Bernoulli polynomials of the second kind and their identities arising from umbral calculus

Taekyun Kim ${ }^{\text {a,b }}$, Dae San Kim ${ }^{\text {c,*, }}$, Dmitry V. Dolgy ${ }^{\text {d }}$, Jong-Jin Seo ${ }^{\text {e }}$
${ }^{2}$ Department of Mathematics, College of Science, Tianjin Polytechnic University, Tianjin City, 300387, China.
${ }^{b}$ Department of Mathematics, Kwangwoon University, Seoul 139-701, S. Korea.
${ }^{\text {c D Department of Mathematics, Sogang University, Seoul 121-742, Republic of Korea. }}$
${ }^{d}$ School of Natural Sciences, Far Eastern Federal University, 690950 Vladivostok, Russia.
${ }^{e}$ Department of Applied Mathematics, Pukyong National University, Pusan 608-739, S. Korea.

Communicated by S.-H. Rim

Abstract

In this paper, we study the Bernoulli polynomials of the second kind with umbral calculus viewpoint and derive various identities involving those polynomials by using umbral calculus. © 2016 All rights reserved.

Keywords: Bernoulli polynomial of the second kind, umbral calculus.
2010 MSC: 05A40, 11B68, 11B83.

1. Introduction and preliminaries

As is well known, the ordinary Bernoulli polynomials are defined by the generating function to be

$$
\begin{equation*}
\frac{t}{e^{t}-1} e^{x t}=\sum_{n=0}^{\infty} B_{n}(x) \frac{t^{n}}{n!}, \quad(\text { see }[2, ~ 10, ~ 15, ~ 17]) \tag{1.1}
\end{equation*}
$$

When $x=0, B_{n}=B_{n}(0)$ are called the Bernoulli numbers. The Bernoulli polynomials of the second kind are given by the generating function to be

$$
\begin{equation*}
\frac{t}{\log (1+t)}(1+t)^{x}=\sum_{n=0}^{\infty} b_{n}(x) \frac{t^{n}}{n!}, \quad(\text { see }[19,2,21,22]) . \tag{1.2}
\end{equation*}
$$

[^0]Received 2015-10-08

When $x=0, b_{n}=b_{n}(0)$ are called the Bernoulli numbers of the second kind.
The first few Bernoulli numbers b_{n} of the second kind are

$$
b_{0}=1, b_{1}=\frac{1}{2}, b_{2}=-\frac{1}{12}, b_{3}=\frac{1}{24}, b_{4}=-\frac{19}{720}, b_{5}=\frac{3}{160}, \cdots .
$$

By 1.2), we easily get

$$
\begin{equation*}
b_{n}(x)=\sum_{l=0}^{n}\binom{n}{l} b_{l}(x)_{n-l}, \tag{1.3}
\end{equation*}
$$

where $(x)_{n}=x(x-1) \cdots(x-n+1),(n \geq 0)$, and

$$
\begin{equation*}
b_{n}(x)=B_{n}^{(n)}(x+1), \quad(\text { see [21, [22] }), \tag{1.4}
\end{equation*}
$$

where $B_{n}^{(\alpha)}(x)$ are the Bernoulli polynomials of order α.
The stirling number of the second kind is given by

$$
\begin{equation*}
x^{n}=\sum_{l=0}^{n} S_{2}(n, l)(x)_{l}, \quad(n \geq 0) \tag{1.5}
\end{equation*}
$$

The Stirling number of the first kind is defined by

$$
\begin{equation*}
(x)_{n}=x(x-1) \cdots(x-n+1)=\sum_{l=0}^{n} S_{1}(n, l) x^{l}, \quad(n \geq 0) . \tag{1.6}
\end{equation*}
$$

Let \mathbb{C} be the complex number field and let \mathcal{F} be the set of all formal power series in the variable t :

$$
\begin{equation*}
\mathcal{F}=\left\{\left.f(t)=\sum_{k=0}^{\infty} a_{k} \frac{t^{k}}{k!} \right\rvert\, a_{k} \in \mathbb{C}\right\} \tag{1.7}
\end{equation*}
$$

Let us assume that \mathbb{P} is the algebra of polynomials in the variable x over \mathbb{C} and \mathbb{P}^{*} is the vector space of all linear functionals on \mathbb{P}. $\langle L \mid p(x)\rangle$ denotes the action of the linear functional L on a polynomial $p(x)$. For $f(t) \in \mathcal{F}$, we define the continuous linear functional $f(t)$ on \mathbb{P} by

$$
\begin{equation*}
\left\langle f(t) \mid x^{n}\right\rangle=a_{n}, \quad(n \geq 0), \quad(\text { see [21] }) . \tag{1.8}
\end{equation*}
$$

Thus, by (1.7) and (1.8), we get

$$
\begin{equation*}
\left\langle t^{k} \mid x^{n}\right\rangle=n!\delta_{n, k}, \quad(n, k \geq 0), \quad(\text { see }[1-[22]) \tag{1.9}
\end{equation*}
$$

where $\delta_{n, k}$ is the Kronecker's symbol.
For $f_{L}(t)=\sum_{k=0}^{\infty} \frac{\left\langle L \mid x^{k}\right\rangle}{k!} t^{k}$, we have $\left\langle f_{L}(t) \mid x^{n}\right\rangle=\left\langle L \mid x^{n}\right\rangle,(n \geq 0)$. Thus, we see that $f_{L}(t)=L$. The map $L \mapsto f_{L}(t)$ is a vector space isomorphism from \mathbb{P}^{*} onto \mathcal{F}. Henceforth, \mathcal{F} is thought of as both a formal power series and a linear functional. We call \mathcal{F} the umbral algebra. The umbral calculus is the study of umbral algebra. The order $o(f(t))$ of the non-zero power series $f(t)$ is the smallest integer k for which the coefficient of t^{k} does not vanish (see [8, 21]). If $o(f(t))=1$, then $f(t)$ is called a delta series and if $o(f(t))=0$, then $f(t)$ is called an invertible series. For $f(t), g(t) \in \mathcal{F}$ with $o(f(t))=1$ and $o(g(t))=0$, there exists a unique sequence $s_{n}(x)$ of polynomials such that $\left\langle g(t) f(t)^{k} \mid s_{n}(x)\right\rangle=n!\delta_{n, k}$, where $n, k \geq 0$. The sequence $s_{n}(x)$ is called the Sheffer sequence for $(g(t), f(t))$ which is denoted by $s_{n}(x) \sim(g(t), f(t))$. For $p(x) \in \mathbb{P}$, we have $\left\langle e^{y t} \mid p(x)\right\rangle=p(y)$ and $e^{y t} p(x)=p(x+y)$. Let $f(t) \in \mathcal{F}$ and $p(x) \in \mathbb{P}$. Then we see that

$$
\begin{equation*}
f(t)=\sum_{k=0}^{\infty} \frac{\left\langle f(t) \mid x^{k}\right\rangle}{k!} t^{k}, \quad p(x)=\sum_{k=0}^{\infty} \frac{\left\langle t^{k} \mid p(x)\right\rangle}{k!} x^{k} . \tag{1.10}
\end{equation*}
$$

Thus, by (1.10), we get

$$
\begin{equation*}
p^{(k)}(0)=\left\langle t^{k} \mid p(x)\right\rangle, \quad\left\langle 1 \mid p^{(k)}(x)\right\rangle=p^{(k)}(0) . \tag{1.11}
\end{equation*}
$$

From (1.11), we have

$$
t^{k} p(x)=p^{(k)}(x)=\frac{d^{k} p(x)}{d x^{k}}, \quad(k \geq 0)
$$

For $s_{n}(x) \sim(g(t), f(t))$, we have

$$
\begin{equation*}
\frac{d s_{n}(x)}{d x}=\sum_{l=0}^{n-1}\binom{n}{l}\left\langle\bar{f}(t) \mid x^{n-l}\right\rangle s_{l}(x), \quad(n \geq 1) \tag{1.12}
\end{equation*}
$$

where $\bar{f}(t)$ is the compositional inverse of $f(t)$ with $\bar{f}(f(t))=f(\bar{f}(t))=t$,

$$
\begin{gather*}
\frac{1}{g(\bar{f}(t))}=e^{x \bar{f}(t)}=\sum_{n=0}^{\infty} s_{n}(x) \frac{t^{n}}{n!}, \quad \text { for all } x \in \mathbb{C}, \tag{1.13}\\
f(t) s_{n}(x)=n s_{n-1}(x), \quad(n \geq 1), \quad s_{n}(x+y)=\sum_{j=0}^{n}\binom{n}{j} s_{j}(x) p_{n-j}(y), \tag{1.14}
\end{gather*}
$$

where $p_{n}(x)=g(t) s_{n}(x)$,

$$
\begin{equation*}
\langle f(t) \mid x p(x)\rangle=\left\langle\partial_{t} f(t) \mid p(x)\right\rangle, \tag{1.15}
\end{equation*}
$$

and

$$
\begin{equation*}
s_{n+1}(x)=\left(x-\frac{g^{\prime}(t)}{g(t)}\right) \frac{1}{f^{\prime}(t)} s_{n}(x), \quad(n \geq 0), \quad(\text { see [1, 13, 16, 21] }) . \tag{1.16}
\end{equation*}
$$

Assume that $p_{n}(x) \sim(1, f(t))$ and $q_{n}(x) \sim(1, g(t))$. Then the transfer formula is given by

$$
\begin{equation*}
q_{n}(x)=x\left(\frac{f(t)}{g(t)}\right)^{n} x^{-1} p_{n}(x) \quad(n \geq 1) . \tag{1.17}
\end{equation*}
$$

For $s_{n}(x) \sim(g(t), f(t)), r_{n}(x) \sim(h(t), l(t))$, we have

$$
\begin{equation*}
s_{n}(x)=\sum_{m=0}^{n} C_{n, m} r_{m}(x), \quad(n \geq 0) \tag{1.18}
\end{equation*}
$$

where

$$
\begin{equation*}
\left.C_{n, m}=\frac{1}{m!}\left\langle\left.\frac{h(\bar{f}(t))}{g(\bar{f}(t))}(l(\bar{f}(t)))^{m} \right\rvert\, x^{m}\right\rangle, \quad \text { (see [12, 21] }\right) . \tag{1.19}
\end{equation*}
$$

In this paper, we study the Bernoulli polynomials of the second kind with umbral calculus viewpoint and derive various identities involving those polynomials by using umbral calculus.

2. Bernoulli polynomials of the second kind

For $\alpha \in \mathbb{N}$, the Bernoulli polynomials of the second kind with order α are defined by

$$
\begin{equation*}
\left(\frac{t}{\log (1+t)}\right)^{\alpha}(1+t)^{x}=\sum_{n=0}^{\infty} b_{n}^{(\alpha)}(x) \frac{t^{n}}{n!} . \tag{2.1}
\end{equation*}
$$

Note that $b_{n}(x)=b_{n}^{(1)}(x)$. When $x=0, b_{n}^{(\alpha)}=b_{n}^{(\alpha)}(0)$ are called the Bernoulli numbers of the second kind with order α. Indeed, we note that

$$
b_{n}^{(\alpha)}(x)=B_{n}^{(n-\alpha+1)}(x+1) .
$$

Let us consider the following two sheffer sequences :

$$
q_{n}(x) \sim\left(1,\left(\frac{\log (1+t)}{t}\right)^{\alpha}\left(e^{t}-1\right)\right)
$$

and

$$
(x)_{n} \sim\left(1, e^{t}-1\right) .
$$

Thus, by (1.17), we get

$$
\begin{aligned}
q_{n}(x) & =x\left(\frac{t}{\log (1+t)}\right)^{\alpha n} x^{-1}(x)_{n} \\
& =x\left(\frac{t}{\log (1+t)}\right)^{\alpha n}(x-1)_{n-1} \\
& =x b_{n-1}^{(\alpha n)}(x-1), \quad(n \geq 1) .
\end{aligned}
$$

That is,

$$
x b_{n-1}^{(\alpha n)}(x-1) \sim\left(1,\left(\frac{\log (1+t)}{t}\right)^{\alpha}\left(e^{t}-1\right)\right) .
$$

From (1.2) and (1.13), we have

$$
\begin{equation*}
b_{n}(x) \sim\left(\frac{t}{e^{t}-1}, e^{t}-1\right) \tag{2.2}
\end{equation*}
$$

By (2.2), we get

$$
\begin{equation*}
\frac{t}{e^{t}-1} b_{n}(x) \sim\left(1, e^{t}-1\right), \quad(x)_{n} \sim\left(1, e^{t}-1\right) . \tag{2.3}
\end{equation*}
$$

Thus, we see that

$$
\begin{align*}
b_{n}(x) & =\frac{e^{t}-1}{t}(x)_{n}=\frac{e^{t}-1}{t} \sum_{l=0}^{n} S_{1}(n, l) x^{l} \tag{2.4}\\
& =\left(e^{t}-1\right) \sum_{l=0}^{n} \frac{S_{1}(n, l)}{l+1} x^{l+1} \\
& =\sum_{l=0}^{n} \frac{S_{1}(n, l)}{l+1}\left((x+1)^{l+1}-x^{l+1}\right) .
\end{align*}
$$

When $x=0$, we have

$$
b_{n}=\sum_{l=0}^{n} \frac{S_{1}(n, l)}{l+1} .
$$

By (1.12), we get

$$
\begin{align*}
\frac{d}{d x} b_{n}(x) & =\sum_{l=0}^{n-1}\binom{n}{l}\left\langle\log (1+t) \mid x^{n-l}\right\rangle b_{l}(x) \tag{2.5}\\
& =\sum_{l=0}^{n-1}\binom{n}{l}\left\langle\left.\sum_{m=1}^{\infty} \frac{(-1)^{m-1}}{m} t^{m} \right\rvert\, x^{n-l}\right\rangle b_{l}(x) \\
& =\sum_{l=0}^{n-1}\binom{n}{l}(n-l-1)!(-1)^{n-l-1} b_{l}(x) \\
& =\sum_{l=0}^{n-1} \frac{n!}{l!(n-l)}(-1)^{n-l-1} b_{l}(x), \quad(n \geq 1) .
\end{align*}
$$

Therefore, by (2.5), we obtain the following lemma.

Lemma 1. For $n \geq 1$, we have

$$
\frac{d}{d x} b_{n}(x)=\sum_{l=0}^{n-1} \frac{n!}{l!(n-l)}(-1)^{n-l-1} b_{l}(x)
$$

From (1.9), we have

$$
\begin{align*}
b_{n}(y) & =\left\langle\left.\left(\frac{t}{\log (1+t)}\right)(1+t)^{y} \right\rvert\, x^{n}\right\rangle \tag{2.6}\\
& =\left\langle\left(\frac{t}{\log (1+t)}\right) \left\lvert\, \sum_{m=0}^{\infty}(y)_{m} \frac{t^{m}}{m!} x^{n}\right.\right\rangle \\
& =\sum_{m=0}^{n}(y)_{m}\binom{n}{m}\left\langle\left.\left(\frac{t}{\log (1+t)}\right) \right\rvert\, x^{n-m}\right\rangle \\
& =\sum_{m=0}^{n}(y)_{m}\binom{n}{m} b_{n-m}
\end{align*}
$$

Therefore, by (2.6), we obtain the following proposition.
Proposition 2. For $n \geq 0$, we have

$$
\begin{aligned}
b_{n}(x) & =\sum_{m=0}^{n}\binom{n}{m} b_{n-m}(x)_{m} \\
& =\sum_{m=0}^{n} m!\binom{n}{m}\binom{x}{m} b_{n-m}
\end{aligned}
$$

By (1.2), we get

$$
\begin{aligned}
b_{n}(x) & =\frac{t}{\log (1+t)}(x)_{n}=\sum_{l=0}^{n} S_{1}(n, l)\left(\frac{t}{\log (1+t)}\right) x^{l} \\
& =\sum_{l=0}^{n} S_{1}(n, l) \sum_{m=0}^{l} \frac{b_{m}}{m!} t^{m} x^{l} \\
& =\sum_{l=0}^{n} S_{1}(n, l) \sum_{m=0}^{l}\binom{l}{m} b_{m} x^{l-m} \\
& =\sum_{l=0}^{n} \sum_{m=0}^{l} S_{1}(n, l)\binom{l}{m} b_{l-m} x^{m}
\end{aligned}
$$

By (1.14), we get

$$
\begin{equation*}
b_{n}(x+y)=\sum_{j=0}^{n}\binom{n}{j} b_{j}(x)(y)_{n-j} \tag{2.8}
\end{equation*}
$$

Let

$$
\mathbb{P}_{n}=\{p(x) \in \mathbb{C}[x] \mid \operatorname{deg} p(x) \leq n\}, \quad(n \geq 0)
$$

Then it is an $(n+1)$-dimensional vector space over \mathbb{C}. Now, we consider the polynomial $p(x)$ in \mathbb{P}_{n} which is given by

$$
\begin{equation*}
p(x)=\sum_{m=0}^{n} C_{m} b_{m}(x) \tag{2.9}
\end{equation*}
$$

Thus, by (2.9), we get

$$
\begin{align*}
\left\langle\left.\frac{t}{e^{t}-1}\left(e^{t}-1\right)^{m} \right\rvert\, p(x)\right\rangle & =\sum_{l=0}^{n} C_{l}\left\langle\left.\frac{t}{e^{t}-1}\left(e^{t}-1\right)^{m} \right\rvert\, b_{l}(x)\right\rangle \tag{2.10}\\
& =\sum_{l=0}^{n} C_{l} l!\delta_{m, l}=m!C_{m}
\end{align*}
$$

From (2.10), we have

$$
\begin{equation*}
C_{m}=\frac{1}{m!}\left\langle\left.\left(\frac{t}{e^{t}-1}\right)\left(e^{t}-1\right)^{m} \right\rvert\, p(x)\right\rangle \tag{2.11}
\end{equation*}
$$

Therefore, by (2.11), we obtain the following theorem.
Theorem 3. Let $p(x) \in \mathbb{P}_{n}$ with

$$
p(x)=\sum_{m=0}^{n} C_{m} b_{m}(x)
$$

Then, we have

$$
C_{m}=\frac{1}{m!}\left\langle\left.\left(\frac{t}{e^{t}-1}\right)\left(e^{t}-1\right)^{m} \right\rvert\, p(x)\right\rangle
$$

For example, let us take $p(x)=B_{n}(x) \in \mathbb{P}_{n}$. Then, we have

$$
\begin{equation*}
B_{n}(x)=\sum_{m=0}^{n} C_{m} b_{m}(x) \tag{2.12}
\end{equation*}
$$

where

$$
\begin{align*}
C_{m} & =\frac{1}{m!}\left\langle\left.\left(\frac{t}{e^{t}-1}\right)\left(e^{t}-1\right)^{m} \right\rvert\, B_{n}(x)\right\rangle \tag{2.13}\\
& =\sum_{l=m}^{n} S_{2}(l, m)\binom{n}{l}\left\langle\left.\left(\frac{t}{e^{t}-1}\right) \right\rvert\, B_{n-l}(x)\right\rangle \\
& =\sum_{l=m}^{n} S_{2}(l, m)\binom{n}{l} \sum_{k=0}^{n-l} B_{n-l-k}\binom{n-l}{k}\left\langle\left.\left(\frac{t}{e^{t}-1}\right) \right\rvert\, x^{k}\right\rangle \\
& =\sum_{l=m}^{n} \sum_{k=0}^{n-l} S_{2}(l, m)\binom{n}{l}\binom{n-l}{k} B_{n-l-k} B_{k} .
\end{align*}
$$

Therefore, by (2.12) and (2.13), we obtain the following theorem.
Theorem 4. For $n \geq 0$, we have

$$
B_{n}(x)=\sum_{m=0}^{n}\left\{\sum_{l=m}^{n} \sum_{k=0}^{n-l}\binom{n}{l}\binom{n-l}{k} S_{2}(l, m) B_{n-l-k} B_{k}\right\} b_{m}(x)
$$

Remark. From 2.13), for $m \geq 1$, we have

$$
\begin{align*}
C_{m} & =\frac{1}{m!}\left\langle\left.\left(\frac{t}{e^{t}-1}\right)\left(e^{t}-1\right)^{m} \right\rvert\, B_{n}(x)\right\rangle \tag{2.14}\\
& =\frac{1}{m!}\left\langle\left(e^{t}-1\right)^{m-1} \mid t B_{n}(x)\right\rangle \\
& =\frac{n}{m!}\left\langle\left(e^{t}-1\right)^{m-1} \mid B_{n-1}(x)\right\rangle
\end{align*}
$$

$$
\begin{aligned}
& =\frac{n}{m!}(m-1)!\sum_{l=m-1}^{n-1} S_{2}(l, m-1) \frac{1}{l!}\left\langle t^{l} \mid B_{n-1}(x)\right\rangle \\
& =\frac{n}{m} \sum_{l=m-1}^{n-1} S_{2}(l, m-1)\binom{n-1}{l} B_{n-1-l} .
\end{aligned}
$$

Therefore, by 2.12 and 2.14 , we get

$$
B_{n}(x)=\sum_{m=1}^{n}\left\{\frac{n}{m} \sum_{l=m-1}^{n-1} S_{2}(l, m-1)\binom{n-1}{l} B_{n-1-l}\right\} b_{m}(x)+\sum_{k=0}^{n}\binom{n}{k} B_{n-k} B_{k}
$$

The classical polylogarithm function is given by

$$
\begin{equation*}
\operatorname{Li}_{k}(x)=\sum_{n=1}^{\infty} \frac{x^{n}}{n^{k}}, \quad(k \in \mathbb{Z}, x>0) \tag{2.15}
\end{equation*}
$$

The poly-Bernoulli polynomials are defined by the generating function to be

$$
\begin{equation*}
\frac{\operatorname{Li}_{k}\left(1-e^{t}\right)}{e^{t}-1} e^{x t}=\sum_{n=0}^{\infty} B_{n}^{(k)}(x) \frac{t^{n}}{n!} \tag{2.16}
\end{equation*}
$$

Thus, by 2.16, we see that

$$
\begin{equation*}
B_{n}^{(k)}(x) \sim\left(\frac{e^{t}-1}{\operatorname{Li}_{k}\left(1-e^{-t}\right)}, t\right) \tag{2.17}
\end{equation*}
$$

Let us take $p(x)=B_{n}^{(k)}(x) \in \mathbb{P}_{n}$. Then we have

$$
\begin{equation*}
B_{n}^{(k)}(x)=\sum_{m=0}^{n} C_{m} b_{m}(x) \tag{2.18}
\end{equation*}
$$

where

$$
\begin{align*}
C_{m} & =\frac{1}{m!}\left\langle\left.\frac{t}{e^{t}-1}\left(e^{t}-1\right)^{m} \right\rvert\, B_{n}^{(k)}(x)\right\rangle \tag{2.19}\\
& =\sum_{l=m}^{n} S_{2}(l, m)\binom{n}{l}\left\langle\left.\frac{t}{e^{t}-1} \right\rvert\, B_{n-l}^{(k)}(x)\right\rangle \\
& =\sum_{l=m}^{n} S_{2}(l, m)\binom{n}{l} \sum_{j=0}^{n-l}\binom{n-l}{j} B_{n-l-j}^{(k)}\left\langle\left.\frac{t}{e^{t}-1} \right\rvert\, x^{j}\right\rangle \\
& =\sum_{l=m}^{n} \sum_{j=0}^{n-l}\binom{n}{l}\binom{n-l}{j} S_{2}(l, m) B_{n-l-j}^{(k)} B_{j}
\end{align*}
$$

where $B_{n}^{(k)}=B_{n}^{(k)}(0)$ are the poly-Bernoulli numbers. Therefore, by (2.18) and (2.19), we obtain the following theorem.

Theorem 5. For $n \geq 0$, we have

$$
B_{n}^{(k)}(x)=\sum_{m=0}^{n}\left\{\sum_{l=m}^{n} \sum_{j=0}^{n-l}\binom{n}{l}\binom{n-l}{j} S_{2}(l, m) B_{n-j-l}^{(k)} B_{j}\right\} b_{m}(x)
$$

Let us consider $p(x)=x^{n} \in \mathbb{P}_{n}$. Then, we have

$$
\begin{equation*}
x^{n}=\sum_{m=0}^{n} C_{m} b_{m}(x) \tag{2.20}
\end{equation*}
$$

where

$$
\begin{align*}
C_{m} & =\frac{1}{m!}\left\langle\left.\left(\frac{t}{e^{t}-1}\right)\left(e^{t}-1\right)^{m} \right\rvert\, x^{n}\right\rangle \tag{2.21}\\
& =\sum_{l=m}^{n} S_{2}(l, m)\binom{n}{l}\left\langle\left.\frac{t}{e^{t}-1} \right\rvert\, x^{n-l}\right\rangle \\
& =\sum_{l=m}^{n} S_{2}(l, m)\binom{n}{l} B_{n-l}
\end{align*}
$$

Thus, by 2.20 and 2.21, we get

$$
\begin{equation*}
x^{n}=\sum_{m=0}^{n}\left\{\sum_{l=m}^{n} S_{2}(l, m)\binom{n}{l} B_{n-l}\right\} b_{m}(x) \tag{2.22}
\end{equation*}
$$

Let us consider the following two Sheffer sequences :

$$
\begin{equation*}
b_{n}(x) \sim\left(\frac{t}{e^{t}-1}, e^{t}-1\right) \tag{2.23}
\end{equation*}
$$

and

$$
B_{n}^{(k)}(x) \sim\left(\frac{e^{t}-1}{\operatorname{Li}_{k}\left(1-e^{-t}\right)}, t\right)
$$

Then, by 1.17) and 1.18, we get

$$
\begin{equation*}
B_{n}^{(k)}(x)=\sum_{m=0}^{n} C_{n, m} b_{m}(x) \tag{2.24}
\end{equation*}
$$

where

$$
\begin{align*}
C_{n, m} & =\frac{1}{m!}\left\langle\left.\frac{\operatorname{Li}_{k}\left(1-e^{-t}\right)}{e^{t}-1}\left(\frac{t}{e^{t}-1}\right)\left(e^{t}-1\right)^{m} \right\rvert\, x^{n}\right\rangle \tag{2.25}\\
& =\sum_{l=m}^{n} S_{2}(l, m)\binom{n}{l}\left\langle\left.\frac{\operatorname{Li}_{k}\left(1-e^{-t}\right)}{e^{t}-1} \right\rvert\, \frac{t}{e^{t}-1} x^{n-l}\right\rangle \\
& =\sum_{l=m}^{n} S_{2}(l, m)\binom{n}{l} \sum_{j=0}^{n-l}\binom{n-l}{j} B_{n-l-j}\left\langle\left.\frac{\operatorname{Li}_{k}\left(1-e^{-t}\right)}{e^{t}-1} \right\rvert\, x^{j}\right\rangle \\
& =\sum_{l=m}^{n} \sum_{j=0}^{n-l}\binom{n}{l}\binom{n-l}{j} S_{2}(l, m) B_{n-l-j} B_{j}^{(k)}
\end{align*}
$$

Therefore, by (2.24) and 2.25 , we obtain the following theorem.
Theorem 6. For $n \geq 0$, we have

$$
B_{n}^{(k)}(x)=\sum_{m=0}^{n}\left\{\sum_{l=m}^{n} \sum_{j=0}^{n-l}\binom{n}{l}\binom{n-l}{j} S_{2}(l, m) B_{n-l-j} B_{j}^{(k)}\right\} b_{m}(x)
$$

Let us consider the following Sheffer sequences:

$$
\begin{gather*}
b_{n}(x) \sim\left(\frac{t}{e^{t}-1}, e^{t}-1\right) \tag{2.26}\\
B_{n}(x) \sim\left(\frac{e^{t}-1}{t}, t\right)
\end{gather*}
$$

Then we have

$$
\begin{equation*}
b_{n}(x)=\sum_{m=0}^{n} C_{n, m} B_{m}(x) \tag{2.27}
\end{equation*}
$$

where

$$
\begin{align*}
C_{n, m} & =\frac{1}{m!}\left\langle\left.\frac{t}{\log (1+t)} \frac{t}{\log (1+t)}(\log (1+t))^{m} \right\rvert\, x^{n}\right\rangle \tag{2.28}\\
& =\sum_{l=m}^{n}\binom{n}{l} S_{1}(l, m)\left\langle\left.\left(\frac{t}{\log (1+t)}\right)^{2} \right\rvert\, x^{n-l}\right\rangle \\
& =\sum_{l=m}^{n}\binom{n}{l} S_{1}(l, m) b_{n-l}^{(2)},
\end{align*}
$$

where $b_{n}^{(2)}$ are di-Bernoulli numbers of the second kind.
Therefore, by 2.27 and (2.28), we get

$$
\begin{equation*}
b_{n}(x)=\sum_{m=0}^{n}\left(\sum_{l=m}^{n}\binom{n}{l} S_{1}(l, m) b_{n-l}^{(2)}\right) B_{m}(x) \tag{2.29}
\end{equation*}
$$

Acknowledgement

This paper is supported by grant No. 14-11-00022 of Russian Scientific fund.

References

[1] A. Bayad, T. Kim, Identities involving values of Bernstein, q-Bernoulli, and q-Euler polynomials, Russ. J. Math. Phys., 18 (2011), 133-143.1.9 1.16
[2] A. Bottreau, A. Di Bucchianico, D. E. Loeb, Computer algebra and umbral calculus, Proceedings of the 7th conference on formal power series and algebraic combinatorics. Discrete Math., 180 (1998), 65-72.1.1
[3] D. Ding, J. Yang, Some identities related to the Apostol-Euler and Apostol-Bernoulli polynomials, Adv. Stud. Contemp. Math., 20 (2010), 7-21.
[4] S. B. Ekhad, D. Zeilberger, Using Rota's umbral calculus to enumerate Stanley's P-partitions, Adv. in Appl. Math., 41 (2008), 206-213.
[5] T. Ernst, Examples of a q-umbral calculus, Adv. Stud. Contemp. Math., 16 (2008), 1-22.
[6] Q. Fang, T. Wang, Umbral calculus and invariant sequences, Ars Combin., 101 (2011), 257-264.
[7] S. Gaboury, R. Tremblay, B.-J. Fugère, Some explicit formulas for certain new classes of Bernoulli, Euler and Genocchi polynomials, Proc. Jangjeon Math. Soc., 17 (2014), 115-123.
[8] T. Kim, Identities involving Laguerre polynomials derived from umbral calculus, Russ. J. Math. Phys., 21 (2014), 36-45.1
[9] D. S. Kim, T. Kim, Some identities of Bernoulli and Euler polynomials arising form umbral calculus, Adv. Stud. Contemp. Math., 23 (2013), 159-171.
[10] D. S. Kim, T. Kim, A note on poly-Bernoulli and higher-order poly-Bernoulli polynomials, Russ. J. Math. Phys., 22 (2015), 26-33.1.1
[11] D. S. Kim, T. Kim, Higher-order Bernoulli and poly-Bernoulli mixed type polynomials, Georgian Math. J., 22 (2015), 265-272.
[12] D. S. Kim, T. Kim, D. V. Dolgy, S.-H. Rim, Some identities of higher-order Bernoulli, Euler, and Hermite polynomials arising from umbral calculus, J. Inequal. Appl., 2013 (2013), 10 pages. 1.19
[13] D. S. Kim, T. Kim, S.-H. Lee, S.-H. Rim, Some identities of Bernoulli, Euler and Abel polynomials arising from umbral calculus, Adv. Difference Equ., 2013 (2013), 8 pages. 1.16
[14] D. S. Kim, T. Kim, S.-H. Lee, S.-H. Rim, Umbral calculus and Euler polynomials, Ars Combin., 112 (2013), 293-306.
[15] D. S. Kim, T. Kim, C. S. Ryoo, Sheffer sequences for the powers of Sheffer pairs under umbral composition, Adv. Stud. Contemp. Math., 23 (2013), 275-285.1.1
[16] D. S. Kim, T. Kim, J. J. Seo, Higher-order Daehee polynomials of the first kind with umbral calculus, Adv. Stud. Contemp. Math., 24 (2014), 5-18. 1.16
[17] T. Kim, T. Mansour, Umbral calculus associated with Frobenius-type Eulerian polynomials, Russ. J. Math. Phys., 21 (2014), 484-493.1.1
[18] A. K. Kwaśniewski, On ψ-umbral extensions of Stirling numbers and Dobinski-like formulas, Adv. Stud. Contemp. Math., 12 (2006), 73-100.
[19] T. R. Prabhakar, S. Gupta, Bernoulli polynomials of the second kind and general order, Indian J. Pure Appl. Math., 11 (1980), 1361-1368. 1.2
[20] N. Ray, Universal constructions in umbral calculus, Birkhuser Boston, Boston, MA, (1998).
[21] S. Roman, The umbral calculus, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, (1984). [1.2 1.4 1.8 , 1.16 1.19
[22] H. Wang, G. Liu, An explicit formula for higher order Bernoulli polynomials of the second kind, Integers, 13 (2013), 7 pages. $1.2,1.4,1.9$

[^0]: *Corresponding author
 Email addresses: tkkim@kw.ac.kr, kimtk2015@gmail.com (Taekyun Kim), dskim@sogang.ac.kr (Dae San Kim), d_dol@mail.ru (Dmitry V. Dolgy), seo2011@pknu.ac.kr (Jong-Jin Seo)

