Lagrangians of the $(2+1)$-dimensional KP equation with variable coefficients and cross terms

Hong-Yan Liu ${ }^{\text {a,b }}$, Ji-Huan He ${ }^{\text {b,* }}$, Zhi-Min Lic
${ }^{a}$ School of Fashion Technology, Zhongyuan University of Technology No. 41 Zhongyuan Road (M), 450007 Zhengzhou, China.
${ }^{b}$ National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University 199 Ren-ai Road, 215123 Suzhou, China.
${ }^{c}$ Rieter (China) Textile Instrument Co., 1068 West Tianshan Road, 200335 Shanghai, China.

Communicated by R. Saadati

Abstract

Zhang constructed a Lagrangian for the $(2+1)$-dimensional KP equation with variable coefficients and cross terms [L. H. Zhang, Appl. Math. Comput., 219 (2013), 4865-4879]. This paper suggests a simple method to construct a needed Lagrangian using the semi-inverse by introducing a simple auxiliary function, the presented method is simpler than Zhang's method to construct a Lagrangian. © 2016 All rights reserved.

Keywords: Variational principle, least square technology, semi-inverse method.
2010 MSC: 47H10, 54H25.

1. Introduction

Zhang studied the following $(2+1)$-dimensional KP equation with variable coefficients and cross terms [17]

$$
\begin{equation*}
\left(u_{t}+u u_{x}+u_{x x x}\right)_{x}+u_{y y}+b(t) u_{x y}+\left(c_{0}(t)+c_{1}(t) y\right) u_{x x}=0 \tag{1.1}
\end{equation*}
$$

and obtained a Lagrangian in the form [17]

$$
\begin{equation*}
L=v\left(\left(u_{t}+u u_{x}+u_{x x x}\right)_{x}+u_{y y}+b(t) u_{x y}+\left(c_{0}(t)+c_{1}(t) y\right) u_{x x}\right) \tag{1.2}
\end{equation*}
$$

where v is an auxiliary function. The Euler-Lagrange equation of eq. (1.1) with respect to u is

$$
\begin{equation*}
\frac{\partial L}{\partial u}-\frac{\partial}{\partial t}\left(\frac{\partial L}{\partial u_{t}}\right)-\frac{\partial}{\partial x}\left(\frac{\partial L}{\partial u_{x}}\right)-\frac{\partial}{\partial y}\left(\frac{\partial L}{\partial u_{y}}\right)+\frac{\partial^{2}}{\partial x^{2}}\left(\frac{\partial L}{\partial u_{x x}}\right)+\frac{\partial^{2}}{\partial x \partial y}\left(\frac{\partial L}{\partial u_{x y}}\right)=0 \tag{1.3}
\end{equation*}
$$

[^0]or
\[

$$
\begin{equation*}
v_{t x}-2\left(v u_{x}\right)_{x}+v u_{x x}+(v u)_{x x}+v_{x x x x}+v_{y y}+b(t) v_{x y}+\left(c_{0}(t)+c_{1}(t) y\right) v_{x x}=0 \tag{1.4}
\end{equation*}
$$

\]

Simplification of Eq. (1.4) results in

$$
\begin{equation*}
v_{t x}+v_{x x} u+v_{x x x x}+v_{y y}+b(t) v_{x y}+\left(c_{0}(t)+c_{1}(t) y\right) v_{x x}=0 \tag{1.5}
\end{equation*}
$$

The auxiliary function, v, in Eq. (1.2) must satisfy Eq. (1.5).
Remark 1.1. Equation (1.2) is similar to those by the Galerkin technology [16] which is widely used in the finite element method.

For a general linear equation $A u=0$, where A is an operator e.g., $A=\frac{d}{d x}$ the Galerkin method is

$$
\begin{equation*}
J(u, v)=\int L d t d x d y \tag{1.6}
\end{equation*}
$$

where v is auxiliary function, L is a Lagrange function defined as

$$
\begin{equation*}
L=v A u \tag{1.7}
\end{equation*}
$$

the Euler-Lagrange equations of Eq. (1.6) are

$$
\begin{equation*}
A u=0 \tag{1.8}
\end{equation*}
$$

and

$$
\begin{equation*}
A v=0 \tag{1.9}
\end{equation*}
$$

So Eq. 1.2 is similar to Galerkin technology.
Remark 1.2. There is an exact Lagrangian for the following equation

$$
\begin{equation*}
\left(u_{t}+u_{x x x}\right)_{x}+u_{y y}+b(t) u_{x y}+\left(c_{0}(t)+c_{1}(t) y\right) u_{x x}=0 \tag{1.10}
\end{equation*}
$$

By the semi-inverse method [1], [3]-[6], [8, we can obtain the Lagrangian for Eq. (1.10), which reads

$$
\begin{equation*}
L=-\frac{1}{2} u_{t} u_{x}+\frac{1}{2}\left(u_{x x}\right)^{2}-\frac{1}{2}\left(u_{y}\right)^{2}-\frac{b(t)}{2} u_{x} u_{y}-\frac{1}{2}\left(c_{0}(t)+c_{1}(t) y\right)\left(u_{x}\right)^{2} \tag{1.11}
\end{equation*}
$$

Remark 1.3. An approximate Lagrangian can be obtained for Eq. 1.1), which is

$$
\begin{equation*}
L=-\frac{1}{2} u_{t} u_{x}+\frac{1}{2}\left(u_{x x}\right)^{2}-\frac{1}{2}\left(u_{y}\right)^{2}-\frac{b(t)}{2} u_{x} u_{y}-\frac{1}{2}\left(c_{0}(t)+c_{1}(t) y\right)\left(u_{x}\right)^{2}-w u_{x} \tag{1.12}
\end{equation*}
$$

where w is an auxiliary function defined by

$$
\begin{equation*}
w=u u_{x} \tag{1.13}
\end{equation*}
$$

Remark 1.4. An generalized Lagrangian can obtained by the semi-inverse method [3]-6], [8], which reads

$$
\begin{equation*}
L(u, w)=-\frac{1}{2} u_{t} u_{x}+\frac{1}{2}\left(u_{x x}\right)^{2}-\frac{1}{2}\left(u_{y}\right)^{2}-\frac{b(t)}{2} u_{x} u_{y}-\frac{1}{2}\left(c_{0}(t)+c_{1}(t) y\right)\left(u_{x}\right)^{2}-w u_{x}+\lambda\left(w-u u_{x}\right)^{2} \tag{1.14}
\end{equation*}
$$

where $\lambda \gg 1$ is a nonzero constant.
Proof. The Euler-Lagrange equations of Eq. 1.14 with respect to u and w are

$$
\begin{gather*}
\left(u_{t}+u_{x x x}\right)_{x}+u_{y y}+b(t) u_{x y}+\left(c_{0}(t)+c_{1}(t) y\right) u_{x x}+w_{x}-2 \lambda\left(w_{x}-u u_{x}\right) u_{x}+2 \lambda\left(\left(w_{x}-u u_{x}\right) u\right)_{x}=0 \tag{1.15}\\
-u_{x}+2 \lambda\left(w-u u_{x}\right)=0 \tag{1.16}
\end{gather*}
$$

Considering $\lambda \gg 1$, saying $\lambda=10^{10}$, Eq. 1.16) is approximated as

$$
\begin{equation*}
w-u u_{x}=0 \tag{1.17}
\end{equation*}
$$

Submitting Eq. (1.17) into Eq. (1.15) results in Eq. (1.1).
Similar results can be obtained for the Burgers equation [17] by the semi-inverse method [3]-6], [8]. Some illustrating examples for construction of Lagrangian of a nonlinear equation are available in Refs [2, 17, 9, 10, 11, 12, 13, 14, 15, 18].

Acknowledgments:

The work is supported by PAPD (A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions); Jiangsu Province Key Laboratory No.KJS1314, Jiangsu Planned Projects for Postdoctoral Research Funds 1401076B and China Postdoctoral Science Foundation 2015M571806.

References

[1] S. Das, R. Kumar, Fractional diffusion equations in the presence of reaction terms, J. Comput. Complex. Appl., 1 (2015), 15-21.1
[2] D. D. Fei, F. J. Liu, P. Wang, H. Y. Liu, A short remark on He-Lee's variational principle for heat conduction, Therm. Sci., 17 (2013), 1561-1563.1
[3] J. H. He, Variational principles for some nonlinear partial differential equations with variable coefficients, Chaos Solitons Fractals, 19 (2004), 847-851.1, 1.4. 1
[4] J. H. He, Some asymptotic methods for strongly nonlinear equations, Internat. J. Modern Phys. B, 20, (2006), 1141-1199.
[5] J. H. He, An elementary introduction to recently developed asymptotic methods and nanomechanics in textile engineering, Internat. J. Modern Phys. B, 22 (2008), 3487-3578.
[6] J. H. He, Asymptotic methods for solitary solutions and compactons, Abstr. Appl. Anal., 2012 (2012), 130 pages. 1. $1.4,1$
[7] Z. Jia, M. Hu, Q. Chen, Variational principle for unsteady heat conduction equation, Therm. Sci., 18 (2014), 1045-1047. 1
[8] X. W. Li, Y. Li, J. H. He, On the semi-inverse method and variational principle, Therm. Sci., 17 (2013), 15651568.1, $1.4,1$
[9] Z. B. Li, J. Liu, Variational formulations for soliton equations arising in water transport in porous soils, Therm. Sci., 17 (2013), 1483-1485. 1
[10] Z. L. Tao, Solitary solutions of the Boiti-Leon-Manna-Pempinelli equation using He's variational method, Z. Naturforsch A, 63 (2008), 634-636.1
[11] Z. L. Tao, Variational approach to the Benjamin Ono equation, Nonlinear Anal. Real World Appl., 10 (2009), 1939-1941.1]
[12] Z. L. Tao, G. H. Chen, Remark on a constrained variational principle for heat conduction, Therm. Sci., 17 (2013), 951-952. 1
[13] G. Wu, D. Baleanu, Z. Deng, Variational iteration method as a kernel constructive technique, Appl. Math Model., 39 (2015), 4378-4384. 1
[14] L. Xu, Variational approach to solitons of nonlinear dispersive $K(m, n)$ equations, Chaos Solitons Fractals, 37 (2008), 137-143. 1
[15] L. Yao, How to discover a variational principle for a damped vibration problem, Int. J. Nonlinear Sci. Numer. Sim., 11 (2010), 171-174. 1
[16] S. A. Yousefi, Z. Barikbin, M. Dehghan, Ritz-Galerkin method with Bernstein polynomial basis for finding the product solution form of heat equation with non-classic boundary conditions, Internat. J. Numer. Methods Heat Fluid Flow, 22 (2012), 39-48. 1.1
[17] L. H. Zhang, Conservation Laws of the ($2+1$)-dimensional KP equation and Burgers equation with variable coefficients and cross terms, Appl. Math. Comput., 219 (2013), 4865-4879.1.111
[18] X. W. Zhou, L. Wang, A variational principle for coupled nonlinear Schrodinger equations with variable coefficients and high nonlinearity, Comput. Math. Appl., 61 (2011), 2035-2038. 1

[^0]: *Corresponding author
 Email addresses: phdliuhongyan@yahoo.com (Hong-Yan Liu), hejihuan@suda.edu.cn (Ji-Huan He)

