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Abstract

In this paper, we study the Bernoulli polynomials of the second kind with umbral calculus viewpoint and
derive various identities involving those polynomials by using umbral calculus. (©2016 All rights reserved.
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1. Introduction and preliminaries

As is well known, the ordinary Bernoulli polynomials are defined by the generating function to be

et =Y Bu(a) by, (see [2 00, 15 7). (11)
n=0 )

When z = 0, B, = B, (0) are called the Bernoulli numbers. The Bernoulli polynomials of the second kind
are given by the generating function to be

t - > tn
m(1+t) —;bn(ﬂc)n!, (see [19} 21} 22]) . (1.2)
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When z = 0, b, = b, (0) are called the Bernoulli numbers of the second kind.
The first few Bernoulli numbers b,, of the second kind are

By , we easily get .
bu(a) =S <7> b (x), (1.3)

where (z), =z (z—1)---(x —n+1), (n >0), and
bu(x) = B (z+1), (see 21, 22]), (1.4)

where BT({X) (x) are the Bernoulli polynomials of order a.
The stirling number of the second kind is given by

2" =Sy (n,0)(x),, (n>=0). (1.5)
=0
The Stirling number of the first kind is defined by
1=0

Let C be the complex number field and let F be the set of all formal power series in the variable t:

F = {f(t)zzakk!

k=0

ag € (C} . (1.7)

Let us assume that IP is the algebra of polynomials in the variable x over C and P* is the vector space of all
linear functionals on P. (L|p(z)) denotes the action of the linear functional L on a polynomial p (x). For
f(t) € F, we define the continuous linear functional f (¢) on P by

(F(®)|z") = an, (n=0), (see[21]). (1.8)
Thus, by and , we get
<tk’ x”> =nlok, (n,k>0), (see[1H22]), (1.9)

where 6y, ;; is the Kronecker’s symbol.

o0 k
For f(t) = 3 204k we have (f (£)[a") = (L]a"), (n > 0). Thus, we see that f () = L. The
k=0
map L — fr, (t) is a vector space isomorphism from P* onto F. Henceforth, F is thought of as both a formal
power series and a linear functional. We call F the umbral algebra. The umbral calculus is the study of
umbral algebra. The order o (f (t)) of the non-zero power series f (t) is the smallest integer k& for which
the coefficient of t* does not vanish (see [8, 21]). If o (f (t)) = 1, then f () is called a delta series and if

o(f(t)) =0, then f(t) is called an invertible series. For f (t),g(t) € F with o(f (t)) =1 and o(g(¢)) =0,
k

there exists a unique sequence s, (z) of polynomials such that <g () f ()" sn(x)) =nld,x, where n,k > 0.
The sequence s, (x) is called the Sheffer sequence for (g (¢), f (¢)) which is denoted by s, () ~ (g (t), f (t)).
For p(z) € P, we have {e¥|p(z)) = p(y) and e¥'p(z) = p(z +y). Let f(t) € F and p(z) € P. Then we
see that . K
= {f (@) ]z > {(tF] p (x)
ry= 3 LOF D gy -5 40120 (1.10)
k=0 ’

k!
k=0

Thus, by (1.10]), we get



m!
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P 0) = (*|p(@),  (11p® (@) =p® (0). (111)
From , we have .
Pp(e) =¥ @) = Tk z0).
For s, (z) ~ (g (t), f (t)), we have
ds n /n
n si(xr), (n>1), (1.12)
-2 (1) Gl
where f (t) is the compositional inverse of f (t) with f (f (¢)) = f (f (¢)) =t,
g(fl(t)) = () = i S () %, for all z € C, (1.13)
P8 @) =5 @) (021 s+ =3 (1)s @) (1.14)
=0 ™
where p, () = g (t) sn (2),
(f ®)]zp (2)) = (0uf ()| p (x)) (1.15)
and
= x—g/(t) L5 x n see
Sny1 (x) = ( g(t)> 0 n(@), (n>0), ( [1, 13, 16l 21]) . (1.16)
Assume that p,(z) ~ (1, f(¢)) and gn(z) ~ (1,g(t)). Then the transfer formula is given by
an(x) =z (ﬁg) tpa(x) (n>1). (1.17)
For s, () ~ (g (t), f(t)), rn () ~ (h(t),l(t)), we have
=Y Comrm (), (n>0), (1.18)
m=0
where B
Coom = — < nIW) G F o)™ xm> . (see [12,21]) . (1.19)

g (f @)

In this paper, we study the Bernoulli polynomials of the second kind with umbral calculus viewpoint and

derive various identities involving those polynomials by using umbral calculus.

2. Bernoulli polynomials of the second kind

For a € N, the Bernoulli polynomials of the second kind with order a are defined by

<log(1t—|—t)>a 1+1)" Zb

(2.1)

Note that b, (x) = bV (x). When z =0, bl =l (0) are called the Bernoulli numbers of the second kind

with order . Indeed, we note that
b (z) = BP=o) (2 4 1),

Let us consider the following two sheffer sequences :
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log (1+¢)\“
gn () ~ <1, <Og(t+)> (¢ 1))
and
(z), ~ (1€ —1).
Thus, by (1.17)), we get
t an
—r(——— 1
v (log(l —l—t)) @ =Dy
=2 (x-1), (n>1)
That is,
5Ubn_1) (- 1) ~ (1’ ( og(t-i- )> ( t_l))
From and ( , we have
t ¢
by, () ~ <et—1’€ —1) (2.2)
By (2.2), we get
t
— by (z) ~ (1,e" =1), (x), ~ (1€ —1) (2.3)
Thus, we see that
et —1 el —1 &
b ) = S (e = = D81 () (24)
" S (n,1)
ot b4
= (=12 I+1 "
=0
" Sy (n,l
_ Z 1(n, ((:n—l— 1) z+1)
[+
1=0
When z = 0, we have
b "L S (n,1)
pre I+1
By , we get
n—1
= " log (1+41)| > b () (2.5)

d:c

Therefore, by ([2.5)), we obtain the following lemma.
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Lemma 1. Forn > 1, we have
n—1
d n! n—[-1
—by, = — (-1 b .
From (1.9)), we have
b () = LA FE v o (2.6)
n W=\ \og (1 +9) '
t = tm
< <log(1 + t)) ’ W;)(y)m ml” >
g n l n—m
=3 0 (o) (ogriem) 1)
- n
m=0
Therefore, by (12.6]), we obtain the following proposition.
Proposition 2. Forn >0, we have
" /n
bn - bn—m
©= 3 (1) onm @
=3 () (o)
= m) \im
By , we get
b (@) = — (@), =3 S ) () (27)
" log (1+1t) n_lzo P log (14 1) '
n l b
= Z S1 (n,1) Z Em‘tm:nl
=0 m=0
n l I
=> S8 (n,1) ( )bmwlm
m
=0 m=0
n l l
:=§j§jsam¢><m)mww
=0 m=0
By , we get
" /n
bt =3 (1)@ ) 2.3

Let
P, = {p(x) € C[t]|degp(x) <n}, (n>0).

Then it is an (n + 1)-dimensional vector space over C. Now, we consider the polynomial p (z) in P, which

is given by

p(x) = Z Crnbm () .
m=0
Thus, by (2.9)), we get

(2.9)
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t m
<et—1(€ —1) ' > ZC’I< (e =1) bl(:r)> (2.10)
= Z Cil!d = mlCpy,.
=0
From (2.10), we have
1 t t m
Therefore, by (2.11), we obtain the following theorem.
Theorem 3. Let p(x) € P, with
= Conbpy (2)
m=0
Then, we have
1 t . m
com ) )
For example, let us take p (z) = By, (x) € P,,. Then, we have
n
=3 Cob ) (212)
m=0
where
_ t t m
Cm_m!<<et—1> (e"—1) ‘Bn(az)> (2.13)
" n t
S () ((55) )
l=m
- n\ o n—1 t
_ - k
-2t (1) 2 pen () () 1)
l=m k=0
n n—lI n n—1
=> > S (l,m) Byi— 4Bk
l k
I=m k=0
Therefore, by (2.12]) and (2.13)), we obtain the following theorem.
Theorem 4. Forn >0, we have
n n-—l
I=m k=0
Remark. From , for m > 1, we have
1 t t m
Cn = -1 - (" =1)"| By (2) (2.14)

1
- 1‘ (¢ =1)"""|tBu (@)
)

m!
= % < (e'—1 mfl‘ B, (x)>
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n—1
n 1
= — _ | _ _
- (m 1).l:m§ _ng(l,m 1) I <t‘Bn 1 )>
n 2 n—1

Therefore, by (2.12) and (2.14]), we get

By (z) = zn: {:1 nzl Sy (I,m — 1) (" | 1>Bn11} b () + :0 <Z>BnkBk.

m=1

The classical polylogarithm function is given by
o0 :L‘n
Li = — keZ . 2.1
lk(x) nz_:lnk’ ( S 7$>0) ( 5)

The poly-Bernoulli polynomials are defined by the generating function to be

Lig (L=€¢') o S~ po o 1
et = ZOBn () - (2.16)
Thus, by (2.16]), we see that
t_1
B® (z)~ [ ST ). 2.17
O~ (e (2.17)

Let us take p (z) = B (x) € Py,. Then we have

BP (x) = Y Conbm (2), (2.18)
m=0
where
Cn = — < s [ =) ‘Bff) (Jf)> (2.19)

- ZH:SQ (1,m) <7> nz:l <nj_ Z>B7(Lk—)Z—j < o t_ 1

)

i=0
- zzn;njz:; ( ) ( ) 2 (Lm) B,Y,_B;.

where BY) = B (0) are the poly-Bernoulli numbers. Therefore, by (2.18) and (2.19), we obtain the
following theorem.

Theorem 5. For n > 0, we have

B® ( Z ii()( > 2 (Lm) B By 8 b (2).

m=0 | I=m j=0

Let us consider p (z) = 2™ € P,,. Then, we have
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2" =Y Cobm (x) (2.20)
m=0
where
1 3 t m| n
C’”_m!<<et—1>(e_1) x> (2.21)
. n 13 n—I
_lZSQ(l,m) <l>< —|* >
= Z SQ I,m " n—
l
l=m
Thus, by (2.20]) and (2.21)), we get
{ZSQ 1,m) ( )B }bm(a:). (2.22)
m=0
Let us consider the following two Sheffer sequences :
t t
by (x) ~ EEE -1, (2.23)
and P
B*) €~
n (@) <Lik(1—e )’
Then, by (|1.17)) and , we get
B(k Z Crmb , (2.24)
where
1 Li; (1 — et t m
Coum = < b (1= ™) ) (et —1) x”> (2.25)

n n—l

_ZZ< >< l>52(z ) Byt BY.

l=m j7=0

Therefore, by (2.24]) and (2.25)), we obtain the following theorem.

Theorem 6. Forn > 0, we have

n n—lI

B® ( Z ZZ( )( )52(1 m) By_1—;BY b b (2).

= l=m 7=0

Let us consider the following Sheffer sequences:
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Then we have

where

)

where bg

by () ~ <ett_1,et - 1) , (2.26)
By (z) ~ (e t_l,t>.
bn (:E) = Z Cn,mBm (x) > (2.27)
m=0
1 t t .
Chm = < o (171 log (1 +1) (log (1 +1t)" |z > (2.28)

ORI

are di-Bernoulli numbers of the second kind.

Therefore, by (2.27) and (2.28]), we get

ba@)=> (Y <7> S1(t,m) b, | By, (x) . (2.29)
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