconvex and nonmonotone functions can be transformed into convex and mono-
tone functions respectively, with the help of proper Riemannian metric. For illustrations, please see Cruz
Neto et al. [8] and Pitea et al. [2, 18, 19, 20, 21].
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Nemeth [16] studied geodesic monotone vector fields while Wang et al. [25] studied monotone and
accretive vector fields on Riemannian manifolds. Li et al. [15] extended maximal monotone vector fields
from Banach space to Hadamard manifold, which is a simply connected complete Riemannian manifold
with nonpositive sectional curvature. Nemeth [17] introduced variational inequality problems on Hadamard
manifolds. Li et al. [14] studied the variational inequality problems on Riemannian manifolds. Zhou and
Huang [26] introduced the notion of the KKM mapping and proved a generalized KKM theorem on the
Hadamard manifold.

The first paper dealing with the subject of the existence of solution for equilibrium problems in the
Riemannian context was introduced by Colao et al. [7]. Zhou and Huang [27] investigated the relationship
between the vector variational inequality and the vector optimization problem by using KKM lemma on
Hadamard manifolds. Li and Huang [13], studied the generalized vector quasi equilibrium problems on
Hadamard manifolds. Recently, Batista et al. [3] provided a sufficient condition for the existence of a
solution for generalized vector equilibrium problems on Hadamard manifolds.

Motivated by above mentioned research works, we introduce different types of generalized vector equi-
librium problems (GVEP) and provide sufficient conditions under which the solution sets of the (GVEP)’s
are nonempty on Hadamard manifolds. We construct an example to illustrate our results. We also establish
the existence of solutions of vector variational inequality problems and vector optimization problems as
particular cases.

2. Preliminaries

In this section, we recall fundamental definitions, basic properties and notations which are needed for a
comprehensive reading of this paper. This background can be found in classical monographs such as: Sakai
[23] or Udrişte [24].

Let M be an n-dimensional connected manifold. We denote by TxM , the n-dimensional tangent space
of M at x and by TM = ∪x∈MTxM, the tangent bundle of M . When M is endowed with a Riemannian
metric < ·, · > on the tangent space TxM with corresponding norm denoted by ‖·‖, then M is a Riemannian
manifold. The length of a piecewise smooth curve γ : [a, b] → M , joining x to y, such that γ(a) = x and

γ(b) = y, is defined by L(γ) =
∫ b
a ‖ γ̇(t) ‖γ(t) dt. Then for any x, y ∈ M the Riemannian distance d(x, y)

which induces the original topology on M is defined by minimizing this length over the set of all curves
joining x to y. On every Riemannian manifold, there exists exactly one covariant derivation called Levi-
Civita connection denoted by ∇XY for any vector fields X,Y on M . Let γ be a smooth curve in M . A
vector field X is said to be parallel along γ if ∇γ′X = 0. If γ′ itself is parallel along γ, we say that γ is
a geodesic. A geodesic joining x to y in M is said to be a minimal geodesic if its length equals to d(x, y).
A Riemannian manifold is complete if for any x ∈ M all geodesics emanating from x are defined for all
t ∈ R. By the Hopf-Rinow Theorem, we know that if M is complete then any pair of points in M can be
joined by a minimal geodesic. Moreover, (M,d) is a complete metric space, while closed bounded subsets
are compact.

Assuming that M is complete, the exponential mapping expx : TxM →M is defined by expx v = γv(1),
where γv is the geodesic defined by its position x and velocity v at x.

Recall that a Hadamard manifold is a simply connected and complete Riemannian manifold, with non-
positive sectional curvature.

Assumption. In our subsequent theory, all manifolds M will be considered being Hadamard and finite
dimensional.

Definition 2.1 ([27]). Let K be a nonempty closed geodesic convex subset of the Hadamard manifold M
and G : K → 2K be a set-valued mapping. We say that G is a (KKM) mapping if for any {x1, . . . , xm} ⊂ K,
we have

co({x1, . . . , xm}) ⊂
m⋃
i=1

G(xi).
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Lemma 2.2 ([7]). Let K be a nonempty closed convex subset of the Hadamard manifold M and G : K → 2K

be a set-valued mapping such that for each x ∈ K, G(x) is closed. Suppose that,

(i) there exists x0 ∈ K, such that G(x0) is compact;

(ii) ∀x1, . . . , xm ∈ K, co({x1, . . . , xm}) ⊂
⋃m
i=1G(xi).

Then
⋂
x∈K G(x) 6= Ø.

Definition 2.3 ([22]). A subset K of a Hadamard manifold M is said to be convex (geodesic convex) if and
only if for any two points x, y ∈ K, the geodesic joining x to y is contained in K. That is, if γ : [0, 1]→M
is a geodesic with x = γ(0) and y = γ(1), then γ(t) ∈ K for t ∈ [0, 1].

Definition 2.4 ([22]). Let M be a Hadamard manifold. A real-valued function f : M → R defined on a
convex set (geodesic convex set) K is said to be convex (geodesic convex) if and only if for 0 ≤ t ≤ 1,

f(γ(t)) ≤ (1− t)f(γ(0)) + tf(γ(1)).

Definition 2.5 ([13]). Let M be a Hadamard manifold and S : M → 2TM be a set-valued mapping. Then
S is said to be lower semicontinuous at a point x0 ∈M , if for any open set V ⊆M satisfying S(x0)∩V 6= Ø,
there exists an open neighborhood U(x0) of x0 such that S(x) ∩ V 6= Ø for all x ∈ U(x0). S is said to be
lower semicontinuous on M, if S is lower semicontinuous at every point x ∈M.

3. Existence results

Let M be a finite dimensional Hadamard manifold and K be a nonempty convex subset of M . Let Y
be a topological vector space and 2Y denotes all subsets of Y . Let C : K → 2Y is a pointed closed convex
cone, that is C +C ⊆ C, tC ⊆ C for t ≥ 0 and C ∩−C = {0}. Finally, let F : K ×K → 2Y be a set valued
map.

We consider the following generalized vector equilibrium problems (GVEPs in short) in the setting of
Hadamard manifold

(GV EP1) find x ∈ K such that F (x, y) * −intC(x) ∀y ∈ K,

(GV EP2) find x ∈ K such that F (x, y) * −C(x) \ {0} ∀y ∈ K.
It is clear that a solution of (GV EP2) is also a solution of (GV EP1).
Next we define the following concepts that are needed in this sequel.

Definition 3.1. The set valued map F : K ×K → 2Y is called strongly C-pseudomonotone if for any given
x and y in K,

F (x, y) * −intC(x)⇒ F (y, x) ⊆ −C(y). (3.1)

Definition 3.2. The set valued map F : K ×K → 2Y is called C-pseudomonotone if for any given x and y
in K,

F (x, y) * −C(x) \ {0} ⇒ F (y, x) ⊆ −C(y). (3.2)

Note that every strongly C-pseudomonotone function is C-pseudomonotone.

Definition 3.3. The mapping F : K ×K → 2Y is C-uppersign continuous if for all x, y ∈ K,

F (γ(t), y) ∩ C(γ(t)) 6= Ø,∀t ∈ (0, 1)⇒ F (x, y) ∩ C(x) 6= Ø, (3.3)

where γ(t) is a geodesic joining x, y, with γ(0) = x.

Definition 3.4. F : K ×K → 2Y is C-convex in the second variable if for all x, z1, z2 ∈ K and t ∈ (0, 1),
the following holds

F (x, γ(t)) ⊆ (1− t)F (x, z1) + tF (x, z2)− C(x),

where γ(t) is a geodesic joining z1 and z2.
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Next we prove the following lemma which is required to prove the main existence result.

Lemma 3.5. Assume that the map F : K ×K → 2Y satisfies the following conditions:

(i) F is C-pseudomonotone,

(ii) F (x, x) ∩ C(x) 6= Ø for each x ∈ K,

(iii) F is C-uppersign continuous,

(iv) for each fixed x ∈ K, the mapping z → F (x, z) is C-convex.

Then for any given y ∈ K, the following are equivalent

(I) F (y, z) * −C(y) \ {0}, ∀z ∈ K.

(II) F (z, y) ⊆ −C(z), ∀z ∈ K.

Proof. From the definition of C-pseudomonotonicity of F it is obvious that (I) ⇒ (II).
Suppose that (II) holds. That is for any given y ∈ K, we have

F (z, y) ⊆ −C(z, ∀z ∈ K. (3.4)

Let γ(t) be a geodesic joining y and z, where t ∈ [0, 1]. Since K is convex we then have by (3.4),

F (γ(t), y) ⊆ −C(γ(t)) ∀t ∈ (0, 1). (3.5)

Next we claim that F (γ(t), z) ∩ C(γ(t)) 6= Ø.
If possible let F (γ(t), z) ∩ C(γ(t)) = Ø for some t ∈ (0, 1). Then

F (γ(t), z) ⊆ Y \ C(γ(t)) for this t ∈ (0, 1). (3.6)

Therefore, by (iv) and using (3.5) and (3.6)

F (γ(t), γ(t)) ⊆ (1− t)F (γ(t), y) + tF (γ(t), z)− C(γ(t))

⊆ −C(γ(t)) + (Y \ −C(γ(t)))− C(γ(t)))

⊆ Y \ −C(γ(t)),

which contradicts to (ii).
Hence for all t ∈ (0, 1), the set F (γ(t), z) ∩ C(γ(t)) is nonempty. Thus by (iii) there is an element u ∈

F (y, z)∩C(y). Since C(y)∩−C(y)\{0} = Ø, then u /∈ (−C(y)\{0}). Consequently F (y, z) * −C(y)\{0}.
This completes the proof.

By a similar method as in Lemma 3.5 we can prove the following result.

Lemma 3.6. Suppose that the map F : K ×K → 2Y satisfies the following conditions:

(i) F is strongly C-pseudomonotone,

(ii) F (x, x) * −intC(x) for each x ∈ K,

(iii) F is C-uppersign continuous,

(iv) for each fixed x ∈ K, the mapping z → F (x, z) is convex.

Then for any given y ∈ K, the following are equivalent
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(I) F (y, z) * −intC(y), ∀z ∈ K.

(II) F (z, y) ⊆ −C(z), ∀z ∈ K.

Lemma 3.7. Under the assumptions of Lemma 3.5, the solution set of (GV EP2) is convex.

Proof. Let x1 and x2 be solutions of (GV EP2). Then by Lemma 3.5, we have

F (z, xi) ⊆ −C(z) ∀z ∈ K, i = 1, 2. (3.7)

Let γ(t) be a geodesic joining x1 and x2, t ∈ (0, 1).
By condition (iv) of Lemma 3.5, ∀t ∈ (0, 1), we have

F (z, γ(t)) ⊆ (1− t)F (z, x1) + tF (z, x2)− C(z) ⊆ −C(z) ∀z ∈ K.

Hence from Lemma 3.5, we get

F (γ(t), z) * −C(γ(t)) \ {0} ∀z ∈ K.

This shows that γ(t) is a solution of (GV EP2). Therefore the solution set of (GV EP2) is convex.

Similarly we can easily prove the following.

Lemma 3.8. Under the assumptions of Lemma 3.6, the solution set of (GV EP1) is convex.

We are now in a position to prove the existence theorem.

Theorem 3.9. Let all assumptions of Lemma 3.5 hold and for fixed x ∈ K and the mapping y → F (x, y) is
lower semicontinuous, where y ∈ K. If there exists a nonempty compact subset B of K such that for each
x ∈ K \ B, there exists y0 ∈ K such that F (y0, x) * −C(y0), then the solution set of the generalized vector
equilibrium problem (GV EP2) is nonempty.

Proof. We first define two set valued mappings Γ1, Γ2 : K → 2K , respectively by the formula

Γ1(y) = {x ∈ K : F (x, y) * −C(x) \ {0}}, Γ2(y) = {x ∈ K : F (y, x) ⊆ −C(y)}.

We claim that Γ1 is a KKM mapping.
We prove that for any choice of y1, . . . , ym ∈ K,

co({y1, . . . , ym}) ⊂
m⋃
i=1

Γ1(yi). (3.8)

Suppose on the contrary that there exists a point z0 ∈ K, such that z0 ∈ co({y1, . . . , ym}) but z0 /∈⋃m
i=1 Γ1(yi). That is

F (z0, yi) ⊆ −C(z0) \ {0} ∀i ∈ {1, . . . ,m}. (3.9)

This implies that for any i ∈ {1, . . . ,m}, yi ∈ {y ∈ K : F (z0, y) ⊆ −C(z0) \ {0}}. Since the function
y 7→ F (z0, y) is convex, the set {y ∈ K : F (z0, y) ⊆ −C(z0) \ {0}} is a convex set. Then

z0 ∈ co({y1, . . . , ym}) ⊆ {y ∈ K : F (z0, y) ⊆ −C(z0) \ {0}}.

Therefore F (z0, z0) ⊆ −C(z0) \ {0}, which is a contradiction to condition (ii) of Lemma 3.5. Hence Γ1

is a (KKM) mapping.
By Lemma 3.5 we have Γ2 is also a (KKM) mapping. Also as for fixed x ∈ K, the mapping y → F (x, y)

is lower semicontinuous, then Γ2(y) is closed for all y ∈ K.
Again by the assumption there exists a nonempty compact subset B of K such that, for each x ∈ K \B,

there exists y0 ∈ K such that F (y0, x) * −C(y0).
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That is Γ2(y0) = {x ∈ B : F (y0, x) ⊆ −C(y0)} is compact. Hence by Lemma 2.2, it follows that⋂
y∈K Γ2(y) 6= Ø. Also by Lemma 3.5,

⋂
y∈K Γ1(y) 6= Ø. So there exists z ∈ K such that

F (z, y) * −C(z) \ {0}. (3.10)

Hence z is a solution of (GV EP2), and this completes the proof.

Example 3.10. Let H1 = {x = (x1, x2) ∈ R2 : x21 − x22 = −1, x2 > 0} be the hyperbolic 1-space which
forms a Hadamard manifold [6], endowed with the metric〈

x, y
〉

= x1y1 − x2y2, x = (x1, x2), y = (y1, y2) ∈ R2.

Let K be a subset of H1 defined by K = {x = (x1, x2) ∈ H1 : −1 ≤ x1 ≤ 1}. Remark that K is
a compact subset of H1. We take the topological vector space Y = R and C(x) = [0,∞) and define the
bifunction

F : K ×K → 2R, F (x, y) = [x2(x1 − y1), (x1 − y1)]. (3.11)

It is easy to see that F (x, x) ∩ C(x) = {0} for all x ∈ K. Also F is C-pseudomonotone on K as

F (x, y) * [0,∞)⇒ F (y, x) ⊆ (−∞, 0].

F is C-uppersign continuous and for each fixed x ∈ K, the mapping z → F (x, z) is C-convex and lower
semicontinuous. Hence, by Theorem 3.9, there exists a point x ∈ K such that

F (x, y) * −C(x) \ {0} ∀y ∈ K.

Similarly we can deduce the following

Theorem 3.11. Let all assumptions of Lemma 3.6 hold and for fixed x ∈ K, the mapping y → F (x, y) is
lower semicontinuous, where y ∈ K. If there exists a nonempty compact subset B of K such that, for each
x ∈ K \B, there exists y0 ∈ K such that F (y0, x) * −C(y0). Then the solution set of the generalized vector
equilibrium problem (GV EP1) is nonempty.

4. Consequences of our main result

In order to clarify the interest of generalized vector equilibrium problems, we consider some problems
whose existence of solutions can be ensured by dealing with the (GVEP)’s.

4.1. Generalized vector variational inequality problems

Let V : K → TM be a vector field, that is, Vx ∈ TxM for each x ∈ K and exp−1 denotex the inverse of
the exponential map. Then the generalized vector variational inequality problems (GVVIPs in short) can
be considered by the following ways:

(GV V IP1) find x ∈ K such that 〈V (x), exp−1x y〉 * −intC(x) ∀y ∈ K,

(GV V IP2) find x ∈ K such that 〈V (x), exp−1x y〉 * −C(x) \ {0} ∀y ∈ K.

Clearly a solution of (GV V IP2) is a solution of (GV V IP1).

Lemma 4.1 ([15]). Let M be a Hadamard manifold. Let x0 ∈M and {xn} ∈M such that xn → x0. Then
the following assertions hold:

(i) For any y ∈M , exp−1xn y → exp−1x0 y and exp−1y xn → exp−1y x0.

(ii) If {vn} is a sequence such that vn ∈ TxnM and vn → v0, then v0 ∈ Tx0M.
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(iii) Given the sequence {un} and {vn} with un, vn ∈ TxnM, if un → u0 and vn → v0 with u0, v0 ∈ Tx0M,
then

〈
un, vn

〉
→
〈
u0, v0

〉
.

Proposition 4.2 ([9]). Let M be a Hadamard manifold with null sectional curvature, y ∈M and u ∈ TyM
nonzero. Then g : M → R, g(x) =

〈
exp−1y x, u

〉
, is an affine linear function.

If we consider F (x, y) = 〈V (x), exp−1x y)〉, then the following result follows.

Theorem 4.3. Let M be a Hadamard manifold with null sectional curvature. Assume that the following
conditions hold:

(i) V is C-pseudomonotone,

(ii) for each fixed y, the mapping x→ 〈V (x), exp−1x y〉 is C-uppersign continuous,

(iii) for fixed x ∈ K, the mapping y → 〈V (x), exp−1x y〉 is lower semicontinuous, where y ∈ K,

(iv) there exists a nonempty compact subset B of K such that for each x ∈ K \B, there exists y0 ∈ K such
that 〈V (y0), η(y0, x)〉 * −C(y0).

Then the solution set of (GV V IP2) is nonempty.

Similarly, one can get

Theorem 4.4. Let M be a Hadamard manifold with null sectional curvature. Assume that the following
conditions hold:

(i) V is strongly C-pseudomonotone,

(ii) for each fixed y, the mapping x→ 〈V (x), exp−1x y〉 is C-uppersign continuous,

(iii) for fixed x ∈ K, the mapping y → 〈V (x), exp−1x y〉 is lower semicontinuous, where y ∈ K,

(iv) there exists a nonempty compact subset B of K such that for each x ∈ K \B, there exists y0 ∈ K such
that 〈V (y0), η(y0, x)〉 * −C(y0).

Then the solution set of (GV V IP1) is nonempty.

4.2. Generalized Pareto optimization problem

We consider the following weak Pareto optimization problem

(GWPOP ) find x̄ ∈ K such that f(y)− f(x̄) /∈ −intRm+ for each y ∈ K,

where f : M → Rm is a vector function. Taking F (x, y) = f(y) − f(x), we obtain as an immediate conse-
quence the following corollary.

Corollary 4.5. Suppose that

(i) f is continuous and C-convex;

(ii) there exists a nonempty compact subset B of K such that for each x ∈ K \B, there exists y0 ∈ K such
that f(y0)− f(x) ∈ intRm+ .

Then the solution set of the generalized Pareto optimization problem (GWPOP ) is nonempty.

4.3. Equilibrium problem and variational inequality problem

Let us take Y = R and C(x) = R+. Then the generalized vector equilibrium problems (GV EP1) reduce
to the equilibrium problem introduced by Colao et al. [7]:
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(EP ) find x ∈ K such that F (x, y) ≥ 0 for all y ∈ K.

In this case, if we take F (x, y) = 〈V (x), exp−1x y)〉, where V : K → TM is a vector field, that is, Vx ∈ TxM
for each x ∈ K and exp−1 denote the inverse of the exponential map, then we get the scalar variational
inequality problem introduced by Nemeth [17]:

(V IP ) find x ∈ K such that 〈V (x), exp−1x y)〉 ≥ 0 for all y ∈ K.
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