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Abstract

In this paper we present a common tripled fixed point theorem for W -compatible mappings under φ-
contractive conditions in fuzzy metric spaces. The result generalizes, extends and improves several classical
and very recent related results in literature. For instance, we obtain an extension of Theorem 2.5 in [S.
Sedghi, I. Altun, N. Shobe, Nonlinear Anal., 72 (2010), 1298–1304], an refinement of Theorem 4.1 in [X.
Zhu, J. Xiao, Nonlinear Anal., 74 (2011), 5475–5479] and an improvement of Theorem 11 in [A. Roldán,
J. Mart́ınez-Moreno, C. Roldán, Fixed Point Theory Appl., 2013 (2013), 13 pages]. Finally, an example is
given to illustrate the usability of our main result. c©2016 All rights reserved.
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1. Introduction

The notion of fuzzy metric space was introduced by Kramosil and Michalek [8]. To obtain a Hausdorff
topology of fuzzy metric spaces, George and Veeramani [5] modified the concept of fuzzy metric space
introduced by Kramosil and Michalek. Later, many fixed point results were established in this fuzzy metric
space. For example, Sedghi, Altun and Shobe [15] and Zhu and Xiao [16] gave a coupled fixed point
theorem for contractions in fuzzy metric spaces in the sense of George and Veeramani. Miheţ [9] presented
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two common fixed point theorems for a pair of weakly compatible maps in fuzzy metric spaces both in the
sense of Kramosil and Michalek and in the sense of George and Veeramani.

The concept of tripled fixed point was introduced by Berinde and Borcut in [2]. Later, in 2012, Berinde
and Borcut [3] presented the concept of tripled coincidence point for a pair of nonlinear contractive mappings
F : X → X and g : X → X and obtained tripled coincidence point theorems which generalized the results
of [2]. In 2013, Roldán, Mart́ınez-Moreno and Roldán gave a slight modification of the concept of a tripled
fixed point introduced by Berinde and Borcut [2] for nonlinear mappings, and established a common tripled
fixed point theorem for contractive type mappings in fuzzy metric spaces.

The aim of this paper is to introduce the concepts of W -compatible mappings in fuzzy metric spaces.
Based on this notion, a common tripled fixed point for mappings F : X ×X ×X → X and g : X → X are
obtained. The presented theorem generalizes, extends and improves several well-known comparable results
in literature. An example is also given in support of our results.

2. Preliminaries

The following definitions and results will be needed in the sequel.

Definition 2.1 ([7, 14]). A binary operation ∗ : [0, 1]2 → [0, 1] is called a continuous t-norm if the following
properties are satisfied:
(i) ∗ is associative and commutative;
(ii) a ∗ 1 = a for all a ∈ [0, 1];
(iii) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, for each a, b, c, d ∈ [0, 1];
(iv) ∗ is continuous.

Definition 2.2 ([8]). A triple (X,M, ∗) is called a fuzzy metric space (in the sense of Kramosil and Michalek;
briefly, a FMS) if X is an arbitrary non-empty set, ∗ is a continuous t-norm and M : X×X× [0,∞)→ [0, 1]
is a fuzzy set satisfying the following conditions:

(KM-1) M(x, y, 0) = 0 for all x, y ∈ X;
(KM-2) M(x, y, t) = 1 for all t > 0 if and only if x = y;
(KM-3) M(x, y, t) = M(y, x, t) for all x, y ∈ X and all t > 0;
(KM-4) M(x, y, ·) : [0,∞)→ [0, 1] is left-continuous for all x, y ∈ X;
(KM-5) M(x, z, t+ s) ≥M(x, y, t) ∗M(y, z, s) for all x, y, z ∈ X, and all t, s ≥ 0.

To obtain a Hausdorff topology of fuzzy metric spaces, George and Veeramani [5] modified the concept
of fuzzy metric space introduced by Kramosil and Michalek as follows.

Definition 2.3 ([5]). A triple (X,M, ∗) is called a fuzzy metric space (in the sense of George and Veeramani)
if X is an arbitrary non-empty set, ∗ is a continuous t-norm and M : X ×X × (0,∞)→ [0, 1] is a fuzzy set
satisfying the following conditions:

(GV-1) M(x, y, t) > 0;
(GV-2) M(x, y, t) = 1 if and only if x = y;
(GV-3) M(x, y, t) = M(y, x, t);
(GV-4) M(x, y, ·) : (0,∞)→ [0, 1] is continuous;
(GV-5) M(x, z, t+ s) ≥M(x, y, t) ∗M(y, z, s) for x, y, z ∈ X, and t, s > 0.

Let (X,M, ∗) be a fuzzy metric space. For t > 0, the open ball B(x, r, t) with a center x ∈ X and a
radius 0 < r < 1 is defined by

B(x, r, t) = {y ∈ X : M(x, y, t) > 1− r}. (2.1)

A subset A ⊂ X is called open if for each x ∈ A, there exist t > 0 and 0 < r < 1 such that B(x, r, t) ⊂ A.
Let τ denote the family of all open subsets of X. Then τ is called the topology on X, induced by the fuzzy
metric M . This topology is Hausdorff and first countable.
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Definition 2.4 ([5]). Let (X,M, ∗) be a fuzzy metric space.

(i) A sequence {xn} in X is said to be convergent to a point x ∈ X if lim
n→∞

M(xn, x, t) = 1 for all t > 0.

(ii) A sequence {xn} in X is called a Cauchy sequence if for each 0 < ε < 1 and t > 0, there exists a
positive integer n0 such that M(xn, xm, t) > 1− ε for each n,m ≥ n0.

(iii) A fuzzy metric space in which every Cauchy sequence is convergent is said to be complete.

Lemma 2.5 ([6]). Let (X,M, ∗) be a fuzzy metric space. Then M(x, y, ·) is nondecreasing for all x, y ∈ X.

Lemma 2.6 ([11]). M is a continuous function on X2 × (0,∞).

Definition 2.7 ([7]). A t-norm ∗ is said to be Hadz̆ić type t-norm if the family {∗p}p≥0 of its iterates defined
for each s ∈ [0, 1] by

∗0(s) = 1, ∗p+1(s) = ∗(∗p(s), s),
is equi-continuous at s = 1, that is, given η > 0 there exists η(λ) ∈ (0, 1) such that

η(λ) < s ≤ 1⇒ ∗(p)(s) > 1− λ

for all p ≥ 0.

Definition 2.8 ([15]). Let (X,M, ∗) be a fuzzy metric space. M is said to satisfy the n-property on
X ×X × (0,∞) if

lim
n→∞

[M(x, y, lnt)]n
p

= 1

whenever x, y ∈ X, l > 1 and p > 0.

Define Φ = {φ : R+ → R+}, where R+ = [0,+∞) and each φ ∈ Φ satisfies the following conditions:
(φ− 1) φ is non-decreasing;
(φ− 2) φ is upper semi-continuous from the right;

(φ− 3)
∞∑
n=0

= φn(t) < +∞ for all t > 0, where φn+1(t) = φ(φn(t)), n ∈ N.

It is easy to prove that if φ ∈ Φ, then φ(t) < t for all t > 0.

Lemma 2.9 ([4]). Let (X,M, ∗) be a fuzzy metric space, where ∗ is a continuous t-norm of H-type. If there
exists φ ∈ Φ such that

M(x, y, φ(t)) ≥M(x, y, t) (2.2)

for all t > 0, then x = y.

Definition 2.10 ([13]). An element (x, y, z) ∈ X×X×X is called a tripled fixed point of F : X×X×X → X
if F (x, y, z) = x, F (y, z, x) = y, and F (z, x, y) = z.

Definition 2.11 ([1]). An element (x, y, z) ∈ X×X×X is called a tripled coincidence point of the mappings
F : X ×X ×X → X and g : X → X if

F (x, y, z) = g(x), F (y, z, x) = g(y), F (z, x, y) = g(z).

Moreover, (x, y, z) is called a common tripled fixed point of F and g if F (x, y, z) = g(x) = x, F (y, z, x) =
g(y) = y, and F (z, x, y) = g(z) = z.

Definition 2.12 ([10]). Let X be a non-empty set, F : X×X×X → X and g : X → X be two mappings.
F is said to be commutative with g, if gF (x, y, z) = F (g(x), g(y), g(z)) for all x, y, z ∈ X.

In [1], Abbas et al. introduced the concept of W -compatible mappings. Here we give a similar concept
in fuzzy metric spaces as follows.

Definition 2.13. Let (X,M, ∗) be a fuzzy metric space, and let F : X × X × X → X and g : X → X
be two mappings. F and g are said to be weakly compatible (or W -compatible) if they commute at their
coupled coincidence points, i.e., if (x, y, z) is a tripled coincidence point of g and F , then gF (x, y, z) =
F (g(x), g(y), g(z)).



J.-F. Tian, X.-M. Hu, H.-S. Zhao, J. Nonlinear Sci. Appl. 9 (2016), 806–818 809

3. Main results

In this section, the fuzzy metric space (X,M, ∗) is in the sense of George and Veeramani and the fuzzy
metric M is assumed to satisfy the condition:

(GV-6): lim
t→∞

M(x, y, t) = 1 for all x, y ∈ X.

For simplicity, denote

[M(x, y, t)]n =
M(x, y, t) ∗M(x, y, t) ∗ · · · ∗M(x, y, t)︸ ︷︷ ︸

n

for all n ∈ N.
In [15], Sedghi, Altun and Shobe gave the following results.

Theorem 3.1 ([15]). Let a ∗ b > ab for all a, b ∈ [0, 1] and let (X,M, ∗) be a complete fuzzy metric space
such that M has an n-property. Let F : X ×X → X and g : X → X be two functions such that

M(F (x, y), F (u, v), kt) ≥M(g(x), g(u), t) ∗M(g(y), g(v), t)

for all x, y, u, v ∈ X, where 0 < k < 1,
Suppose that F (X ×X) ⊆ g(X) and g(X) is continuous and commuting with F . Then F and g have a

unique common coupled fixed point in X.

Remark 3.2. It is easy to prove that if M satisfies n-property, then M satisfy the condition (GV-6).

In [16], Zhu and Xiao presented the following result.

Theorem 3.3 ([16]). Let ∗ be a t-norm of H-type such that s ∗ t ≥ st for all s, t ∈ [0, 1]. Let (X,M, ∗) be
a complete FMS and let F : X ×X → X and g : X → X be two mappings such that

M(F (x, y), F (u, v), kt) ≥ [M(g(x), g(u), t)]
1
2 ∗ [M(g(y), g(v), t)]

1
2 (3.1)

for all x, y, u, v ∈ X, where 0 < k < 1, t > 0.
Suppose that F (X ×X) ⊆ g(X) and g(X) is continuous and commuting with F . Then F and g have a

unique common coupled fixed point in X.

A. Roldán, J. Mart́ınez-Moreno and C. Roldán [12] proved the following result.

Theorem 3.4 ([12]). Let ∗ be a t-norm of H-type such that s ∗ t ≥ st for all s, t ∈ [0, 1]. Let k ∈ (0, 1)
and a, b, c ∈ [0, 1] be real numbers such that a + b + c ≤ 1. Let (X,M, ∗) be a complete FMS and let
F : X ×X ×X → X and g : X → X be two mappings such that

M(F (x, y, z), F (u, v, w), kt) ≥ [M(g(x), g(u), t)]a ∗ [M(g(y), g(v), t)]b ∗ [M(g(z), g(w), t)]c (3.2)

for all x, y, z, u, v, w ∈ X, t > 0.
Suppose that F (X × X × X) ⊆ g(X) and g(X) is continuous and commuting with F . Then F and g

have a unique common tripled fixed point in X.

Now we give our main result.

Theorem 3.5. Let (X,M, ∗) be a FMS such that ∗ is a t-norm of H-type. Let F : X ×X ×X → X and
g : X → X be two mappings, and there exists φ ∈ Φ satisfying

M(F (x, y, z), F (u, v, w), φ(t)) ≥M(g(x), g(u), t) ∗M(g(y), g(v), t) ∗M(g(z), g(w), t) (3.3)

for all x, y, z, u, v, w ∈ X, t > 0.
Suppose that F (X ×X ×X) ⊆ g(X), g(X) is complete, F and g are weakly compatible. Then F and g

have a unique common tripled fixed point in X.
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Proof. Let x0, y0, z0 ∈ X be three arbitrary points in X. Since F (X × X × X) ⊆ g(X), we can choose
x1, y1, z1 ∈ X such that g(x1) = F (x0, y0, z0), g(y1) = F (y0, z0, x0) and g(z1) = F (z0, x0, y0). Continuing
this process, we can construct three sequences {xn}, {yn} and {zn} in X such that

g(xn+1) = F (xn, yn, zn), g(yn+1) = F (yn, zn, xn), g(zn+1) = F (zn, xn, yn) (3.4)

for all n ≥ 0.
We shall do the proof in four steps.
Step I. We shall show that {g(xn)}, {g(yn)} and {g(zn)} are Cauchy sequences.

Since ∗ is a t-norm of H-type, for any λ > 0, there exists an µ > 0 such that

(1− µ) ∗ (1− µ) ∗ · · · ∗ (1− µ)︸ ︷︷ ︸
k

≥ 1− λ

for all k ∈ N.
Since M(x, y, ·) is continuous and lim

t→∞
M(x, y, t) = 1 for all x, y ∈ X, so there exists t0 > 0 such that

M(g(x0), g(x1), t0) ≥ 1− µ,
M(g(y0), g(y1), t0) ≥ 1− µ,
M(g(z0), g(z1), t0) ≥ 1− µ.

(3.5)

On the other hand, since φ ∈ Φ, by condition (φ − 3), we have
∞∑
n=1

φn(t0) < ∞. Then for any t > 0, there

exists n0 ∈ N such that

t >

∞∑
k=n0

φk(t0). (3.6)

By use of condition (3.3), we get

M(g(x1), g(x2), φ(t0)) = M(F (x0, y0, z0), F (x1, y1, z1), φ(t0))

≥M(g(x0), g(x1), t0) ∗M(g(y0), g(y1), t0) ∗M(g(z0), g(z1), t0),

M(g(y1), g(y2), φ(t0)) = M(F (y0, z0, x0), F (y1, z1, x1), φ(t0))

≥M(g(y0), g(y1), t0) ∗M(g(z0), g(z1), t0) ∗M(g(x0), g(x1), t0)

and

M(g(z1), g(z2), φ(t0)) = M(F (z0, x0, y0), F (z1, x1, y1), φ(t0))

≥M(g(z0), g(z1), t0) ∗M(g(x0), g(x1), t0) ∗M(g(y0), g(y1), t0).

Similarly, we have

M(g(x2), g(x3), φ
2(t0)) = M(F (x1, y1, z1), F (x2, y2, z2), φ

2(t0))

≥M(g(x1), g(x2), φ(t0)) ∗M(g(y1), g(y2), φ(t0)) ∗M(g(z1), g(z2), φ(t0))

≥ [M(g(x0), g(x1), t0)]
3 ∗ [M(g(y0), g(y1), t0)]

3 ∗ [M(g(z0), g(z1), t0)]
3,

M(g(y2), g(y3), φ
2(t0)) = M(F (y1, z1, x1), F (y2, z2, x2), φ

2(t0))

≥ [M(g(y0), g(y1), t0)]
3 ∗ [M(g(z0), g(z1), t0)]

3 ∗ [M(g(x0), g(x1), t0)]
3

and

M(g(z2), g(z3), φ
2(t0)) = M(F (z1, x1, y1), F (z2, x2, y2), φ

2(t0))

≥ [M(g(z0), g(z1), t0)]
3 ∗ [M(g(x0), g(x1), t0)]

3 ∗ [M(g(y0), g(y1), t0)]
3.

From the inequalities above and by induction, it is easy to find that
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M(g(xn), g(xn+1), φ
n(t0)) ≥ [M(g(x0), g(x1), t0)]

3n−1 ∗ [M(g(y0), g(y1), t0)]
3n−1

∗ [M(g(z0), g(z1), t0)]
3n−1

,
(3.7)

M(g(yn), g(yn+1), φ
n(t0)) ≥ [M(g(y0), g(y1), t0)]

3n−1 ∗ [M(g(x0), g(x1), t0)]
3n−1

∗ [M(g(z0), g(z1), t0)]
3n−1

(3.8)

and

M(g(zn), g(zn+1), φ
n(t0)) ≥ [M(g(z0), g(z1), t0)]

3n−1 ∗ [M(g(x0), g(x1), t0)]
3n−1

∗ [M(g(y0), g(y1), t0)]
3n−1

.
(3.9)

So, from (3.5), (3.6), (GV-5) and (3.7), for m > n ≥ n0, we have

M(g(xn), g(xm), t) ≥M
(
g(xn), g(xm),

∞∑
k=n0

φk(t0)
)

≥M
(
g(xn), g(xm),

m−1∑
k=n

φk(t0)
)

≥M(g(xn), g(xn+1), φ
n(t0)) ∗M(g(xn+1), g(xn+2), φ

n+1(t0)) ∗ · · ·
∗M(g(xm−1), g(xm), φm−1(t0))

≥ [M(g(x0), g(x1), t0)]
3n−1 ∗ [M(g(y0), g(y1), t0)]

3n−1 ∗ [M(g(z0), g(z1), t0)]
3n−1

∗ [M(g(x0), g(x1), t0)]
3n ∗ [M(g(y0), g(y1), t0)]

3n ∗ [M(g(z0), g(z1), t0)]
3n

∗ · · · ∗ [M(g(x0), g(x1), t0)]
3m−2

∗ [M(g(y0), g(y1), t0)]
3m−2 ∗ [M(g(z0), g(z1), t0)]

3m−2

= [M(g(x0), g(x1), t0)]
3m−1−2n−1

2 ∗ [M(g(y0), g(y1), t0)]
3m−1−2n−1

2

∗ [M(g(z0), g(z1), t0)]
3m−1−2n−1

2

≥
(1− µ) ∗ (1− µ) ∗ · · · ∗ (1− µ)︸ ︷︷ ︸

3(3m−1−2n−1)
2

≥ 1− λ,

which implies that
M(g(xn), g(xm), t) > 1− λ (3.10)

for all m,n ∈ N with m > n ≥ n0 and t > 0. So {g(xn)} is a Cauchy sequence. Similarly, we can prove that
{g(yn)} and {g(zn)} are also Cauchy sequences.

Step II. We shall show that g and F have a tripled coincidence point. Since g(X) is complete, there
exist x̂, ŷ, ẑ ∈ g(X), and exist a, b, c ∈ X such that

lim
n→∞

g(xn) = lim
n→∞

F (xn, yn, zn) = g(a) = x̂,

lim
n→∞

g(yn) = lim
n→∞

F (yn, zn, xn) = g(b) = ŷ,

lim
n→∞

g(zn) = lim
n→∞

F (zn, xn, yn) = g(c) = ẑ.

(3.11)

By use of condition (3.3), we get

M(F (xn, yn, zn), F (a, b, c), φ(t)) ≥M(g(xn), g(a), t) ∗M(g(yn), g(b), t) ∗M(g(zn), g(c), t).

Taking the limit as n→∞ in the above inequality, by continuity of M and using (3.11), we have

M(g(a), F (a, b, c), φ(t)) = 1,
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which implies that F (a, b, c) = g(a) = x̂. In a similar way, we can prove that F (b, c, a) = g(b) = ŷ and
F (c, a, b) = g(c) = ẑ. Since F and g are weakly compatible, we get that gF (a, b, c) = F (g(a), g(b), g(c)),
gF (b, c, a) = F (g(b), g(c), g(a)) and gF (c, a, b) = F (g(c), g(a), g(b)), which implies that g(x̂) = F (x̂, ŷ, ẑ),
g(ŷ) = F (ŷ, ẑ, x̂) and g(ẑ) = F (ẑ, x̂, ŷ).

Step III. We shall show that g(x̂) = ŷ, g(ŷ) = ẑ and g(ẑ) = x̂.
Since ∗ is a t-norm of H-type, for any λ > 0, there exists an µ > 0 such that

(1− µ) ∗ (1− µ) ∗ · · · ∗ (1− µ)︸ ︷︷ ︸
k

≥ 1− λ

for all k ∈ N.
Since M(x, y, ·) is continuous and lim

t→∞
M(x, y, t) = 1 for all x, y ∈ X, there exists t0 > 0 such that

M(g(x̂), ŷ, t0) ≥ 1− µ, M(g(ŷ), ẑ, t0) ≥ 1− µ and M(g(ẑ), x̂, t0) ≥ 1− µ.

On the other hand, since φ ∈ Φ, by condition (φ − 3), we have
∞∑
n=1

φn(t0) < ∞. Thus, for any t > 0,

there exists n0 ∈ N such that t >
∞∑

k=n0

φk(t0). Since

M(g(x̂), g(yn+1), φ(t0)) = M(F (x̂, ŷ, ẑ), F (yn, zn, xn), φ(t0))

≥M(g(x̂), g(yn), t0) ∗M(g(ŷ), g(zn), t0) ∗M(g(ẑ), g(xn), t0),

M(g(ŷ), g(zn+1), φ(t0)) = M(F (ŷ, ẑ, x̂), F (zn, xn, yn), φ(t0))

≥M(g(ŷ), g(zn), t0) ∗M(g(ẑ), g(xn), t0) ∗M(g(x̂), g(yn), t0)

and

M(g(ẑ), g(xn+1), φ(t0)) = M(F (ẑ, x̂, ŷ), F (xn, yn, zn), φ(t0))

≥M(g(ẑ), g(xn), t0) ∗M(g(x̂), g(yn), t0) ∗M(g(ŷ), g(zn), t0).

Letting n→∞ in the above inequalities, we obtain

M(g(x̂), ŷ, φ(t0)) ≥M(g(x̂), ŷ, t0) ∗M(g(ŷ), ẑ, t0) ∗M(g(ẑ), x̂, t0), (3.12)

M(g(ŷ), ẑ, φ(t0)) ≥M(g(ŷ), ẑ, t0) ∗M(g(ẑ), x̂, t0) ∗M(g(x̂), ŷ, t0) (3.13)

and
M(g(ẑ), x̂, φ(t0)) ≥M(g(ẑ), x̂, t0) ∗M(g(x̂), ŷ, t0) ∗M(g(ŷ), ẑ, t0). (3.14)

According to (3.12), (3.13) and (3.14), we get that

M(g(x̂), ŷ,φ(t0)) ∗M(g(ŷ), ẑ, φ(t0)) ∗M(g(ẑ), x̂, φ(t0))

≥ [M(g(x̂), ŷ, t0)]
3 ∗ [M(g(ŷ), ẑ, t0)]

3 ∗ [M(g(ẑ), x̂, t0)]
3.

Therefore, from this inequality and by induction, we obtain that

M(g(x̂), ŷ, φn(t0)) ∗M(g(ŷ), ẑ, φn(t0)) ∗M(g(ẑ), x̂, φn(t0))

≥ [M(g(x̂), ŷ, φn−1(t0))]
3 ∗ [M(g(ŷ), ẑ, φn−1(t0))]

3 ∗ [M(g(ẑ), x̂, φn−1(t0))]
3

≥ [M(g(x̂), ŷ, t0)]
3n ∗ [M(g(ŷ), ẑ, t0)]

3n ∗ [M(g(ẑ), x̂, t0)]
3n

for all n ∈ N. Since t >
∞∑

k=n0

φk(t0), we get

M(g(x̂), ŷ, t) ∗M(g(ŷ), ẑ, t) ∗M(g(ẑ), x̂, t)
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≥M
(
g(x̂), ŷ,

∞∑
k=n0

φk(t0)
)
∗M

(
g(ŷ), ẑ,

∞∑
k=n0

φk(t0)
)
∗M

(
g(ẑ), x̂,

∞∑
k=n0

φk(t0)
)

≥M(g(x̂), ŷ, φn0(t0)) ∗M(g(ŷ), ẑ, φn0(t0)) ∗M(g(ẑ), x̂, φn0(t0))

≥ [M(g(x̂), ŷ, t0)]
3n0 ∗ [M(g(ŷ), ẑ, t0)]

3n0 ∗ [M(g(ẑ), x̂, t0)]
3n0

≥
(1− µ) ∗ (1− µ) ∗ · · · ∗ (1− µ)︸ ︷︷ ︸

3n0+1

≥ 1− λ.

Thus, for any λ > 0, we have

M(g(x̂), ŷ, t) ∗M(g(ŷ), ẑ, t) ∗M(g(ẑ), x̂, t) ≥ 1− λ (3.15)

for all t > 0, which implies that g(x̂) = ŷ, g(ŷ) = ẑ and g(ẑ) = x̂.
Step IV. We shall prove that x̂ = ŷ = ẑ.

Since ∗ is a t-norm of H-type, for any λ > 0, there exists an µ > 0 such that

(1− µ) ∗ (1− µ) ∗ · · · ∗ (1− µ)︸ ︷︷ ︸
k

≥ 1− λ

for all k ∈ N.
Since M(x, y, ·) is continuous and lim

t→+∞
M(x, y, t) = 1 for all x, y ∈ X, there exists t0 > 0 such that

M(x̂, ŷ, t0) ≥ 1− µ, M(ŷ, ẑ, t0) ≥ 1− µ and M(ẑ, x̂, t0) ≥ 1− µ.

On the other hand, since φ ∈ Φ, by condition (φ − 3), we have
∞∑
n=1

φn(t0) < ∞. Then, for any t > 0,

there exists n0 ∈ N such that t >
∞∑

k=n0

φk(t0).

By use of condition (3.3), we have

M(g(xn+1), g(yn+1), φ(t0)) = M(F (xn, yn, zn), F (yn, zn, xn), φ(t0))

≥M(g(xn), g(yn), t0) ∗M(g(yn), g(zn), t0) ∗M(g(zn), g(xn), t0),

M(g(yn+1), g(zn+1), φ(t0)) = M(F (yn, zn, xn), F (zn, xn, yn), φ(t0))

≥M(g(yn), g(zn), t0) ∗M(g(zn), g(xn), t0) ∗M(g(xn), g(yn), t0)

and

M(g(zn+1), g(xn+1), φ(t0)) = M(F (zn, xn, yn), F (xn, yn, zn), φ(t0))

≥M(g(zn), g(xn), t0) ∗M(g(xn), g(yn), t0) ∗M(g(yn), g(zn), t0).

Letting n→∞ in the above inequalities, we have

M(x̂, ŷ, φ(t0)) ≥M(x̂, ŷ, t0) ∗M(ŷ, ẑ, t0) ∗M(ẑ, x̂, t0),

M(ŷ, ẑ, φ(t0)) ≥M(ŷ, ẑ, t0) ∗M(ẑ, x̂, t0) ∗M(x̂, ŷ, t0)

and
M(ẑ, x̂, φ(t0)) ≥M(ẑ, x̂, t0) ∗M(x̂, ŷ, t0) ∗M(ŷ, ẑ, t0).

Therefore, we obtain that

M(x̂, ŷ,φ(t0)) ∗M(ŷ, ẑ, φ(t0)) ∗M(ẑ, x̂, φ(t0)) ≥ [M(x̂, ŷ, t0)]
3 ∗ [M(ŷ, ẑ, t0)]

3 ∗ [M(ẑ, x̂, t0)]
3.

From this inequality and by induction, we can obtain

M(x̂, ŷ, φn(t0)) ∗M(ŷ, ẑ, φn(t0)) ∗M(ẑ, x̂, φn(t0))

≥ [M(x̂, ŷ, φn−1(t0))]
3 ∗ [M(ŷ, ẑ, φn−1(t0))]

3 ∗ [M(ẑ, x̂, φn−1(t0))]
3

≥ [M(x̂, ŷ, t0)]
3n ∗ [M(ŷ, ẑ, t0)]

3n ∗ [M(ẑ, x̂, t0)]
3n
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for all n ∈ N. Since t >
∞∑

k=n0

φk(t0), we have

M(x̂, ŷ, t) ∗M(ŷ, ẑ, t) ∗M(ẑ, x̂, t)

≥M
(
x̂, ŷ,

∞∑
k=n0

φk(t0)
)
∗M

(
ŷ, ẑ,

∞∑
k=n0

φk(t0)
)
∗M

(
ẑ, x̂,

∞∑
k=n0

φk(t0)
)

≥M(x̂, ŷ, φn0(t0)) ∗M(ŷ, ẑ, φn0(t0)) ∗M(ẑ, x̂, φn0(t0))

≥ [M(x̂, ŷ, t0)]
3n0 ∗ [M(ŷ, ẑ, t0)]

3n0 ∗ [M(ẑ, x̂, t0)]
3n0

≥
(1− µ) ∗ (1− µ) ∗ · · · ∗ (1− µ)︸ ︷︷ ︸

3n0+1

≥ 1− λ,

which implies that x̂ = ŷ = ẑ.
Thus, we proved that F and g have a common tripled fixed point in X.

The uniqueness of the fixed point can be easily proved in the same way as above. This completes the proof
of Theorem 3.5.

Corollary 3.6. Let a, b, c ∈ [0, 1] be real numbers such that a + b + c ≤ 1. Let (X,M, ∗) be a FMS with a
Hadz̆ić type t-norm. Let F : X × X × X → X and g : X → X be two mappings, and there exists φ ∈ Φ
satisfying

M(F (x, y, z), F (u, v, w), φ(t)) ≥ [M(g(x), g(u), t)]a ∗ [M(g(y), g(v), t)]b ∗ [M(g(z), g(w), t)]c (3.16)

for all x, y, z, u, v, w ∈ X, t > 0.
Suppose that F (X ×X ×X) ⊆ g(X), g(X) is complete, F and g are weakly compatible. Then F and g

have a unique common tripled fixed point in X.

Proof. Due to

M(F (x, y, z), F (u, v, w), φ(t)) ≥ [M(g(x), g(u), t)]a ∗ [M(g(y), g(v), t)]b ∗ [M(g(z), g(w), t)]c

≥M(g(x), g(u), t) ∗M(g(y), g(v), t) ∗M(g(z), g(w), t), (3.17)

we conclude from Theorem 3.5 that the mappings F and g have a unique tripled common fixed point in
X.

Taking φ(t) = kt, k ∈ (0, 1) in Theorem 3.5 and Corollary 3.6 respectively, we get the following results.

Corollary 3.7. Let (X,M, ∗) be a FMS with a Hadz̆ić type t-norm. Let F : X×X×X → X and g : X → X
be two mappings such that

M(F (x, y, z), F (u, v, w), kt) ≥M(g(x), g(u), t) ∗M(g(y), g(v), t) ∗M(g(z), g(w), t) (3.18)

for all x, y, z, u, v, w ∈ X, t > 0, 0 < k < 1.
Suppose that F (X ×X ×X) ⊆ g(X), g(X) is complete, F and g are weakly compatible. Then F and g

have a unique common tripled fixed point in X.

Corollary 3.8. Let k ∈ (0, 1) and a, b, c ∈ [0, 1] be real numbers such that a+ b+ c ≤ 1. Let (X,M, ∗) be a
FMS with a Hadz̆ić type t-norm. Let F : X ×X ×X → X and g : X → X be two mappings such that

M(F (x, y, z), F (u, v, w), kt) ≥ [M(g(x), g(u), t)]a ∗ [M(g(y), g(v), t)]b ∗ [M(g(z), g(w), t)]c (3.19)

for all x, y, z, u, v, w ∈ X, t > 0.
Suppose that F (X ×X ×X) ⊆ g(X), g(X) is complete, F and g are weakly compatible. Then F and g

have a unique common tripled fixed point in X.
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Taking g = I (the identity mapping) in Theorem 3.5 and Corollary 3.6 respectively, we get the following
consequences.

Corollary 3.9. Let (X,M, ∗) be a fuzzy metric space with a Hadz̆ić type t-norm. Let F : X ×X ×X → X
is complete, and there exists φ ∈ Φ such that

M(F (x, y, z), F (u, v, w), φ(t)) ≥M(x, u, t) ∗M(y, v, t) ∗M(z, w, t) (3.20)

for all x, y, z, u, v, w ∈ X, t > 0.
Then there exists x ∈ X such that x = F (x, x, x); that is, F admits a unique fixed point in X.

Corollary 3.10. Let a, b, c ∈ [0, 1] be real numbers such that a+ b+ c ≤ 1. Let (X,M, ∗) be a fuzzy metric
space with a Hadz̆ić type t-norm. Let F : X ×X ×X → X is complete, and there exists φ ∈ Φ such that

M(F (x, y, z), F (u, v, w), φ(t)) ≥ [M(x, u, t)]a ∗ [M(y, v, t)]b ∗ [M(z, w, t)]c (3.21)

for all x, y, z, u, v, w ∈ X, t > 0.
Then there exist x ∈ X such that x = F (x, x, x); that is, F admits a unique fixed point in X.

Remark 3.11. Our results improve Theorem 3.4 ([12] Theorem 11) as follows:

(1) from kt to ϕ(t);

(2) in our results, g is not required to be continuous, but the function g in Theorem 3.4 ([12] Theorem
11) is required to be continuous.

(3) we assume that F and g are weakly compatible, which is weaker than the condition in Theorem 3.4
([12] Theorem 11), where Theorem 3.4 ([12] Theorem 11) assumes commutation for F and g.

By the same methods as Theorem 3.5, we can obtain the following result.

Corollary 3.12. Let k ∈ (0, 1) and a, b ∈ [0, 1] be real numbers such that a+ b ≤ 1. Let (X,M, ∗) be a FMS
with a Hadz̆ić type t-norm. Let F : X ×X → X and g : X → X be two mappings, and there exists φ ∈ Φ
satisfying

M(F (x, y), F (u, v), φ(t)) ≥ [M(g(x), g(u), t)]a ∗ [M(g(y), g(v), t)]b (3.22)

for all x, y, u, v ∈ X, t > 0.
Suppose that F (X ×X) ⊆ g(X), g(X) is complete, F and g are weakly compatible. Then F and g have

a unique common coupled fixed point in X.

Now, we illustrate Theorem 3.5 by the following example.

Example 3.13. Let X = {0, 1, 12 ,
1
3 , . . . ,

1
n , . . .}, ∗ = min, and let M(x, y, t) = t

|x−y|+t , for all x, y ∈ X, t > 0.

Then (X,M, ∗) is a fuzzy metric space.
Let φ(t) = t

2 . Define the mappings F : X ×X ×X → X and g : X → X by

F (x, y, z) =

{
1

(2n+1)4
, (x, y, z) = ( 1

2n ,
1
2n ,

1
2n),

0, others

and

g(x) =


0, x = 0,
1, x = 1

2n+1 ,
1

2n+1 , x = 1
2n .

Since

gF

(
1

2n
,

1

2n
,

1

2n

)
= 1,
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F

(
g

(
1

2n

)
, g

(
1

2n

)
, g

(
1

2n

))
= F

(
1

2n+ 1
,

1

2n+ 1
,

1

2n+ 1

)
= 0,

that is

gF

(
1

2n
,

1

2n
,

1

2n

)
6= F

(
g

(
1

2n

)
, g

(
1

2n

)
, g

(
1

2n

))
,

which implies that g and F are not commutative. From F (x, y, z) = g(x), F (y, z, x) = g(y) and F (z, x, y) =
g(z), we can obtain (x, y, z) = (0, 0, 0), and we have gF (0, 0, 0) = F (g(0), g(0), g(0)), which implies that F
and g are weakly compatible. It is easy to prove that

t

P + t
≥ min

{ t

X + t
,

t

Y + t
,

t

Z + t

}
⇔ P ≤ max{X,Y, Z} (3.23)

for any P,X, Y, Z ≥ 0 and t > 0. From inequality (3.23) and the definition of M and φ, we obtain that
inequality (3.3) is equivalent to the following

2|F (x, y, z)− F (u, v, w)| ≤ max{|g(x)− g(u)|, |g(y)− g(v)|, |g(z)− g(w)|}. (3.24)

Next, we shall prove that inequality (3.24) is valid. Let A = { 1
2n , n ∈ N}, B = X − A. By the symmetry

and without loss of generality, (x, y, z), (u, v, w) have the following 10 possibilities.
Case 1: (x, y, z) ∈ B ×B ×B, (u, v, w) ∈ B ×B ×B. It is obvious that (3.24) holds.
Case 2: (x, y, z) ∈ B ×B ×B, (u, v, w) ∈ B ×B ×A. It is obvious that (3.24) holds.
Case 3: (x, y, z) ∈ B ×B ×B, (u, v, w) ∈ B ×A×A. It is obvious that (3.24) holds.
Case 4: (x, y, z) ∈ B ×B ×B, (u, v, w) ∈ A×A×A. (i). If u = v = w, let u = v = w = 1

2n , then

2|F (x, y, z)− F (u, v, w)| = 2

(2n+ 1)4
,

max{|g(x)− g(u)|, |g(y)− g(v)|, |g(z)− g(w)|} =

{ 1
2n+1 if x = y = z = 0,
2n

2n+1 otherwise,

which implies that (3.24) holds.
(ii). If u 6= v or v 6= w or u 6= w, then inequality (3.24) holds obviously.
Case 5: (x, y, z) ∈ B ×B ×A, (u, v, w) ∈ B ×B ×A. It is obvious that (3.24) holds.
Case 6: (x, y, z) ∈ B ×B ×A, (u, v, w) ∈ B ×A×A. It is obvious that (3.24) holds.
Case 7: (x, y, z) ∈ B ×B ×A, (u, v, w) ∈ A×A×A.
(i). If u = v = w, let u = v = w = 1

2n , z = 1
2m , then

2|F (x, y, z)− F (u, v, w)| = 2

(2n+ 1)4
,

max{|g(x)− g(u)|, |g(y)− g(v)|, |g(z)− g(w)|} =

{
max{ 1

2n+1 , |
1

2m+1 −
1

2n+1 |} if x = y = 0

max{ 2n
2n+1 , |

1
2m+1 −

1
2n+1 |} otherwise

,

which implies that (3.24) holds.
(ii). If u 6= v or v 6= w or u 6= w, then inequality (3.24) holds obviously.
Case 8: (x, y, z) ∈ B ×A×A, (u, v, w) ∈ B ×A×A. It is obvious that (3.24) holds.
Case 9: (x, y, z) ∈ B × A × A, (u, v, w) ∈ A × A × A. (i). If u = v = w, let u = v = w = 1

2n , y = 1
2i ,

z = 1
2j , then

2|F (x, y, z)− F (u, v, w)| = 2

(2n+ 1)4
,

max{|g(x)− g(u)|, |g(y)− g(v)|, |g(z)− g(w)|} =

{
max{ 1

2n+1 , |
1

2i+1 −
1

2n+1 |, |
1
2j −

1
2n+1 |} if x = 0

max{ 2n
2n+1 , |

1
2i+1 −

1
2n+1 |, |

1
2j+1 −

1
2n+1 |} otherwise

,
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which implies that (3.24) holds.
(ii). If u 6= v or v 6= w or u 6= w, then inequality (3.24) holds obviously.
Case 10: (x, y, z) ∈ A×A×A, (u, v, w) ∈ A×A×A.
(i). If u = v = w, x = y = z, let u = v = w = 1

2n , x = y = z = 1
2m , then

2|F (x, y, z)− F (u, v, w)| =
∣∣∣∣ 2

(2m+ 1)4
− 2

(2n+ 1)4

∣∣∣∣,
max{|g(x)− g(u)|, |g(y)− g(v)|, |g(z)− g(w)|} =

∣∣∣∣ 1

2m+ 1
− 1

2n+ 1

∣∣∣∣,
which implies that (3.24) holds.

(ii). If u = v = w, x 6= y or y 6= z or x 6= z, without loss of generality, let u = v = w = 1
2n , x = 1

2i ,
y = 1

2j = z, i 6= j, then

2|F (x, y, z)− F (u, v, w)| = 2

(2n+ 1)4
,

max{|g(x)− g(u)|, |g(y)− g(v)|, |g(z)− g(w)|} = max

{∣∣∣∣ 1

2i+ 1
− 1

2n+ 1

∣∣∣∣, ∣∣∣∣ 1

2j + 1
− 1

2n+ 1

∣∣∣∣},
which implies that (3.24) holds.

(iii). If u 6= v or v 6= w or u 6= w, x 6= y or y 6= z or x 6= z, then inequality (3.24) holds obviously.
Thus all the conditions in Theorem 3.5 are satisfied, and 0 is the unique common fixed point of g and F .
Note that g and F are not commutative, and therefore the unique tripled common fixed point of g and

F cannot be obtained by Theorem 3.4. It means that Theorem 3.5 is a proper improvement of Theorem 3.4.
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[7] O. Hadz̆ić, E. Pap, Fixed Point Theory in Probabilistic Metric Space, Kluwer Academic Publishers, Dordrecht,

(2001).2.1, 2.7
[8] I. Kramosil, J. Michalek, Fuzzy metrics and statistical metric spaces, Kybernetika, 11 (1975), 336–344.1, 2.2
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[11] J. Rodŕıguez López, S. Romaguera, The Hausdorff fuzzy metric on compact sets, Fuzzy Sets and Systems, 147

(2004), 273–283.2.6



J.-F. Tian, X.-M. Hu, H.-S. Zhao, J. Nonlinear Sci. Appl. 9 (2016), 806–818 818

[12] A. Roldán, J. Mart́ınez-Moreno, C. Roldán, Tripled fixed point theorem in fuzzy metric spaces and applications,
Fixed Point Theory Appl., 2013 (2013), 13 pages.3, 3.4, 3.11

[13] B. Samet, C. Vetro, Coupled fixed point, f-invariant set and fixed point of N-order, Ann. Funct. Anal., 1 (2010),
46–56.2.10

[14] B. Schweizer, A. Sklar, Probabilistic Metric Spaces, North-Holland Publishing Co., New York, (1983).2.1
[15] S. Sedghi, I. Altun, N. Shobe, Coupled fixed point theorems for contractions in fuzzy metric spaces, Nonlinear

Anal., 72 (2010), 1298–1304.1, 2.8, 3, 3.1
[16] X. Zhu, J. Xiao, Note on ”Coupled fixed point theorems for contractions in fuzzy metric spaces”, Nonlinear Anal.,

74 (2011), 5475–5479.1, 3, 3.3


	1 Introduction
	2 Preliminaries
	3 Main results

