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Abstract

We consider the existence and uniqueness of a mild and classical solution to impulsive nonlocal conditions
fractional-order Hadamard-type Cauchy problem. The results are obtained by means of fixed point meth-
ods. Finally, we illustrate our results by an example of fractional-order Hadamard-type Cauchy problem.
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1. Introduction and preliminaries

In recent studies, the theory of fractional differential equations and inclusions has been into the focus of
many of them. This is due to its extensive applications in numerous branches of applied sciences such as,
physics, economics, and engineering sciences [2}, 3] 5 8, 10l 12, [13]. Fractional differential equations and their
applications make it possible to find appropriate models for describing real-world problems which cannot be
described by using classical integral-order differential equations. Some recent contributions to the subject
can be found in [I] and references therein. It has been noticed that most of the work on the topic is based
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on Riemann—Liouville and Caputo-type fractional differential equations. However, there are other kinds
of fractional derivatives that appears side by side with Riemann-Liouville and Caputo derivatives. The
fractional derivative is due to Hadamard who introduced it in 1892 [7], but which differs from the preceding
ones, in the sense that the kernel of the integral (in the definition of the Hadamard derivative) contains a
logarithmic function of arbitrary exponent. The details and properties of the Hadamard fractional derivative
and integral can be found in [4] [6] ©]. In this paper, we study a boundary value problem of Hadamard-type
fractional differential inclusions.

Our aim is to study the existence and uniqueness of the mild and classical solutions to impulsive nonlocal-
conditions fractional Cauchy problem on Hadamard-type fractional differential inclusions. Throughout the
paper we shall use the notation:

Q={(t,s):1<s<t<T},
M = sup{||S(t)], t € [L,T]},
and
X=C([1,T],R).

t 1+e€
D%u(t) + Au(t) = f(t,u(t),u(bi(t)),...,u(b:(1))) +/1 fi(t,s,u(s))ds + . fo(t,s,u(s))ds,  (1.1)

Auly, = Ix(u(ty)), k=1,2,...m.
u(1) + g(u) = uo,

where t € J\ {t1,t2,...,tm} C[1,T] =Jand 1 < t; < -+ < t,n, < T where 0 < o < 1. The operator
—A generates an analytic compact semigroup (S(¢)):>0 of uniformly bounded linear operators on a Banach
space R. D® is a Hadamard-type fractional derivative operator and f : C([I,T| xR"™ ! - R, f; : QxR = R
(1=1,2),9:X—=>R,b;:J—J (i=1,...,r) are function satisfying some assumptions, and uy € R and
Auli—y, = u(t]) — u(ty), where u(t)) and u(t; ), represent the right and left limits of u(t) at t = t;; I
(k=1,2,...,m) are functions to be specified later.

Definition 1.1 ([9]). The Hadamard derivative of fractional order « for a function g : [1,00) — R is defined

b
| - () [ (et) 2

a € (n—1,n), n=[a] + 1, where [a] denotes the integer part of the real number o and log(.) = log,(.).

Definition 1.2 ([9]). The Hadamard fractional integral of order « for a function g : [1,00) — R is defined

I%g(t) = 1“(104) /j (logi)al gi&)ds

for a > 0, provided the integral exists.
Let us recall the generalized Gronwall inequality, which can be found in [11],

Lemma 1.3. Suppose a > 0, a(t) and u(t) are nonnegative function and locally integrable on 1 <t < T and
g(t) is a nonnegative, nondecreasing continuous function defined on 1 <t < T, and g(t) < M (constant). If

moga@y+¢w[¢0%z>alm@if onl1<t<T

o~ [T ()" ("] ds
nzz:l I'(na) <1 gs) ( )] s

then

t
1

mwgaw+/
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Definition 1.4. A function u € C([1,T],R) satisfying the integral equation
u(t) =St —1ug — St —1)g(u)

w59 (1) [Fsu0) 0106, -t o)

1+€ s
+/1 fi(s, T u(r))dr + fQ(S,T,U(T))dT:| %
+ ) St —te) In(ulty), telJ

k=1

is said to be a mild solution to the integrodifferential evolution impulsive nonlocal Cauchy problem (|1.1))
with fractional-order Hadamard-type.

2. Main result

Theorem 2.1. The integrodifferential evolution impulsive nonlocal Cauchy problem (L.1)) has a unique mild
solution w, if the following conditions are satisfied:

(i) f:JxR™ 5 R is a continuous function with respect to the first variable in J, fi : Q@ x R — R
(i = 1,2) are continuous functions with respect to the first and second variables in Q; g : X — R,

and by : J — J (i =1,...,m) are continuous functions on J and there exist positive constants L, L;
(i=1,2) and K such that:

1f(s, 20,215+, 2m) = f(5, 20,215 -, Zm) | < L (Z B —ZH) (2.1)
=0

forseJ, zi,z e R (i=1,2,...,m),

[ fi(s,m,2) = fils, 7, 2)|| < Li ([l = 2[)) (i =1,2) (2.2)
for (s,7) €Q, z,Z € R and
lg(u) —g(@)|| < K [lu—ull, foru,ueX. (2.3)
(ii)
[(mL+ K)I'(a+1)log™*T + L(m + 1) + L1 T + LoT] m <1

(iii) The functions I, : R — R are continuous and there exists a p1 such that ||Ix(z)]| < p1 for all z € R
and k=1,...,m and ug € R.

Proof. Introduce the operator F': X — X by
(Fw)(t) = S(t—l up — S(t —1)g(w)

—|— / S(t — s)(log — )O‘_l [f(s,w(s),w(bl(s)),...,w(bT(s)))

+/1 fl(s,T,w(T))dH/lHe fQ(s,T,wm)dT} & (24)

+ St — te) In(w(ty), teld

k=1
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We have
IFw)®) - () <15~ Dllllow) - o)1
a—1
by [ 5=9 (10g2) " [l wtbulo). . otbn(o))

— f(s,(s),@(b1(8)), ... ,¢ br(s))ﬂ ds
ds

& -
/ o <1°g§)a | [ 1f1(s, 7, w(7)) —fl(s,f,a(T))HdT} =
+/ S(t <logz>a %

+ Z 1S(t = t)l| [[11e(w(ty,) = Tn(@(t))]
k=1

1 [ /+ a5, 7,(7)) — fals, mao(r)] df}

(a—1) m s
< MK~ all + 5o [ (1ogt) [Hw(s)w<s>||+2\|w<bi<s>>w<bi<s>>||]d$
i=1

t
S onl)
B e [

+ MmC||lw — @] oo

ML Dl|w = &|oe [ £\ @b g
SMKHW_CDHoo"‘ (m+ )Hw wH / IOg* as
o) 1 s s

ML T||w — &||so /t N\ ds
log — =
- ') 1 s s

MLyT||lw — & t t\N“td
Ia) 1 s s

ds
l(r) ~ (o)l ar|

ML(m+1)||w — @||co log* T
I'(«) a
ML T|lw— &l log® T MLoT||w — &l|oo log® T
T(a) o ' T'(a)

< MK||lw - @lfoo +

+ MmC||lw — @||0o

M log™T

WHW_WHOO'

< [(mL+ K)o+ 1)log™ T + L(m + 1) + L T + LoT|

Using the assumption, we get
Mlog®T

—— < 1.
Tla+1)

[(mL+ K)T'(a+1)log™*T + L(m + 1) + L1 T + LoT]

This implies that
[(Fw)(t) = (FO)()]] < [lw — @lfoo

O

and hence F' is a contraction on X.

The following theorem gives the conditions for the existence of a unique classical solution for fractional
implicit nonlocal conditions with fractional order Hadamard-type.
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Theorem 2.2. Assume that:

(i) R is a reflexive Banach space and uy € R.

(ii) f:JJxR™ 5 R f;: QxR = R (i = 1,2), are continuous function with respect to the second
variable in J; g : X - R, b; : J = J (i = 1,...,m) are continuous function on J and there exist

positive constants C, C; (i = 1,2) and K such that:
m
1f(s, 20,21, y2m) — f(5,20, 21, 2m)|| < C <|s — 5]+ Z ||z — ZH) (2.5)
i=0

fors,seJ, zi,zze R (i=1,2,...,m),
1fi(s,7,2) = fis, 7, 2)| < Ci(ls = 5[ + |z = 2]) (i=1,2) (2.6)

for (s,7), (s,7) € Q, z,Z € R and
lg(w) = g()|| < K [[u—ullo foru,ue X. (2.7)

(iii) [(mC + K)'(a+1)log T + C(m + 1) + T(C1 + Cs)] % <

(iv) The functions I, : R — R are continuous and there exists a py such that ||Ip(z)|| < p1 for all z € R
andk=1,....,m

Then the integrodifferential evolution impulsive nonlocal Cauchy problem (1.1) has a unique mild solution
u. Moreover, if ug € D(A), g(u) € D(A), and if there is a positive constant k such that

[u(bi(s)) = ubi(s)|| < & llu(s) = u(3)]| fors,sed (i=1,...,m), (2.8)

then u is a unique classical solution to problem (1.1).

Proof. Since all the assumptions of Theorem are satisfied, it is easy to see that the presented problem

possesses a unique mild solution u. Now, we shall show that u is a classical solution to the problem.

Introducing the notation
N = mmae | £ (5, u(5), u(ba(5), . 6 ()

N; = max ||fi(s,m,u(7))|], (i=1,2)
(s,m)er

we my write

u(t+6) —u(t) = (St+0—1uy—St+60—1)g(u)) — (St —1)uy — S(t —1)g(u))

Qe —~

s [ S0 (100 sttt
—|—/Sf1(8,7',u(7'))d7'—|— 1+€f2(877—7u(7_))d7—:| %
s [0 (o) [t uttn)... w6

14€ ds

fa(s, m,u(T)) dT:| —

S

+ /1 fi(s,m,u(r))dr+
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m m

+25<t+9—tkfk ZSt—tka ))
k=1
=S(E—1)(S(0) = I)uo — S(t - 1) (5(9) —1)g(u)

+ L /11+9 S(t+6—s) <1og ¢ 4; 9)“—1 [f(s, u(s), u(bi(s)), ... ,u(br(s)))}

(a)
1+e ds

/ fi(s, T, u(r)) dr+ fa(s, T, u(T)) dT:| —

S

a—1
—I-/ S(t <log ) [f(s—l—H,u(s+9),u(b1(s+9)),...,u(br(s—l—H)))
- f(svu(3)7u(bl(s))7"'>u( 7“(3)))

ds
s

therefore,
[lu(t +0) — u(t)|| < OM||Aug|| + OM||Ag(u)]|

LI [ r22) o)

S

(MC) [ £\t L m o o
+ o) /1 (logs> <19|+Hu(s+9) () + > lulbi(s + 0)) — u(bi( ))”> -

i=1

L (MCyoT) /t oo b “ds
I'(«) 1 &5 s
t a—l1 t a—1
+ (MN,9) / logE ds + (MC6T) / logE ds + Mmp;.
MNa) )i s s I'«) 1 s s

Consequently,
[u(t +0) — u(@)|| < OM|[Auo|| + OM|[Ag(u)|| + Mmp,
(M(N 4+ TNy + TNy)) /1+9 <log t 4 9)‘“‘1 ds
1

I'(«) s s
(MC(1 4 mk)) /t t\ ! ds
+ T'a) 1 log lus +6) = u(s)ll -
L (2MCO+ MCHOT + MN,0 + MC50T) /t oo 1) ds
') 1 s s’

[|u(t +0) — u(t)]] < OM||Auo|| + 0M||Ag(u)|| + Mmp,
T*(M(N + TNy + TNy))
I'(a)

+

ds
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(MC(L+mr) [*(, ds
+ T /1 <Iog s) lu(s +0) — u(s)|| 5

| log" T(2MC + MC/0T + MN:6 + MCy6T)
I'(a) ’

where

1+6 0 a—1
T ::Max{/ (logt+ > @) tG[l,T]}
1 S S

t a—1 s
Jue+0) = ull < .0+ e [ (0w ) fuls+0) = ute) 2

By the generalized Gronwall inequality from [11], it follows that

t e e} a)l” na—1 5
[|u(t + 0) — u(t)]| < Ck(t) +/1 Zw (logi> Ci(s) ds
n=1
Jut+6) ~ (] < )+ 3 = S oty .

1
[u(t 4+ 0) — u(t)|| < Cu(t) + Ce(t)En(CiuT () log™ t),

00 k
where E,, is the Mittag-Leffler function defined by E,(t) = >, ——~ fort € [1,T),0 >0 and t + 6 €
j=o I'(kar + 1)

(1,T]. Hence u is Lipschitz continuous on .J. The Lipschitz continuity of v on J combined with the Lipschitz
continuity of f on J x R™*! and f; (i = 1,2) in J imply that the function

1+4e€

Jot— f(t,ult),u(bi(t)),...,u(b.(t))) +/1 fi(t,s,u(s))ds + : fa(t, s, u(s)) ds

is Lipschitz continuous on J. This property of f, together with assumptions and by Theorem implies
that u is a unique classical solution to the present problem. O
3. Example

In this section we provide an example to illustrate our main result. Consider the following impulsive
nonlocal fractional differential equation

o t o tes 2 s
D) + 355”1401 = et * L 5w ), wreed e
t €[1,2], t;«é%, 0<a<l.
uy = 1)
> 8+ u(y )l
u(1l) + ?% = up(t)
et [u(t)] o5

f(tsu(t), u(b(t)) = fi(t, s, u(s))

9+ €)1+ u@)])’
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e’lu(s)|

fa(t,s,u(s)) = and  I(u) = u(t)

(t+5)2(1+ |u(s)]) 8+ u(t)
We have

Iv@wﬁxmww»—f@m@ymmwnnzgia Iiu_liv
_ e 'u — vl
T 94+ e)(14u)(1+v)
- 9+et|u_v’

1

< TO'U_U|

Therefore, the first condition in Theorem holds with C' = 1—10. We also have

1300, u(5)) — a3, 0(s)) = e —
i Ul
5+ u)(5+)
< %|u—v|.
G u(s) B v(s)
Hfg(t,s,u(s)) - fQ(t,S,U(S))H - (t+ 5)2 1 +u(5) 1 —i—’U(S)
B e’lu — v|
C(t+5)2(1+u)(1+v)
< i\u — 0.

— 25
Hence the second condition in Theorem [2.2 holds with C; = 5z (i = 1,2). Moreover, we have

lo@w) — go)ll = |2 - 2| = Bl L,y
g g C34+u 3+v| (BH+u)(B+wv) ~ 3 ’
and § | 1
U v U —7v
M) = L)l k+u 8+v @+w@+vy—§“ vl
and X
u
1 = < -
el = |—] < 5
Hence the condition (iv) in Theorem holds with p; = %. Let ¢t € [1,2]. We shall check whether the
condition -
[(mC + K)D(a+ 1)(log2)~ + Cm + 1) + 2(C + Cy)] 21082
INa+1)
is satisfied with m = 1 and we can take M = 1. Indeed
M(log2)“
[(mC + K)D(a+1)(log 2)~* + C(m + 1) + 2(C1 + Co)] ngf) <1

44
if and only if I'(w + 1) > ——, which is satisfied for an a € (0,1], such as & = 0.2 or a = 0.8. Then by
Theorem the problem ({1.1]) has a unique solution in [1, 2].
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