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Abstract

Notions of the pedal curves of regular curves are classical topics. T. Nishimura [T. Nishimura, Demonstratio
Math., 43 (2010), 447–459] has done some work associated with the singularities of pedal curves of regular
curves. But if the curve has singular points, we can not define the Frenet frame at these singular points. We
also can not use the Frenet frame to define and study the pedal curve of the original curve. In this paper,
we consider the differential geometry of pedal curves of singular curves in the sphere. We define the pedal
curve of a front and give properties of such pedal curve by using a moving frame along a front. At last, we
give the classification of singularities of the pedal curves of fronts. c©2016 All rights reserved.
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1. Introduction

The notions of pedal curves of regular curves in Euclidean plane or 3-space are classical topics in dif-
ferential geometry. As well known, for a plane curve γ and a given fixed pedal point P , the pedal curve
of γ is the locus of points X so that the line PX is perpendicular to a tangent T to the curve passing
through the point X. In [4], T. Nishimura gives the concept and the classification of the singularities of
pedal curves of regular curves in the unit sphere. Unfortunately, if the curve is not regular at a point, then
we can not define the pedal curve at this point as the classical way. In [2] , T. Fukunaga and M. Takahashi
firstly define frontals (or fronts) in Euclidean plane and Legendrian curves (or Legendrian immersions) in
the unit tangent bundle of R2. The differential geometric properties of the frontal is studied in [3]. The most
important difference between a regular curve and a frontal is that the frontal might exist singular points.
A key tool for studying of the frontal is the so called moving frame defined in the unit tangent bundle. By
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using the moving frame, we can give a new definition of pedal curve of the front. We remark that this new
definition on the pedal curve is consistent with the classical one when the curve is a regular curve.

On the other hand, singularity theory, which is a direct descendant of differential calculus has a great
deal of interest to speak about geometry, equation, physics, astronomy and other disciplines. In general,
the current theory always does not allow for singularities, however, it is unavoidable in some real life
circumstances. Thus, we apparently need to understand the ontology of singularities if we want to research
the nature of space and time in the actual universe. For this reason, it has been studied extensively by both
physicists and geometers. There are several articles concerning singularities of pedal curves [4, 5]. In those
papers, all the pedal curves are produced by regular curves. However, to the best of the authors knowledge,
no literature exists regarding the singularities of pedal curves of fronts in the sphere. Thus the current
study hopes to serve such a need and it is inspired by the work T. Nishimura [4] and M. Takahashi [6]. In
this paper, we introduce the notions of frontals (or fronts), Legendre curves (or Legendre immersions) and
the pedal curves of fronts in the sphere etc. The main result of this paper is Theorem 3.3 which gives the
classification of singularities of pedal curves of fronts in S2.

The rest of this paper is organized as follows. Firstly, we introduce the moving frame of Legendre curves
(frontals) in S2 that will be useful to the study of pedal curves of fronts in S2. Then, we give the definition
of pedal curves of fronts in S2. We remark that this new definition on the pedal curve is consistent with the
classical one when the curve is a regular curve and give the classification of singularities of pedal curves of
fronts in S2. Finally, we also give an example of pedal curve of front.

2. The frontals in the sphere

In this section, we consider the differential geometry of smooth curves in Euclidean 2-sphere. If the
curve has singular points, we can not define the orthonormal Frenet frame at these singular points. We
also can not use the Frenet-Serret type formula to study the properties of the original curve. In order to
overcome this difficulty, we take advantage of the way developed by T. Fukunaga and M. Takahashi in [2]
instead of the classical way. We give the detailed descriptions about this way as follows. For more detailed
descriptions see [6].

We consider the differential geometry of curves in Euclidean 2-sphere. Let γ : I → S2 be a smooth
curve. We say that γ is a frontal in S2, if there exists a smooth mapping ν : I → S2 such that the pair
(γ, ν) : I → ∆ ⊂ S2 × S2 satisfies (γ(t), ν(t))∗θ = 0 for all t ∈ I. Here

∆ = {(v,w) ∈ S2 × S2 | 〈v,w〉 = 0}

is a 3-dimensional manifold and θ is a canonical contact 1-form on ∆. The condition

(γ(t), ν(t))∗θ = 0

is equivalent to

〈γ̇(t), ν(t)〉 = 0 for all t ∈ I,

and we call (γ, ν) : I → ∆ the Legendre curve. We consider the canonical contact structure on the unit
spherical bundle T1S

2 = S2×S2 over S2. If (γ, ν) is a Legendre curve, then (γ, ν) is an integral curve with
respect to the contact structure [1]. Moreover, if (γ, ν) : I → ∆ is an immersion, namely, (γ̇(t), ν̇(t)) 6= 0
and (γ(t), ν(t))∗θ = 0 for each t ∈ I. Then we call γ the front in S2 and (γ, ν) : I → ∆ the Legendre
immersion.

Let (γ, ν) : I → ∆ be a Legendre curve. If γ is singular at a point t0 in S2, then we can not define
the Frenet-Serret formula at this point. By the definition of the Legendre curve, however, the ν is always
well defined even if at a singular point of γ. Let µ(t) = γ ∧ ν(t). Then µ(t) ∈ S2, γ(t) · µ(t) = 0 and
ν(t) · µ(t) = 0. We have a moving frame {γ(t), ν(t),µ(t)} which is called the Legendre Frenet frame along
γ(t). By the standard arguments, we have the following Legendre Frenet-Serret type formula [6] :
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ν ′(t)
µ′(t)

 =

 0 0 m(t)
0 0 n(t)

−m(t) −n(t) 0

 γ(t)
ν(t)
µ(t)

 , (2.1)

where m(t) = 〈γ̇(t),µ(t)〉 and n(t) = 〈ν̇(t),µ(t)〉. We call the pair (m,n) the Legendre curvature of Legendre
curve (γ, ν) : I → ∆ ⊂ S2 × S2. We remark that if (γ, ν) : I → ∆ ⊂ S2 × S2 is a Legendre curve (Legendre
immersion) with the Legendre curvature (−m,n), then (γ,−ν) is a Legendre curve (Legendre immersion).
Also (−γ, ν) is a Legendre curve (Legendre immersion) with the Legendre curvature (m,−n). Moreover
(ν,γ) is a Legendre curve (Legendre immersion) with the Legendre curvature (−n,−m).

Let I and Ĩ be intervals. A smooth function u : Ĩ → I is a (positive) change of parameter when u is
surjective and has a positive derivative at every point. It follows that u is a diffeomorphism.

Let (γ, ν) : I → ∆ ⊂ S2 × S2 and (γ̃, ν̃) : I → ∆ ⊂ S2 × S2 be Legendre curves whose curvatures are
(m,n) and (m̃, ñ) respectively. Suppose that (γ, ν) and (γ̃, ν̃) are parametrically equivalent via the change
of parameter t : Ĩ → I, that is, (γ̃(u), ν̃(u)) = (γ(t(u)), ν(t(u))) for all u ∈ Ĩ. By differentiation, we have

m̃(u) = m(t(u))ṫ(u), ñ(u) = n(t(u))ṫ(u). (2.2)

Hence the curvature is dependent on the parametrization.

3. The pedal curves of fronts in the sphere

In this section, We first recall the concepts of pedal curves of regular curves in the sphere [4]. Let P be
a point in S2 − {±n(t) | t ∈ I}, the pedal curve Peγ,P : I → S2 of a regular curve γ : I → S2 is given by

Peγ,P (t) =
1√

1− (P · n(t))2
(P − (P · n(t))n(t)), (3.1)

where, n(t) is unit normal vector of the regular curve γ.
We assume that (γ, ν) : I → ∆ ⊂ S2 × S2 is a Legendre immersion, that is, (m(t), n(t)) 6= (0, 0) for all

t ∈ I. We define a pedal curve of the front and give properties of the pedal curve in the sphere.

Definition 1. Let P be any point in S2 − {±ν(t) | t ∈ I}, we define a pedal curve Peγ,P : I → S2 of the
front γ by

Peγ,P (t) =
1√

1− (P · ν(t))2
(P − (P · ν(t))ν(t)). (3.2)

Proposition 2. Let γ : I → S2 be a regular curve and P be any point in S2 − {±ν(t) | t ∈ I}. Then the
pedal curve of the regular curve and the pedal curve of the front are coincide.

Proof. Let γ : I → S2 be a regular curve and P be any point in S2 − {±ν(t) | t ∈ I}. Without loss of
generality, if we take ν(t) = n(t), then (γ,n) is a Legendre immersion, and by the definition of pedal curve
of the regular curve (3.1), we have

Peγ,P (t) =
1√

1− (P · n(t))2
(P − (P · n(t))n(t))

=
1√

1− (P · ν(t))2
(P − (P · ν(t))ν(t)) = Peγ,P (t).

Proposition 3. Suppose that (γ, ν) : I → ∆ ⊂ S2 × S2 is a Legendre immersion with Legendre curvature
(m,n) and P be any point in S2 − {±ν(t) | t ∈ I}. Then the pedal curve Peγ,P of γ is independent of the
parametrization of (γ, ν).
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Proof. Let (γ, ν) : I → ∆ ⊂ S2 × S2 and (γ̃, ν̃) : Ĩ → ∆ ⊂ S2 × S2 be parametrically equivalent via the
change of parameter t : Ĩ → I. By the assumption, we have (γ̃(u), ν̃(u)) = (γ(t(u)), ν(t(u))), then we have

Peγ̃,P (u) =
1√

1− (P · ν̃(u))2
(P − (P · ν̃(u))ν̃(u))

=
1√

1− (P · ν(t(u)))2
(P − (P · ν(t(u)))ν(t(u))) = Peγ,P (t(u)).

Lemma 3.1. Let (γ, ν) : I → ∆ ⊂ S2 × S2 be a Legendre immersion with Legendre curvature (m,n) and
P be any point in S2 − {±ν(t) | t ∈ I}. Peγ,P is the pedal curve of γ, then P ′eγ,P (t) = 0 if and only if
n(t) = 0 or P = γ(t).

Proof. By differentiating Peγ,P and using (2.2), we have the following:

P ′eγ,P (t) =n(t)
(P · ν(t))(P · µ(t))

(1− (P · ν(t))2)
3
2

((P · γ(t))γ(t) + (P · µ(t))µ(t)))

− n(t)
1

(1− (P · ν(t))2)
1
2

((P · µ(t))ν(t)− (P · ν(t))µ(t)) .

Since {γ(t), ν(t),µ(t)} is an orthogonal frame, we see that P ′eγ,P (t) = 0 if and only if n(t) = 0 or
P = γ(t).

Let P be a point of S2 − {±ν(t) | t ∈ I}. We consider the following C∞ map :

ψp : S2 − {±P} → S2,

ψP (x) =
1√

1− (P · x)2
(P − (P · x)x).

We see that the image ψP (S2−{±P}) is inside the open hemisphere centered at P . Let this open hemisphere,
the set π(S2−{±P}) be denoted by XP ,BP respectively, where π : S2 → P 2(R) is the canonical projection.
Note that XP is C∞ diffeomorphic to the 2-dimensional open disc {(x, y) | x2 + y2 < 1} and BP is C∞

diffeomorphic to the open Möbius band. Since ψP (x) = ψP (−x), ψP induces the map ψ̃P : BP → XP .
Then, Peγ,P (t) is factored into three maps in the following way:

Peγ,P (t) = ψ̃P ◦ π ◦ ν(t).

We let B be the set

{(x1, x2)× [ξ1 : ξ2] ∈ R2 × P 1(R) | x1ξ2 = x2ξ1}

and let p : B → R2 be the blow up of R2 centered at the origin, then we have,

Lemma 3.2. Let P be a point of S2−{±ν(t) | t ∈ I}. Then, there exist C∞ diffeomorphisms hs : BP → B
and ht : XP → R2 such that the equality ht ◦ ψ̃p ≡ p ◦ hs is satisfied.

Proof. It is reasonable to call ψ̃p a map of blow up type. First, by a suitable rotation of S2 if necessary, we
may assume that P = (0, 0, 1). We put

U1 = {(x1, x2)× [ξ1 : ξ2] ∈ R2 × P 1(R) | x1ξ2 = x2ξ1, ξ1 6= 0},
U2 = {(x1, x2)× [ξ1 : ξ2] ∈ R2 × P 1(R) | x1ξ2 = x2ξ1, ξ2 6= 0}

and

Up,1 = {π(x1, x2, x3) | x1 6= 0},
Up,2 = {π(x1, x2, x3) | x2 6= 0}.

Furthermore, we put
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ϕ1 : U1 → R2, (x1, x2)× [ξ1 : ξ2] 7→ (u1, u2) =

(
x1,

ξ2
ξ1

)
,

ϕ2 : U2 → R2, (x1, x2)× [ξ1 : ξ2] 7→ (u′1, u
′
2) =

(
ξ1
ξ2
, x2

)
and

ϕP,1(π(x1, x2, x3)) =

(
− tan(λ)x1,

x2
x1

)
,

ϕP,2(π(x1, x2, x3)) =

(
x1
x2
,− tan(λ)x2

)
,

where λ = sin−1(x3) (−π
2 < λ < π

2 ). Then, the following equality holds

ϕP,2 ◦ ϕ−1P,1 ≡ ϕ2 ◦ ϕ−11 ,

where {(U1, ϕ1), (U2, ϕ2)} is the standard atlas for the blowing up P : B→ R2. Thus, the set

{(UP,1, ϕP,1), (UP,2, ϕP,2)}

can be an atlas for π(S2 − {P}).
Next, we express our map ψ̃P by using Euclidean coordinates (u1, u2). Since we have assumed

P = (0, 0, 1), for x = (x1, x2, sin(λ)) we have

1√
1− (P · x)2

(P − (P · x)x) = (− tan(λ)x1,− tan(λ)x2, cos(λ))

and therefore

q ◦ ψ̃P ◦ ϕ−1P,1(u1, u2) = (u1, u1u2),

q ◦ ψ̃P ◦ ϕ−1P,2(u
′
1, u
′
2) = (u′1u

′
2, u
′
2),

where q : R2 × R→ R2 is the canonical projection.
Since this expression is completely the same as that of the blow up by using the standard coordinate

system (U1, ϕ1), (U2, ϕ2) and the restriction q|XP
: XP → q(Xp) is a C∞ diffeomorphism, we see that

Lemma 3.2 is proved for ψ̃P |UP,1
, ψ̃P |UP,2

and P |U1, P |U2 . Thus, in order to finish the proof of Lemma 3.2
it suffices to show that the equality

ϕ−11 ◦ ϕP,1(π(x1, x2, x3)) = ϕ−12 ◦ ϕP,2(π(x1, x2, x3))

holds for any π(x1, x2, x3) ∈ UP,1∩UP,2. This holds since we have already checked that the patching relations
for our {(UP,i, ϕP,i)}1≤i≤2 are completely the same as for the standard atlas of B.

Then we give our main result.

Theorem 3.3. Let (γ, ν) : I → ∆ ⊂ S2×S2 be a Legendre immersion with Legendre curvature (m,n), and
P be a point of S2 − {±ν(t0)}. Then the followings hold.

(1) If P ∈ S2−{±ν(t0)}− {±γ(t0)}, then the map-germ Peγ,P : (I, t0)→ (S2,Peγ,P (t0)) is smooth, that
is to say, it is C∞ right-left equivalent to the map-germ (R, 0)→ (R2, 0) given by σ 7→ (σ, 0).

(2) If P ∈ {±γ(t0)}, then the map-germ Peγ,P : (I, t0) → (S2,Peγ,P (t0)) is C∞ right-left equivalent to
the map-germ (R, 0)→ (R2, 0) given by σ 7→ (σ2, σ3).
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Proof. Since
{
S2 − {±ν(t0)} − {±γ(t0)}, {±γ(t0)}

}
gives a stratification of S2 − {±ν(t0)}, “if parts” of

Theorem 3.3 follows from “only if parts” of 1, 2 of Theorem 3.3. Thus, we show only ”only if parts” in the
following.

[Proof of “only if part” of 1] By Lemma 3.2, P ′eγ,P (t0) 6= 0 in this case. Thus, the map-germ Peγ,P (t0)
is non-singular.

[Proof of “only if part” of 2] By a suitable rotation of S2 if necessary we may assume that P = (0, 0, 1) ∈
R3. Then, since P ∈ {±γ(t0)}, therefore, by Lemma 3.2 let ε1 be the set of all C∞ function-germs with
one variable (R, 0)→ R, m1 be its subset consisting of all function-germs with zero constant terms. Then,
m2

1ε1 is a finitely generated ε1-module. We put f(t) = t2 and apply the Malgrange preparation theorem (for
instance, see [7]) to m2

1ε1 and f . Then we see that for any function-germ g ∈ m2
1ε1 there exists a certain

C∞ function-germ ψ such that

g(t) = ψ(t2, t3).

Thus, for our map-germ Peγ,P (t) : (I, t0) → (S2,Peγ,P (t0)) there exists a germ of C∞ diffeomorphism
ht : (S2,Peγ,P (t0))→ (R2, 0) such that

ht ◦ Peγ,P (t) =
(
(t− t0)2, (t− t0)3

)
.

4. Examples

In this section, we give an example of the pedal curve of front.

Example 4.1. Let γ : I → S2 be a curve,

γ(t) =

(
3

4
cos(t)− 1

4
cos(3t),

3

4
sin(t)− 1

4
sin(3t),

√
3

2
cos(t)

)
.

We get

γ̇(t) =

(
−3

4
sin(t) +

3

4
sin(3t),

3

4
cos(t)− 3

4
cos(3t),−

√
3

2
sin(t)

)
.

So γ is singular at t = 0. Take

ν(t) =

(
3

4
sin(t) +

1

4
sin(3t),−3

4
cos(t)− 1

4
cos(3t),−

√
3

2
sin(t)

)
.

We have 〈γ(t), ν(t)〉 = 0 and 〈γ̇(t), ν(t)〉 = 0. Hence (γ, ν) is a Legendre curve.

If P =
(
3
√
3

8 , 18 ,
3
4

)
, then P = γ

(
π
6

)
∈ γ(t). Thus,

Peγ,P =

(
X

K
,
Y

K
,
Z

K

)
,

where

X =
3
√

3

8
+

(
3

32

√
3 sin(t)− 3

32

√
3 sin(3t) +

3

32
cos(t) +

1

32
cos(3t)

)(
3

4
sin(t) +

1

4
sin(3t)

)
,

Y =
1

8
+

(
−3

4
cos(t)− 1

4
cos(3t)

)
,
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Z =
3

4
−
√

3 sin(t)

(
3

64

√
3 sin(t)− 3

64

√
3 sin(3t) +

3

64
cos(t) +

1

64
cos(3t)

)
,

K =

√
1−

(
− 3

32

√
3 sin(t) +

3

32

√
3 sin(3t)− 3

32
cos(t)− 1

32
cos(3t)

)2

.

According to the Theorem 3.3, we have the map-germ Peγ,P : (I, π6 ) → (S2,Peγ,P (π6 )) is C∞ right-left
equivalent to the map-germ (R, 0)→ (R2, 0) given by σ 7→ (σ2, σ3). See Figure 1.

Figure 1: The green curve is the front γ, the red curve is its pedal curve. The point P is the ordinary cusp of the pedal curve.
The point A is the ordinary cusp of the front γ. B is the point of the pedal curve corresponding to the point A.

If P =
(√

2
2 ,
√
2
2 , 0

)
, then P /∈ γ(t). Thus

Peγ,P =

(
X1

K1
,
Y1
K1

,
Z1

K1

)
,

where

X1 =

√
2

2
+

(
−3
√

2

8
sin(t)−

√
2

8
sin(3t) +

3
√

2

8
cos(t) +

√
2

8
cos(3t)

)(
3

4
sin(t) +

1

4
sin(3t)

)
,

Y1 =

√
2

2
+

(
−3
√

2

8
sin(t)−

√
2

8
sin(3t) +

3
√

2

8
cos(t) +

√
2

8
cos(3t)

)(
−3

4
cos(t)− 1

4
cos(3t)

)
,

Z1 = −
√

3 sin(t)

2

(
−3
√

2

8
sin(t)−

√
2

8
sin(3t) +

3
√

2

8
cos(t) +

√
2

8
cos(3t)

)
,

K1 =

√√√√1−

(
3
√

2

8
sin(t) +

√
2

8
sin(3t)− 3

√
2

8
cos(t)−

√
2

8
cos(3t)

)2

.

According to the Theorem 3.3 and denote t0 = P−1eγ,P (P ), we have the map-germ Peγ,P : (I, t0) →

(S2,Peγ,P (t0)) is C∞ right-left equivalent to the map-germ (R, 0)→ (R2, 0) given by σ 7→ (σ, 0). See Figure
2.
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Figure 2: The green curve is the front γ, the red curve is its pedal curve. P is the Point of the pedal curve. The point A is the
ordinary cusp of the front γ. B is the point of the pedal curve corresponding to the point A.

If P = (
√
1
2 , 0,

√
3
2 ) , then P = γ(0) ∈ γ(t), and P is a singular point of γ. Thus

Peγ,P = (X2, Y2, Z2) ,

where

X2 =
1
2 +

(
3
8 sin(t)− 1

8 sin(3t)
) (

3
4 sin(t) + 1

4 sin(3t)
)√

1−
(
3
8 sin(t) + 1

8 sin(3t)
)2 ,

Y2 =

(
3
8 sin(t)− 1

8 sin(3t)
) (
−3

4 cos(t)− 1
4 cos(3t)

)√
1−

(
3
8 sin(t) + 1

8 sin(3t)
)2 ,

Z2 =

√
3
2 −

√
3
2 sin(t)

(
3
8 sin(t)− 1

8 sin(3t)
)√

1−
(
3
8 sin(t) + 1

8 sin(3t)
)2 .

According to the Theorem 3.3, we have the map-germ Peγ,P : (I, 0) → (S2,Peγ,P (0)) is C∞ right-left
equivalent to the map-germ (R, 0)→ (R2, 0) given by σ 7→ (σ2, σ3). See Figure 3.

Figure 3: The green curve is the front γ, the red curve is its pedal curve. The point P is the ordinary cusp of the front γ and
its pedal curve.
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