Conjugacy between trapezoid maps

Yong-Guo Shi
Key Laboratory of Numerical Simulation of Sichuan Province, College of Mathematics and Information Science, Neijiang Normal University, Neijiang, Sichuan 641112, P. R. China.

Communicated by R. Saadati

Abstract

Trapezoid maps are a kind of continuous and piecewise linear maps with a flat top. By the conjugacy relationship, we present a complete classification for four families of trapezoid maps. Firstly, using an extension method, we construct all homeomorphic solutions of conjugacy equation $\varphi \circ f=g \circ \varphi$ for some non-monotone continuous maps f and g. Secondly, using an iterative construction method and an extension method, we construct respectively all topological conjugacies for four families of trapezoid maps. Finally, all construction algorithms are implemented in MATLAB, and three examples are illustrated to construct topological conjugacies and a topological semi-conjugacy. © 2016 All rights reserved.

Keywords: Trapezoid map, topological conjugacy, topological classification, conjugacy equation. 2010 MSC: 37E05, 37C15.

1. Introduction

An outstanding problem of iteration theory and ergodic theory [4] is to decide whether two maps $f: I \rightarrow I$ and $g: J \rightarrow J$ are topologically conjugate, i.e., whether there exists a homeomorphism $\varphi: I \rightarrow J$ such that $\varphi \circ f=g \circ \varphi$. Such a homeomorphism φ is called a conjugacy. If there exists a continuous, monotone (not necessarily strictly monotone) and onto map φ such that $\varphi \circ f=g \circ \varphi$, then we say that f is topologically semi-conjugate to g, and φ is a semi-conjugacy. If f, g are topological conjugate, write in symbols $f \sim g$, otherwise, $f \nsim g$.

Topological conjugation is an equivalence relation which is useful in the topological classification of dynamical systems.

The aim of this paper is to give a complete classification of four families of trapezoid maps, respectively denoted by $\mathcal{M}_{i}, i=1,2,3,4$, of forms:

[^0]\[

$$
\begin{gathered}
t_{a, b}(x)=\left\{\begin{array}{ll}
\frac{x}{a}, & x \in[0, a], \\
1, & x \in(a, b], \\
\frac{1-x}{1-b}, & x \in(b, 1],
\end{array} \quad \tilde{t}_{a, b}(x)= \begin{cases}\frac{b x}{a}, & x \in[0, a], \\
b, & x \in(a, b] \\
\frac{b(1-x)}{1-b}, & x \in(b, 1]\end{cases} \right. \\
\bar{t}_{a, b, c}(x)=\left\{\begin{array}{ll}
\frac{b x}{a}, & x \in[0, a], \\
b, & x \in(a, c], \\
\frac{b(1-x)}{1-c}, & x \in(c, 1],
\end{array} \quad \hat{t}_{a, b, c}(x)= \begin{cases}\frac{a x}{b}, & x \in[0, b], \\
a, & x \in[b, c], \\
\frac{a(1-x)}{1-c}, & x \in[c, 1]\end{cases} \right.
\end{gathered}
$$
\]

where a, b, c are three fixed parameters with $0<a<b<c<1$, see Figs. 1, 2, 3, 4,

Figure 1: $t_{a, b}$

Figure 3: $\bar{t}_{a, b, c}$

Figure 2: $\tilde{t}_{a, b}$

Figure 4: $\quad \hat{t}_{a, b, c}$

Schweizer and Sklar in [8] investigated the family \mathcal{M}_{1} of trapezoid maps. They showed that any two maps in \mathcal{M}_{1} are topologically conjugate, Their results were generalized to Markov maps [2], and to combination of multiple trapezoids, which is the so-called weakly multimodal maps [7, 9]. In this paper, we construct all homeomorphic solutions of conjugacy equation $\varphi \circ f=g \circ \varphi$ for some non-monotone continuous maps f and g. And we shall prove that: (i) $f \sim g$ if $f, g \in \mathcal{M}_{i}, i=1,2,3,4$; (ii) $f \nsim g$ if $f \in \mathcal{M}_{i}$ and $g \in \mathcal{M}_{j}$, $i \neq j$. Meanwhile, we show that $f^{n} \in \mathcal{M}_{3}$ for $n \geq 2$ if $f \in \mathcal{M}_{2}$, and $f \in \mathcal{M}_{3}$ is topologically semi-conjugate to $g \in \mathcal{M}_{2}$. Using an iterative construction method and an extension method, we construct respectively all topological conjugacies for four families of trapezoid maps. Finally, all construction algorithms are
implemented in MATLAB, and three examples are illustrated to construct topological conjugacies and a topological semi-conjugacy.

2. Preliminaries

2.1. Dynamics of trapezoid maps

Each trapezoid map in \mathcal{M}_{1} is a chaotic map, which produces various interesting behaviors. Many authors investigated their delta-pseudo orbit shadowing [5], symbolic dynamics [6] and monotonicity properties of kneading sequences 3].

In this subsection, we first study the dynamics of other three families of trapezoid maps $\mathcal{M}_{i}, i=2,3,4$.
Lemma 2.1. Assume that $\tilde{t}_{a_{1}, b_{1}} \in \mathcal{M}_{2}$. Then
(i) $\tilde{t}_{a_{1}, b_{1}}$ has only two fixed points 0 and b_{1};
(ii) for any $x_{0} \in\left(0, b_{1}\right) \cup\left(b_{1}, 1\right]$, the sequence $\left\{\tilde{t}_{a_{1}, b_{1}}^{n}\left(x_{0}\right)\right\}_{n=1}^{\infty}$ converges to b_{1};
(iii) $\tilde{t}_{a_{1}, b_{1}}^{n}=\bar{t}_{a_{n}, b_{n}, c_{n}}$ for $n \geq 2$ where

$$
a_{n}=\frac{a_{1}^{n+1}}{b_{1}^{n}}, \quad b_{n}=b_{1}, \quad c_{n}=\frac{b_{1}^{n}-a_{1}^{n}+a_{1}^{n} b_{1}}{b_{1}^{n}}
$$

Proof. One immediately verifies that the results of (i) and (ii) by direct computation. Now we prove (iii) by induction.

We first check the case $n=2$. Put f_{1}, f_{2}, f_{3} be respectively the restrictions of $\tilde{t}_{a_{1}, b_{1}}$ to the subintervals $\left[0, a_{1}\right],\left[a_{1}, b_{1}\right]$ and $\left[b_{1}, 1\right]$. One can see that
(1) $\tilde{t}_{a_{1}, b_{1}}^{2}(x)=f_{1}^{2}(x) \in\left[0, a_{1}\right]$ for $x \in\left[0, \frac{a_{1}^{3}}{b_{1}^{2}}\right]$;
(2) $\tilde{t}_{a_{1}, b_{1}}^{2}(x)=\tilde{t}_{a_{1}, b_{1}}\left(f_{1}(x)\right)=b_{1}$ for $x \in\left[\frac{a_{1}^{3}}{b_{1}^{2}}, a_{1}\right]$;
(3) $\tilde{t}_{a_{1}, b_{1}}^{2}(x)=f_{2}^{2}\left(b_{1}\right)=b_{1}$ for $x \in\left[a_{1}, b_{1}\right]$;
(4) $\tilde{t}_{a_{1}, b_{1}}^{2}(x)=\tilde{t}_{a_{1}, b_{1}}\left(f_{3}(x)\right)$ for $x \in\left[b_{1}, \frac{b_{1}^{2}-a_{1}^{2}+a_{1}^{2} b}{b_{1}^{2}}\right]$;
(5) $\tilde{t}_{a_{1}, b_{1}}^{2}(x)=f_{1}\left(f_{3}(x)\right) \in\left[0, a_{1}\right]$ for $x \in\left[\frac{b_{1}^{2}-a_{1}^{2}+a_{1}^{2} b}{b_{1}^{2}}, 1\right]$.

Thus $\tilde{t}_{a_{1}, b_{1}}^{2}=\bar{t}_{a_{2}, b_{2}, c_{2}}$. Assume that $\tilde{t}_{a_{1}, b_{1}}^{k}=\bar{t}_{a_{k}, b_{k}, c_{k}}$ for some positive integer $k \geq 2$. When $n=k+1$, we have for $x \in[0,1]$

$$
\tilde{t}_{a_{1}, b_{1}}^{n+1}(x)=\tilde{t}_{a_{1}, b_{1}}\left(\tilde{t}_{a_{1}, b_{1}}^{n}(x)\right)=\tilde{t}_{a_{1}, b_{1}}\left(\bar{t}_{a_{n}, b_{n}, c_{n}}(x)\right)=\bar{t}_{a_{n+1}, b_{n+1}, c_{n+1}}(x)
$$

Therefore the result of (iii) follows.
Proofs of the following two lemmas are easily supplied by a similar method in proving Lemma 2.1 .
Lemma 2.2. Assume that $\bar{t}_{a_{1}, b_{1}, c_{1}} \in \mathcal{M}_{3}$. Then
(i) $\bar{t}_{a_{1}, b_{1}, c_{1}}$ has only two fixed points 0 and b_{1};
(ii) for any $x_{0} \in\left(0, b_{1}\right) \cup\left(b_{1}, 1\right]$, the sequence $\left\{\bar{t}_{a_{1}, b_{1}, c_{1}}^{n}\left(x_{0}\right)\right\}_{n=1}^{\infty}$ converges to b_{1};
(iii) $\bar{t}_{a_{1}, b_{1}, c_{1}}^{n}=\bar{t}_{a_{n}, b_{n}, c_{n}}$ for $n \geq 2$ where $a_{n}=\frac{a_{1}^{n+1}}{b_{1}^{n}}, b_{n}=b_{1}, c_{n}=1-\frac{\left(1-c_{1}\right) c_{1} a_{1}^{n}}{b_{1}^{n+1}}$.

Lemma 2.3. Assume that $\hat{t}_{a_{1}, b_{1}, c_{1}} \in \mathcal{M}_{4}$. Then
(i) $\hat{t}_{a_{1}, b_{1}, c_{1}}$ has only one fixed point 0 ;
(ii) for any $x_{0} \in(0,1]$, the sequence $\left\{\hat{t}_{a_{1}, b_{1}, c_{1}}^{n}\left(x_{0}\right)\right\}_{n=1}^{\infty}$ is monotonically decreasing, and converges to zero;
(iii) $\hat{t}_{a_{1}, b_{1}, c_{1}}^{n}=\hat{t}_{a_{n}, b_{n}, c_{n}}$ for $n \geq 2$ where $a_{n}=\frac{a_{1}^{n+1}}{b_{1}^{n}}, b_{n}=b_{1}, c_{n}=c_{1}$.

2.2. Homeomorphic solutions of conjugacy equation

Lemma 2.4. Let f_{1}, g_{1} be respectively the restrictions of $\tilde{t}_{a_{1}, b_{1}}$ and $\tilde{t}_{a_{2}, b_{2}}$ (or $\bar{t}_{a_{1}, b_{1}, c_{1}}$ and $\bar{t}_{a_{2}, b_{2}, c_{2}}$) to the subintervals $\left[0, a_{1}\right]$ and $\left[0, a_{2}\right]$. Then all homeomorphic solutions of conjugacy equation $\varphi_{1} \circ f_{1}=g_{1} \circ \varphi_{1}$ are given by $\varphi_{1}:\left[0, a_{1}\right] \rightarrow\left[0, a_{2}\right]$

$$
\varphi_{1}(x)= \begin{cases}\phi_{0}(x), & x \in\left[f_{1}^{-1}\left(a_{1}\right), a_{1}\right] \tag{2.1}\\ g^{-i} \circ \phi_{0} \circ f^{i}(x), & x \in\left[\left(f^{-i-1}\left(a_{1}\right), f^{-i}\left(a_{1}\right)\right], i=1,2, \ldots\right. \\ 0, & x=0,\end{cases}
$$

where ϕ_{0} is any strictly increasing continuous map from $\left[f_{1}^{-1}\left(a_{1}\right), a_{1}\right]$ onto $\left[g_{1}^{-1}\left(a_{2}\right), a_{2}\right]$.
Proof. Firstly, we prove that any homeomorphic solution of $\varphi_{1} \circ f_{1}=g_{1} \circ \varphi_{1}$ is strictly increasing. Since $f(x)>x, \forall x \in\left(0, a_{1}\right]$, we can see that $f^{-1}(x)<x$. Similarly, $g^{-1}(x)<x$. Suppose that φ is a homeomorphic solution of $\varphi_{1} \circ f_{1}=g_{1} \circ \varphi_{1}$. Assume that $\varphi\left(x_{0}\right)=y_{0}$ for some $x_{0} \in\left[0, a_{1}\right]$ and $y_{0} \in\left[0, b_{1}\right]$. We have $\varphi\left(f^{-1}\left(x_{0}\right)\right)=g^{-1}\left(y_{0}\right)$. Since $f^{-1}\left(x_{0}\right)<x_{0}$ and $g^{-1}\left(y_{0}\right)<x_{0}$, we see that φ is strictly increasing. Consequently, $\varphi\left(a_{1}\right)=b_{1}$ and $\varphi\left(f^{-1}\left(a_{1}\right)\right)=g^{-1}\left(b_{1}\right)$.

Secondly, one can easily check that the function $\varphi_{1}(x)$ in (2.1) is a homeomorphic solution of $\varphi_{1} \circ f_{1}=$ $g_{1} \circ \varphi_{1}$ and every homeomorphic solution can be obtained in this manner.

The analogous statements hold for $\hat{t}_{a_{1}, b_{1}, c_{1}}$.
Lemma 2.5. Let f_{1}, g_{1} be respectively the restrictions of $\hat{t}_{a_{1}, b_{1}, c_{1}}$ and $\hat{t}_{a_{2}, b_{2}, c_{2}}$ to the subintervals $\left[0, a_{1}\right]$ and $\left[0, a_{2}\right]$. Then all homeomorphic solutions of conjugacy equation $\varphi_{1} \circ f_{1}=g_{1} \circ \varphi_{1}$ are given by $\varphi_{1}:\left[0, b_{1}\right] \rightarrow$ $\left[0, b_{2}\right]$

$$
\varphi_{1}(x)= \begin{cases}\phi_{0}(x), & x \in\left[f_{1}\left(b_{1}\right), b_{1}\right] \\ g^{i} \circ \phi_{0} \circ f^{-i}(x), & x \in\left[\left(f^{i+1}\left(b_{1}\right), f^{i}\left(b_{1}\right)\right], i=1,2, \ldots\right. \\ 0, & x=0,\end{cases}
$$

where ϕ_{0} is any strictly increasing continuous map from $\left[f_{1}\left(b_{1}\right), b_{1}\right]$ onto $\left[g_{1}\left(b_{2}\right), b_{2}\right]$.
Lemma 2.6. Let f_{2} and g_{2} be respectively the restrictions of $\tilde{t}_{a_{1}, b_{1}}$ and $\tilde{t}_{a_{2}, b_{2}}$ (or $\bar{t}_{a_{1}, b_{1}, c_{1}}$ and $\bar{t}_{a_{2}, b_{2}, c_{2}}$) to the subintervals $\left[0, b_{1}\right]$ and $\left[0, b_{2}\right]$. Then all homeomorphic solutions of conjugacy equation $\varphi_{2} \circ f_{2}=g_{2} \circ \varphi_{2}$ are given by $\varphi_{2}:\left[0, b_{1}\right] \rightarrow\left[0, b_{2}\right]$

$$
\varphi_{2}(x)= \begin{cases}\varphi_{1}(x), & x \in\left[0, a_{1}\right] \tag{2.2}\\ h_{1}(x), & x \in\left[a_{1}, b_{1}\right]\end{cases}
$$

where φ_{1} is determined by Lemma 2.4 and $h_{1}:\left[a_{1}, b_{1}\right] \rightarrow\left[a_{2}, b_{2}\right]$ is any strictly increasing continuous map.
Proof. Note that both $f_{2}:\left[0, b_{1}\right] \rightarrow\left[0, b_{1}\right]$ and $g_{2}:\left[0, b_{2}\right] \rightarrow\left[0, b_{2}\right]$ are self-maps.
Firstly, we prove by contradiction that any homeomorphic solution of $\varphi_{2} \circ f_{2}=g_{2} \circ \varphi_{2}$ is strictly increasing. Assume that φ is a strictly decreasing homeomorphic solution. Thus there exists a subinterval $\left[x_{0}, 1\right] \subset\left[a_{1}, 1\right]$ such that $\varphi\left(\left[x_{0}, 1\right]\right) \subset\left[0, a_{2}\right]$. For some $x \in\left(x_{0}, 1\right)$, we have $\varphi \circ f_{2}(x)=\varphi\left(b_{1}\right)=0$. However $g_{2} \circ \varphi(x)>0$ due to $\varphi(x)>0$. This contradicts the fact $\varphi \circ f_{2}(x)=g_{2} \circ \varphi(x)$. Therefore φ is a strictly increasing homeomorphism with $\varphi\left(b_{1}\right)=b_{2}$.

Secondly, we prove by contradiction that $\varphi\left(a_{1}\right)=a_{2}$. For any $x \in\left[a_{1}, 1\right]$, we have $g_{2} \circ \varphi(x)=\varphi \circ f_{2}(x)=$ $\varphi\left(b_{1}\right)=b_{2}$. Then $\varphi(x) \in\left[a_{2}, b_{2}\right]$. Assume that $\varphi\left(a_{1}\right)=y_{0}>a_{2}$. Then there exists a point $x_{0}<a_{1}$ such that $\varphi\left(x_{0}\right)=a_{2}$. Thus $\varphi \circ f_{2}\left(x_{0}\right)=g_{2} \circ \varphi\left(x_{0}\right)=g_{2}\left(a_{2}\right)=b_{2}$ while $f_{2}\left(x_{0}\right)<b_{1}$, which contradicts $\varphi\left(b_{1}\right)=b_{2}$.

Finally, one can easily check that $\varphi_{2}(x)$ in (2.2) is a homeomorphic solution of $\varphi_{1} \circ f_{1}=g_{1} \circ \varphi_{1}$ and every homeomorphic solution can be obtained in this manner.

3. Classification of trapezoid maps

According to [7, the proof of Theorem 2.1] (cf. [2]), we have the following result for \mathcal{M}_{1}.
Theorem 3.1. Any two trapezoid maps $t_{a_{1}, b_{1}}$ and $t_{a_{2}, b_{2}}$ in \mathcal{M}_{1} are topologically conjugate. Further, any conjugacy from $t_{a_{1}, b_{1}}$ to $t_{a_{2}, b_{2}}$ is the limit of the functional sequence

$$
\varphi_{n+1}(x)= \begin{cases}g_{1}^{-1} \circ \varphi_{n} \circ f_{1}(x), & x \in\left[1, a_{1}\right) \tag{3.1}\\ h(x), & x \in\left[a_{1}, b_{1}\right] \\ g_{2}^{-1} \circ \varphi_{n} \circ f_{2}(x), & x \in\left(b_{1}, 1\right]\end{cases}
$$

where $g_{1}=\left.t_{a_{2}, b_{2}}\right|_{\left[0, a_{2}\right]}, f_{1}=\left.t_{a_{1}, b_{1}}\right|_{\left[0, a_{1}\right]}, g_{2}=\left.t_{a_{2}, b_{2}}\right|_{\left[b_{2}, 1\right]}, f_{2}=\left.t_{a_{1}, b_{1} \mid}\right|_{\left[b_{1}, 1\right]}$, and h is any order-preserving homeomorphism from $\left[a_{1}, b_{1}\right]$ onto $\left[a_{2}, b_{2}\right]$.

When $a_{2}=b_{2}$, the trapezoid map $t_{a_{2}, b_{2}}$ degenerates to a skew tent map $t_{a_{2}, a_{2}}$. According to [7, Corollary 3.1] (cf. [2]), we have the following result:

Proposition 3.2. Any trapezoid map $t_{a_{1}, b_{1}}$ in \mathcal{M}_{1} is topologically semi-conjugate to a skew tent map $t_{a_{2}, a_{2}}$. Further, there exists a unique semi-conjugacy from $t_{a_{1}, b_{1}}$ to $t_{a_{2}, a_{2}}$, which is given by the limit of the functional sequence

$$
\varphi_{n+1}(x)= \begin{cases}g_{1}^{-1} \circ \varphi_{n} \circ f_{1}(x), & x \in\left[1, a_{1}\right) \tag{3.2}\\ a_{2}, & x \in\left[a_{1}, b_{1}\right] \\ g_{2}^{-1} \circ \varphi_{n} \circ f_{2}(x), & x \in\left(b_{1}, 1\right]\end{cases}
$$

where $g_{1}=\left.t_{a_{2}, a_{2}}\right|_{\left[0, a_{2}\right]}, f_{1}=\left.t_{a_{1}, b_{1}}\right|_{\left[0, a_{1}\right]}, g_{2}=\left.t_{a_{2}, a_{2}}\right|_{\left[a_{2}, 1\right]}, f_{2}=\left.t_{a_{1}, b_{1}}\right|_{\left[b_{1}, 1\right]}$.
Theorem 3.3. Any two trapezoid maps $\tilde{t}_{a_{1}, b_{1}}$ and $\tilde{t}_{a_{2}, b_{2}}$ in \mathcal{M}_{2} are topologically conjugate. Further, all conjugacies are given by

$$
\varphi(x)= \begin{cases}\varphi_{2}(x), & x \in\left[0, b_{1}\right] \tag{3.3}\\ g_{3}^{-1} \circ \varphi_{2} \circ f_{3}(x), & x \in\left(b_{1}, 1\right]\end{cases}
$$

where φ_{2} is determined by Lemma 2.6, $f_{3}=\left.\tilde{t}_{a_{1}, b_{1}}\right|_{\left[b_{1}, 1\right]}$ and $g_{3}=\left.\tilde{t}_{a_{2}, b_{2}}\right|_{\left[b_{2}, 1\right]}$.
Proof. One can immediately check that $\varphi(x)$ given in (3.3) is a homeomorphic solution of $\varphi \circ \tilde{t}_{a_{1}, b_{1}}=\tilde{t}_{a_{2}, b_{2}} \circ \varphi$ and every homeomorphic solution can be obtained in this manner.

Theorem 3.4. Any two trapezoid maps $\bar{t}_{a_{1}, b_{1}, c_{1}}$ and $\bar{t}_{a_{2}, b_{2}, c_{2}}$ in \mathcal{M}_{3} are topologically conjugate. Further, all conjugacies are given by

$$
\varphi(x)= \begin{cases}\varphi_{2}(x), & x \in\left[0, b_{1}\right] \tag{3.4}\\ h_{2}(x), & x \in\left[b_{1}, c_{1}\right] \\ g_{4}^{-1} \circ \varphi_{2} \circ f_{4}(x), & x \in\left[c_{1}, 1\right]\end{cases}
$$

where φ_{2} is determined by Lemma 2.6, $h_{2}:\left[b_{1}, c_{1}\right] \rightarrow\left[b_{2}, c_{2}\right]$ is any strictly increasing continuous map, $f_{4}=\left.\bar{t}_{a_{1}, b_{1}, c_{1}}\right|_{\left[c_{1}, 1\right]}$ and $g_{4}=\left.\bar{t}_{a_{2}, b_{2}, c_{2}}\right|_{\left[c_{2}, 1\right]}$.

Proof. Firstly, suppose φ is a conjugacy from $\bar{t}_{a_{1}, b_{1}, c_{1}}$ to $\bar{t}_{a_{2}, b_{2}, c_{2}}$. Let f_{2} and g_{2} be respectively the restrictions of $\bar{t}_{a_{1}, b_{1}, c_{1}}$ and $\bar{t}_{a_{2}, b_{2}, c_{2}}$ to the subintervals $\left[0, b_{1}\right]$ and $\left[0, b_{2}\right]$. By Lemma 2.6 , the restriction of φ to $\left[0, b_{1}\right]$ is φ_{2}. Consequently, φ is a strictly increasing homeomorphism with $\varphi\left(b_{1}\right)=b_{2}$.

Secondly, we prove by contradiction that $\varphi\left(c_{1}\right)=c_{2}$. For any $x \in\left[b_{1}, c_{1}\right]$, we have $\bar{t}_{a_{2}, b_{2}, c_{2}} \circ \varphi(x)=$ $\varphi \circ \bar{t}_{a_{1}, b_{1}, c_{1}}(x)=\varphi\left(b_{1}\right)=b_{2}$. Then $\varphi(x) \in\left[b_{2}, c_{2}\right]$. Assume that $\varphi\left(c_{1}\right)=y_{0}<c_{2}$. Then there exists a point $x_{0}>c_{1}$ such that $\varphi\left(x_{0}\right)=c_{2}$. Thus $\varphi \circ \bar{t}_{a_{1}, b_{1}, c_{1}}\left(x_{0}\right)=\bar{t}_{a_{2}, b_{2}, c_{2}} \circ \varphi\left(x_{0}\right)=\bar{t}_{a_{2}, b_{2}, c_{2}}\left(c_{2}\right)=b_{2}$ while $\bar{t}_{a_{1}, b_{1}, c_{1}}\left(x_{0}\right)<b_{1}$, which contradicts $\varphi\left(b_{1}\right)=b_{2}$.

Finally, one can immediately check that $\varphi(x)$ in (3.4) is a homeomorphic solution of $\varphi \circ \bar{t}_{a_{1}, b_{1}, c_{1}}=$ $\bar{t}_{a_{2}, b_{2}, c_{2}} \circ \varphi$ and every homeomorphic solution can be obtained in this manner.

With the similar argument as the proof of Theorem 3.4, we have the following result for \mathcal{M}_{4}.
Theorem 3.5. Any two trapezoid maps $\hat{t}_{a_{1}, b_{1}, c_{1}}$ and $\hat{t}_{a_{2}, b_{2}, c_{2}}$ in \mathcal{M}_{4} are topologically conjugate. Further, all conjugacies are given by

$$
\varphi(x)= \begin{cases}\varphi_{1}(x), & x \in\left[0, b_{1}\right] \\ h_{2}(x), & x \in\left[b_{1}, c_{1}\right] \\ g_{3}^{-1} \circ \varphi_{1} \circ f_{3}(x), & x \in\left[c_{1}, 1\right]\end{cases}
$$

where φ_{1} is determined by Lemma [2.5, $h_{2}:\left[b_{1}, c_{1}\right] \rightarrow\left[b_{2}, c_{2}\right]$ is any strictly increasing continuous map, $f_{3}=\left.\hat{t}_{a_{1}, b_{1}, c_{1}}\right|_{\left[c_{1}, 1\right]}$ and $g_{3}=\left.\hat{t}_{a_{2}, b_{2}, c_{2}}\right|_{\left[c_{2}, 1\right]}$.

The following result can be found in [1, Theorem 12.4.2].
Lemma 3.6. If f is topologically conjugate to g via a homeomorphism h, then h maps every periodic of f to a periodic point of g with the same period.
Theorem 3.7. Suppose $f \in \mathcal{M}_{i}$ and $g \in \mathcal{M}_{j}$ for $i \neq j$. Then $f \nsim g$.
Proof. Since any map in \mathcal{M}_{1} has a four-periodic point, according to Lemmas 2.1, 2.2, 2.3 and 3.6, any map in \mathcal{M}_{1} is not topologically conjugate to any map in $\mathcal{M}_{i}, i=2,3,4$.

By Lemmas 2.1, 2.2 and 2.3, any map in \mathcal{M}_{4} has only one fixed point while any map in \mathcal{M}_{2} or \mathcal{M}_{3} has two fixed points. It follows from Lemma 3.6 that any map in \mathcal{M}_{4} is not topologically conjugate to any map in $\mathcal{M}_{i}, i=2,3$.

Suppose $\bar{t}_{a_{1}, b_{1}, c_{1}} \in \mathcal{M}_{3}$ and $\tilde{t}_{a_{2}, b_{2}} \in \mathcal{M}_{2}$. We prove by contradiction that $f \nsim g$. Assume that $f \sim g$ via a homeomorphism φ. It follows from Lemma 2.6 that $\varphi\left(b_{1}\right)=b_{2}$. Let g_{3} be the restrictions of $\tilde{t}_{a_{2}, b_{2}}$ to the subintervals $\left[b_{2}, 1\right]$. For $\forall x \in\left[b_{1}, c_{1}\right]$, we have $\varphi(x) \in\left[b_{2}, 1\right]$ and

$$
\tilde{t}_{a_{2}, b_{2}} \circ \varphi(x)=\varphi \circ \bar{t}_{a_{1}, b_{1}, c_{1}}(x)=\varphi\left(b_{1}\right)=b_{2}
$$

Thus,

$$
\varphi(x)=g_{3}^{-1}\left(b_{2}\right)=\text { constant }, \quad \forall x \in\left[b_{1}, c_{1}\right]
$$

This is a contradiction.
Proposition 3.8. Suppose that $\tilde{t}_{a_{2}, b_{2}} \in \mathcal{M}_{2}$ and $\bar{t}_{a_{1}, b_{1}, c_{1}} \in \mathcal{M}_{3}$. Then $\bar{t}_{a_{1}, b_{1}, c_{1}}$ is topologically semi-conjugate to $\tilde{t}_{a_{2}, b_{2}}$.
Proof. Let f_{4} and g_{3} be respectively the restrictions of $\bar{t}_{a_{1}, b_{1}, c_{1}}$ and $\tilde{t}_{a_{2}, b_{2}}$ to the subintervals $\left[c_{1}, 1\right]$ and $\left[b_{2}, 1\right]$. Define $\varphi:[0,1] \rightarrow[0,1]$ as

$$
\varphi(x)= \begin{cases}\varphi_{2}(x), & x \in\left[0, b_{1}\right] \tag{3.5}\\ b_{2}, & x \in\left[b_{1}, c_{1}\right] \\ g_{3}^{-1} \circ \varphi_{2} \circ f_{4}(x), & x \in\left[c_{1}, 1\right]\end{cases}
$$

where φ_{2} is determined by Lemma 2.6. One can immediately check that $\varphi(x)$ in (3.5) is a continuous, increasing and surjective solution of $\varphi \circ \bar{t}_{a_{1}, b_{1}, c_{1}}=\bar{t}_{a_{2}, b_{2}, c_{2}} \circ \varphi$. Therefore, $\bar{t}_{a_{1}, b_{1}, c_{1}}$ is topologically semiconjugate to $\tilde{t}_{a_{2}, b_{2}}$.

4. Examples

In this section, we end the paper with the following three examples.
Example 4.1. Let $f:=t_{\frac{2}{9}, \frac{7}{9}}$ and $g:=t_{\frac{3}{8}, \frac{5}{8}}$. By Theorem 3.1, choosing $h(x)=\frac{9}{20} x+\frac{11}{40}$. we can obtain a piecewise linear conjuacy from f to g, see Fig. 5.

By Corollary 3.2 , we can obtain the unique semi-conjugacy from the isosceles trapezoid map $t_{\frac{1}{3}, \frac{2}{3}}$ to the tent map $t_{\frac{1}{2}, \frac{1}{2}}$ is just the Cantor function (cf. [7]), see Fig. 66.

Figure 5: $f:=t_{\frac{2}{9}, \frac{7}{9}}$ and $g:=t_{\frac{3}{8}}, \frac{5}{8}$.

Figure 7: A piecewise linear conjuacy.

Figure 6: $f:=t_{\frac{1}{3}, \frac{1}{3}}$ and $g:=t_{\frac{1}{2}, \frac{1}{2}}$.

Figure 8: A piecewise linear semi-conjuacy.

Example 4.2. Let $f:=\tilde{t}_{\frac{1}{6}, \frac{1}{3}}$ and $g:=\tilde{t}_{\frac{1}{4}, \frac{6}{7}}$. By Theorem 3.3. we can obtain a piecewise linear conjuacy from f to g, see Fig. 7 .

Example 4.3. Let $f:=\bar{t}_{\frac{1}{6}, \frac{1}{3}, \frac{1}{2}}$ and $g:=\tilde{t}_{\frac{1}{2}}, \frac{6}{7}$. By Theorem 3.8, we can obtain a piecewise linear semiconjuacy from f to g, see Fig. 8.

Acknowledgements:

The author is partially supported by NNSF of China grant 11301256, by SCED of China grant 13ZB0005, and by The Research and Innovation Team Fund of the Department of Education of Sichuan Province grant 14TD0026.

References

[1] J. Banks, V. Dragan, A. Jones, Chaos: a mathematical introduction, Cambridge University Press, Cambridge, (2003). 3
[2] L. Block, E. M. Coven, Topological conjugacy and transitivity for a class of piecewise monotone maps of the interval, Trans. Amer. Math. Soc., 300 (1987), 297-306.1, 3, 3
[3] K. M. Brucks, M. Misiurewicz, C. Tresser, Monotonicity properties of the family of trapezoidal maps, Comm. Math. Phys., 137 (1991), 1-12.2.1
[4] P. R. Halmos, Lectures on Ergodic Theory, Chelsea Publishing Co., New York, (1960). 1
[5] S. J. Kolodzieski, Delta-pseudo orbit shadowing in a family of trapezoidal maps, Ph.D. Thesis, Stevens Institute of Technology, ProQuest LLC, Ann Arbor, MI, (1991).2.1
[6] J. D. Louck, N. Metropolis, Symbolic dynamics of trapezoidal maps, D. Reidel Publishing Co., Dordrecht, (1986). 2.1
[7] H. Segawa, H. Ishitani, On the existence of a conjugacy between weakly multimodal maps, Tokyo J. Math. 21 (1998), 511-521.1.3. $3,4.1$
[8] B. Schweizer, A. Sklar, Continuous functions that conjugate trapezoid functions, Aequationes Math., 28 (1985), 300-304.1
[9] G. Zhang, Conjugacy and iterative roots of a class of piecewise expanding self-maps (I), (in Chinese), Chin. Ann. Math., 13 (1992), 33-40. 1

[^0]: Email address: scumat@163.com (Yong-Guo Shi)

