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Abstract

In this paper, applying the geometrical knowledge of Hilbert spaces, we investigate and analyze a system
of multilevel split fixed point problems (MSFP). New split solution algorithms are introduced and strong
convergence theorems for (MSFP) are established. At the end of this paper, as an application of our results,
we investigate and analyze a system of multilevel split variational inclusion problems (MSVIP) and some
strong convergence solution for (MSVIP) are obtained. These results obtained by this paper improve and
develop some known ones in the literature. c©2016 All rights reserved.
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1. Introduction

In this paper, let H be a real Hilbert space with the inner product 〈·, ·〉 and the norm ‖ · ‖, N and R
denote the sets of positive integers and real numbers, respectively. If without special note, in this paper, all
the spaces denote real Hilbert spaces. A point x is called a fixed point of a mapping T if Tx = x ( when T
is a single-valued mapping) or x ∈ Tx (when T is a set-valued mapping).

Let T : H1 ⊃ Q→ H1 and S : H2 ⊃ K → H2 be two nonlinear mappings. A : H1 → H2 is a linear and
bounded operator. A split common fixed point problem((SCFP), for short) for T and S is to find,

p ∈ Q such that Tp = p and SAp = Ap(when T, S are single-valued mappings )
or

p ∈ Tp and Ap ∈ SAp(when T, S are set-valued mappings).
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Generally, a nonlinear problem is solved by an iterative algorithm. Traditionally, many algorithms
can only solve a nonlinear problem or a common solution of some nonlinear problems. However, many
nonlinear problems don’t have common solutions generally. In this case, can we get approximation solutions
to different nonlinear problems by an algorithm? In recent years, around this important science problem,
many scholars began to study this class of problem. They obtained some interesting works. Especially,
applying the geometrical knowledge of Hilbert spaces, professor C. Byrne and professor Y. Censor converted
some nonlinear problems into fixed point problems of mappings and put forward the concept of split solution
problems and gave some ground-breaking works [2, 6]. Along this idea, professor A. Moudafi et al. boosted
vastly the development in this field [7, 8, 20, 21, 23]. All these works provided by them stimulated many
correlation researches. Scholars gave some iterative algorithms and obtained some approximation solutions
to (SCFP) [5, 13, 18, 31, 30, 32]. But, among these works, they only studied two nonlinear problems.
So, naturally, an important science problem is whether their researched results can be generalized to more
nonlinear problems or not. Based on this consideration and inspired by their works, in this paper, we study
and investigate the following multilevel problem:

(MLSCFP) Find u ∈ H1, v ∈ H2, w ∈ H3 such that T1u = u, T2v = v, T3w = w
and t := Au = Bv = Cw, St = t,

where A : H1 → H, B : H2 → H and C : H3 → H are three linear and bounded operators with their adjoint
operators A∗, B∗ and C∗, respectively. Ti : Hi → Hi and S : H → H(i = 1, 2, 3) are single-valued mappings.
We regard the problem as a multilevel split common fixed point problem((MLSCFP), for short).

The following examples are some special cases for (MLSCFP).

Example 1.1. If i = 1 in (MLSCFP), then (MLSCFP) reduces to (SCFP).

Example 1.2. If H1 = H2 (or H2 = H3), then (MLSCFP) reduces to find

u, v ∈ H1, w ∈ H2( or u ∈ H1, v, w ∈ H2) such that T1u = u, T2v = v, T3w = w
and t := Au = Bv = Cw, St = t,

where A,B : H1 → H, C : H2 → H(or A : H1 → H, B,C : H2 → H) are three linear and bounded
operators with their adjoint operators A∗, B∗ and C∗, respectively. T1, T2 : H1 → H1, T3 : H2 → H2 (or
T1 : H1 → H1, T2, T3 : H2 → H2) and S : H → H are single-valued mappings.

Example 1.3. If H1 = H2 = H3, then (MLSCFP) reduces to find

u, v, w ∈ H1 such that T1u = u, T2v = v, T3w = w and t := Au = Bv = Cw, St = t,

where A : H1 → H, B : H1 → H and C : H1 → H are three linear and bounded operators with their adjoint
operators A∗, B∗ and C∗, respectively. T1, T2, T3 : H1 → H1, and S : H → H are single-valued mappings.

In essence, Example 1.3 is still (SCFP), but it isn’t equal to (SCFP) completely.

Example 1.4. If H1 = H2 = H3 = H, then (MLSCFP) reduces to find

u, v, w ∈ H1 such that T1u = u, T2v = v, T3w = w and t := Au = Bv = Cw,St = t,

where A : H → H, B : H → H and C : H → H are three linear and bounded operators with their adjoint
operators A∗, B∗ and C∗, respectively. T1, T2, T3, S : H → H are single-valued mappings.

In essence, the case in Example 1.4 is a multilevel split common fixed point problem under the same
space. But until now, we don’t find some researched results of this problem.

Example 1.5. If H1 = H2 = H3 = H and A = B = C is an identity operator, then (MLSCFP) reduces
to find

p ∈ H such that T1p = T2p = T3p = Sp = p,

where T1, T2, T3, S : H → H are single-valued mappings.
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In essence, the case in Example 1.5 belongs to a class of problems to find a common fixed point for some
single-valued nonlinear mappings. It has been investigated by [1, 10, 15, 26, 28].

Remark 1.6. Although Example 1.2 and Example 1.4 are the special cases of (MLSCFP), they are different
from (SCFP) obviously. So, these special cases are also new problems.

For convenience, in this paper, we regard an approximation solution as a weak convergence solution if
it is obtained by a weak convergence sequence. Conversely, an approximation solution is called a strong
convergence solution if it is obtained by a strong convergence sequence.

In this paper, we will establish strong convergence algorithms for (MLSCFP) which implies that some
strong convergence solutions of (MLSCFP) are obtained. Our results improve and generalize many ones
in the literature. At the end of this paper, we apply our results to a multilevel split variational inclusion
problem((MSVIP), for short). Some strong convergence theorems for (MSVIP) are established, which
implies that many results for variational inclusion problems are generalized.

2. Preliminaries

In this section, we recall some known concepts and conclusions.
Let Q is a closed convex subset of a real Hilbert space H. A mapping T : Q→ H is called a nonexpansive

mapping if ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ Q. A mapping T : Q → H is called a firmly nonexpansive
mapping if ‖Tx − Ty‖2 ≤ 〈Tx − Ty, x − y〉 for all x, y ∈ Q. A projection operator is a classical firmly
nonexpansive mapping. That is, if PQ denotes the projection operator (or metric projection) from H onto
Q, then PQ satisfies ‖PQ(x) − PQ(y)‖2 ≤ 〈PQ(x) − PQ(y), x − y〉, ∀ x, y ∈ H. Besides, the projection
operator has an important property that is

‖y − PQ(x)‖2 + ‖x− PQ(x)‖2 ≤ ‖x− y‖2, for x ∈ H and y ∈ Q. (2.1)

Remark 2.1. Obviously, a firmly nonexpansive mapping must be nonexpansive.

A set-valued mapping T : H → 2H is said to be monotone, if for all x, y ∈ H, f ∈ Tx, and g ∈ Ty
imply that 〈f − g, x− y〉 ≥ 0. Let D(T ) and G(T ) denote the domain and the graph for T , respectively. A
monotone mapping T : H → H is said to be maximal, if the graph G(T ) of T is not properly contained in
the graph of any other monotone mapping. It is known that a monotone mapping T is maximal, if and only
if for (x, f) ∈ H ×H, 〈f − g, x− y〉 ≥ 0 for every (y, g) ∈ G(T ) implies that f ∈ Tx.

Lemma 2.2 ([29]). For a given z ∈ H, x ∈ Q satisfies the inequality 〈x− z, y−x〉 ≥ 0, ∀ y ∈ Q if and only
if x = PQ(z), where PQ is a projection operator from H onto Q.

Lemma 2.3. The following results are well known. They can be found in [24] or [29].

(a) ‖λx+ (1− λ)y‖2 = λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)‖x− y‖2, x, y ∈ H and λ ∈ [0, 1];

(b) 2〈x, y〉 = ‖x‖2 + ‖y‖2 − ‖x− y‖2, x, y ∈ H;

(c) ‖αx+ βy + γz‖2 = α‖x‖2 + β‖y‖2 + γ‖z‖2 − αβ‖x− y‖2 − αγ‖x− z‖2 − βγ‖y − z‖2, x, y, z ∈ H and
α, β, γ ∈ [0, 1], α+ β + γ = 1.

The following result is crucial in this paper.

Lemma 2.4 ([11]). Let H be a real Hilbert space. Let T : H → 2H be a set-valued maximal monotone
mapping, β > 0, and let JTβ be a resolvent mapping of T (that is JTβ = (I + βT )−1).

(i) For each β > 0, JTβ is a single-valued and firmly nonexpansive mapping;

(ii) D(JTβ ) = H and Fix(JTβ ) = {x ∈ D(T ) : 0 ∈ Tx};
(iii) ‖x− JTβ x‖ ≤ ‖x− JTγ x‖ for all 0 < β ≤ γ and for all x ∈ H;
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(iv) (I − JTβ ) is a firmly nonexpansive mapping for each β > 0;

(v) Suppose that T−1(0) 6= ∅, then ‖x− JTβ x‖+ ‖JTβ x− x̄‖2 ≤ ‖x− x̄‖2 for each x ∈ H, each x̄ ∈ T−1(0),
and each β > 0;

(vi) Suppose that T−1(0) 6= ∅, then 〈x − JTβ x, JTβ x − w〉 ≥ 0 for each x ∈ H and each w ∈ T−1(0), each
β > 0.

Remark 2.5. By Lemma 2.4 and Remark 2.1, if T is a set-valued maximal monotone mapping and JTβ
denotes a resolvent mapping of T , then JTβ is a nonexpansive mapping.

In this paper, the symbols→ and ⇀ are used to denote strong and weak convergence, respectively. F (T )
is used to denote a fixed point set of a mapping T .

3. Strong convergence solutions for (MLSCFP)

In this section, we construct an iteration scheme for (MLSCFP) provided that mappings are single-
valued and nonexpansive.

Theorem 3.1. Let H,H1, H2, H3 be real Hilbert spaces. Let Ti : Hi → Hi(i = 1, 2, 3) and T : H → H be
nonexpansive mappings. A : H1 → H, B : H2 → H and C : H3 → H are three linear and bounded operators
with their adjoint operators A∗, B∗ and C∗, respectively. Let C1 = H1, Q1 = H2, K1 = H3, {xn}, {yn} and
{zn} be sequences generated by the following algorithm:

x1 ∈ H1, y1 ∈ H2, z1 ∈ H3 chosen arbitrarily,

wn = T (Axn+Byn+Czn3 ), tn = T1(xn − τA∗(Axn − wn)),
un = T2(yn − τB∗(Byn − wn)), vn = T3(zn − τC∗(Czn − wn),
Cn+1 ×Qn+1 ×Kn+1 = {(x, y, z) ∈ Cn ×Qn ×Kn : ‖tn − x‖2 + ‖un − y‖2 + ‖vn − z‖2

≤ ‖xn − x‖2 + ‖yn − y‖2 + ‖zn − z‖2},
xn+1 = PCn+1(x1), yn+1 = PCn+1(y1), zn+1 = PCn+1(z1), n ∈ N,

(3.1)

where ξ > 0, τ ∈ (0,min{ 1
‖A‖2 ,

1
‖B‖2 ,

1
‖C‖2 }) are constants. If

Ω = {t = (p, q, r) ∈ F (T1)× F (T2)× F (T3) : Ap = Bq = Cr ∈ F (T )} 6= ∅,

then the following statements hold.

(a) {(xn, yn, zn)} converges strongly to (x∗, y∗, z∗);

(b) {wn} converges strongly to w∗, where w∗ := Ax∗ = By∗ = Cz∗, (x∗, y∗, z∗) ∈ Ω.

Proof. Let t = (p, q, r) ∈ Ω and w := Ap = Bq = Cr. Then

‖T1(xn − τA∗(Axn − wn))− p‖2 ≤ ‖xn − τA∗(Axn − wn)− p‖2
= ‖xn − p‖2 + ‖τA∗(Axn − wn)‖2 − 2τ〈xn − p,A∗(Axn − wn)〉
= ‖xn − p‖2 + ‖τA∗(Axn − wn)‖2 − 2τ〈Axn −Ap,Axn − wn〉
= ‖xn − p‖2 + ‖τA∗(Axn − wn)‖2 − τ‖Axn −Ap‖2 − τ‖Axn − wn‖2 + τ‖wn −Ap‖2
= ‖xn − p‖2 − τ(1− τ‖A∗‖2)‖Axn − wn‖2 − τ‖Axn −Ap‖2 + τ‖wn −Ap‖2
= ‖xn − p‖2 − τ(1− τ‖A∗‖2)‖Axn − wn‖2 − τ‖Axn − w‖2 + τ‖wn − w‖2,

(3.2)

‖T2(yn − τB∗(Byn − wn))− q‖2 ≤ ‖yn − τB∗(Byn − wn)− q‖2
= ‖yn − q‖2 + ‖τB∗(Byn − wn)‖2 − 2τ〈yn − q,B∗(Byn − wn)〉
= ‖yn − q‖2 + ‖τB∗(Byn − wn)‖2 − 2τ〈Byn −Bp,Byn − wn〉
= ‖yn − q‖2 + ‖τB∗(Byn − wn)‖2 − τ‖Byn −Bp‖2 − τ‖Byn − wn‖2 + τ‖wn −Bq‖2
= ‖yn − q‖2 − τ(1− τ‖B∗‖2)‖Byn − wn‖2 − τ‖Byn −Bq‖2 + τ‖wn −Bq‖2
= ‖yn − q‖2 − τ(1− τ‖B∗‖2)‖Byn − wn‖2 − τ‖Byn − w‖2 + τ‖wn − w‖2,

(3.3)
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‖T3(zn − τC∗(Czn − wn))− r‖2 ≤ ‖zn − τC∗(Czn − wn)− r‖2
= ‖zn − r‖2 + ‖τC∗(Czn − wn)‖2 − 2τ〈zn − r, C∗(Czn − wn)〉
= ‖zn − r‖2 + ‖τC∗(Czn − wn)‖2 − 2τ〈Czn − Cr,Czn − wn〉
= ‖zn − r‖2 + ‖τC∗(Czn − wn)‖2 − τ‖Czn − Cr‖2 − τ‖Czn − wn‖2 + τ‖wn − Cr‖2
= ‖zn − r‖2 − τ(1− τ‖C∗‖2)‖Czn − wn‖2 − τ‖Czn − Cr‖2 + τ‖wn − Cr‖2
= ‖zn − r‖2 − τ(1− τ‖C∗‖2)‖Czn − wn‖2 − τ‖Czn − w‖2 + τ‖wn − w‖2,

(3.4)

and
‖wn − w‖2 = ‖T (Axn+Byn+Czn3 )− w‖2 ≤ ‖Axn+Byn+Czn3 − w‖2

≤ 1
3‖Axn − w‖

2 + 1
3‖Byn − w‖

2 + 1
3‖Czn − w‖

2.
(3.5)

By (3.2)-(3.5), we have the following results:

‖T1(xn − τA∗(Axn − wn))− p‖2
≤ ‖xn − p‖2 − τ(1− τ‖A∗‖2)‖Axn − wn‖2 − τ‖Axn − w‖2 + τ‖wn − w‖2
≤ ‖xn − p‖2 − τ(1− τ‖A∗‖2)‖Axn − wn‖2 − τ‖Axn − w‖2

+ τ 1
3‖Axn − w‖

2 + τ 1
3‖Byn − w‖

2 + τ 1
3‖Czn − w‖

2,

(3.6)

‖T2(yn − τB∗(Byn − wn))− q‖2
≤ ‖yn − q‖2 − τ(1− τ‖B∗‖2)‖Byn − wn‖2 − τ‖Byn − w‖2 + τ‖wn − w‖2
≤ ‖yn − q‖2 − τ(1− τ‖B∗‖2)‖Byn − wn‖2 − τ‖Byn − w‖2

+ τ 1
3‖Axn − w‖

2 + τ 1
3‖Byn − w‖

2 + τ 1
3‖Czn − w‖

2,

(3.7)

‖T3(zn − τC∗(Czn − wn))− r‖2
≤ ‖zn − r‖2 − τ(1− τ‖C∗‖2)‖Czn − wn‖2 − τ‖Czn − w‖2 + τ‖wn − w‖2
≤ ‖zn − r‖2 − τ(1− τ‖C∗‖2)‖Czn − wn‖2 − τ‖Czn − w‖2

+ τ 1
3‖Axn − w‖

2 + τ 1
3‖Byn − w‖

2 + τ 1
3‖Czn − w‖

2.

(3.8)

By Eqs. (3.6)-(3.8), one can easily obtain

‖T1(xn−τA∗(Axn−wn))−p‖2+‖T2(yn−τB∗(Byn−wn))−q‖2+‖T3(zn−τC∗(Czn−wn))−r‖2
≤ ‖xn − p‖2 − τ(1− τ‖A∗‖2)‖Axn − wn‖2 + ‖yn − q‖2 − τ(1− τ‖B∗‖2)‖Byn − wn‖2

+ ‖zn − r‖2 − τ(1− τ‖C∗‖2)‖Czn − wn‖2
= ‖xn − p‖2 + ‖yn − q‖2 + ‖zn − r‖2 − τ(1− τ‖A∗‖2)‖Axn − wn‖2
− τ(1− τ‖B∗‖2)‖Byn − wn‖2 − τ(1− τ‖C∗‖2)‖Czn − wn‖2,

(3.9)

and
‖tn − p‖2 + ‖un − q‖2 + ‖vn − r‖2

= ‖T1(xn − τA∗(Axn − wn))− p‖2 + ‖T2(yn − τB∗(Byn − wn))− q‖2
+ ‖T3(zn − τC∗(Czn − wn))− r‖2

≤ ‖xn − p‖2 + ‖yn − q‖2 + ‖zn − r‖2 − τ(1− τ‖A∗‖2)‖Axn − wn‖2
− τ(1− τ‖B∗‖2)‖Byn − wn‖2 − τ(1− τ‖C∗‖2)‖Czn − wn‖2.

(3.10)

That is
‖tn − p‖2 + ‖un − q‖2 + ‖vn − r‖2 ≤ ‖xn − p‖2 + ‖yn − q‖2 + ‖zn − r‖2, (3.11)

which implies that t = (p, q, r) ∈ Cn ×Qn ×Kn, Ω ⊂ Cn ×Qn ×Kn and Cn ×Qn ×Kn 6= ∅ for all n ∈ N.
Further, the following relationships are obvious:

Cn+1 ⊂ Cn, Qn+1 ⊂ Qn, Kn+1 ⊂ Kn,
xn+1 = PCn+1(x1) ∈ Cn, yn+1 = PQn+1(y1) ∈ Qn, zn+1 = PKn+1(z1) ∈ Kn.

(3.12)

Hence, again from Eq. (3.1) we have

‖xn+1 − x1‖ ≤ ‖x1 − p‖, ‖yn+1 − y1‖ ≤ ‖y1 − q‖, ‖zn+1 − z1‖ ≤ ‖z1 − r‖, (3.13)
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which yields that {xn}, {yn}, {zn} are all bounded. On the other hand, by Eq. (2.1), we have

‖xn+1 − xn‖2 + ‖x1 − xn‖2 = ‖xn+1 − PCn(x1)‖2 + ‖x1 − PCn(x1)‖2 ≤ ‖xn+1 − x1‖2,
‖yn+1 − yn‖2 + ‖y1 − yn‖2 = ‖yn+1 − PQn(y1)‖2 + ‖y1 − PQn(y1)‖2 ≤ ‖yn+1 − y1‖2,
‖zn+1 − zn‖2 + ‖z1 − zn‖2 = ‖zn+1 − PKn(z1)‖2 + ‖z1 − PKn(z1)‖2 ≤ ‖zn+1 − z1‖2.

(3.14)

So,
‖x1 − xn‖ ≤ ‖xn+1 − x1‖, ‖y1 − yn‖ ≤ ‖yn+1 − y1‖, ‖z1 − zn‖ ≤ ‖zn+1 − z1‖,

which shows the limits of {‖xn − x1‖}, {‖yn − y1‖} and {‖zn − z1‖} exist. We can also obtain easily
lim
n→∞

‖xn − xm‖ = lim
n→∞

‖yn − ym‖ = lim
n→∞

‖zn − zm‖ = 0 for m > n, since it just needs to replace n+ 1 with

m for some m > n in Eqs. (3.12) and (3.14). So, all {xn}, {yn}, {zn} are Cauchy sequences.
Setting xn → x∗, yn → y∗, zn → z∗, we prove (x∗, y∗, z∗) ∈ Ω. Firstly, we say ‖xn − T1xn‖ → 0,

‖yn − T2yn‖ → 0, ‖zn − T3zn‖ → 0. Thanks to Eqs. (3.1) and (3.12),

‖tn − xn+1‖2 + ‖un − yn+1‖2 + ‖vn − zn+1‖2 ≤ ‖xn − xn+1‖2 + ‖yn − yn+1‖2 + ‖zn − zn+1‖2. (3.15)

Hence, lim
n→∞

‖tn − xn+1‖ = lim
n→∞

‖un − yn+1‖ = lim
n→∞

‖vn − zn+1‖ = 0. Further, we have

lim
n→∞

‖tn − xn‖ = lim
n→∞

‖un − yn‖ = lim
n→∞

‖vn − zn‖ = 0. (3.16)

By Eq. (3.10), we have

L‖Axn − wn‖2 + L‖Byn − wn‖2 + L‖Czn − wn‖2
≤ ‖xn − p‖2 + ‖yn − q‖2 + ‖zn − r‖2 − ‖tn − p‖2 − ‖un − q‖2 − ‖vn − r‖2
≤ M‖xn − tn‖+ M‖yn − un‖+ M‖zn − vn‖,

(3.17)

where
L = min{τ(1− τ‖A∗‖2), τ(1− τ‖C∗‖2), τ(1− τ‖B∗‖2)},
M = supn∈N{‖xn − p‖+ ‖tn − p‖+ ‖yn − q‖+ ‖un − q‖+ ‖zn − r‖+ ‖vn − r‖}.

(3.18)

By Eqs. (3.16) and (3.17), we obtain

lim
n→∞

‖Axn − wn‖ = 0, lim
n→∞

‖Byn − wn‖ = 0, lim
n→∞

‖Czn − wn‖ = 0. (3.19)

Further, because T1, T2 and T3 are all nonexpansive mappings, we have

‖xn − T1xn‖ = ‖xn − tn + tn − T1xn‖ ≤ ‖xn − tn‖+ ‖tn − T1xn‖
= ‖xn − tn‖+ ‖T1(xn − τA∗(Axn − wn))− T1xn‖
≤ ‖xn − tn‖+ ‖τA∗(Axn − wn))‖,

‖yn − T2yn‖ = ‖yn − un + un − T2yn‖ ≤ ‖yn − un‖+ ‖un − T2yn‖
= ‖yn − un‖+ ‖T2(yn − τB∗(Byn − wn))− T2yn‖
≤ ‖yn − un‖+ ‖τB∗(Byn − wn))‖,

‖zn − T3zn‖ = ‖zn − vn + vn − T3zn‖ ≤ ‖zn − vn‖+ ‖vn − T3zn‖
= ‖zn − vn‖+ ‖T3(zn − τC∗(Czn − wn))− T3zn‖
≤ ‖zn − vn‖+ ‖τC∗(Czn − wn)‖.

(3.20)

So, from Eqs. (3.16), (3.19) and (3.20) we have

lim
n→∞

‖xn − T1xn‖ = 0, lim
n→∞

‖yn − T2yn‖ = 0, lim
n→∞

‖zn − T3zn‖ = 0. (3.21)

Noting xn → x∗, yn → y∗, zn → z∗, it follows from (3.21) that

x∗ ∈ F (T1), y
∗ ∈ F (T2), z

∗ ∈ F (T3). (3.22)
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Further, by virtue of Eq. (3.19) and Axn → Ax∗, Byn → By∗, Czn → Cz∗, we have

wn → w∗ : Ax∗ = By∗ = Cz∗. (3.23)

Finally, we prove w∗ ∈ F (T ). By Eqs. (3.1) and (3.19), the following inequality holds.

‖wn − Twn‖ = ‖T (Axn+Byn+Czn3 )− Twn‖ ≤ ‖Axn+Byn+Czn3 − wn‖
≤ 1

3‖Axn − wn‖+ 1
3‖Byn − wn‖+ 1

3‖Czn − wn‖.
(3.24)

So,
lim
n→∞

‖wn − Twn‖ = 0. (3.25)

Thus w∗ ∈ F (T ). This completes the proof of Theorem 3.1.

The following convergence theorems can be established by applying Theorem 3.1.

If H1 = H2 in Theorem 3.1, then Theorem 3.2 holds.

Theorem 3.2. Let H,H1, H3 be real Hilbert spaces. Let Ti : H1 → H1(i = 1, 2), T3 : H3 → H3 and
T : H → H be nonexpansive mappings. A,B : H1 → H and C : H3 → H are three linear and bounded
operators with their adjoint operators A∗, B∗ and C∗, respectively. Let C1 = Q1 = H1, K1 = H3, {xn},
{yn} and {zn} be sequences generated by the algorithm (3.1). If

Ω = {t = (p, q, r) ∈ F (T1)× F (T2)× F (T3) : Ap = Bq = Cr ∈ F (T )} 6= ∅,

then the following statements hold.

(a) {(xn, yn, zn)} converges strongly to (x∗, y∗, z∗);

(b) {wn} converges strongly to w∗, where w∗ := Ax∗ = By∗ = Cz∗, (x∗, y∗, z∗) ∈ Ω.

If H1 = H2 = H3 in Theorem 3.1, we have Theorem 3.3.

Theorem 3.3. Let H,H1 be real Hilbert spaces. Let Ti : H1 → H1(i = 1, 2, 3) and T : H → H be
nonexpansive mappings. A,B,C : H1 → H are three linear and bounded operators with their adjoint
operators A∗, B∗ and C∗, respectively. Let C1 = Q1 = K1 = H1, {xn}, {yn} and {zn} be sequences
generated by the algorithm (3.1). If

Ω = {t = (p, q, r) ∈ F (T1)× F (T2)× F (T3) : Ap = Bq = Cr ∈ F (T )} 6= ∅,

then the following statements hold.

(a) {(xn, yn, zn)} converges strongly to (x∗, y∗, z∗);

(b) {wn} converges strongly to w∗, where w∗ := Ax∗ = By∗ = Cz∗, (x∗, y∗, z∗) ∈ Ω.

If H = H1 = H2 and A = I in Theorem 3.1, then Theorem 3.4 holds.

Theorem 3.4. Let H,H3 be real Hilbert spaces. Let T, Ti : H → H(i = 1, 2), T3 : H3 → H3 be nonexpansive
mappings. B : H → H, C : H3 → H are two linear and bounded operators with their adjoint operators
B∗ and C∗, respectively. Let C1 = Q1 = H, K1 = H3, {xn}, {yn} and {zn} be sequences generated by the
following algorithm:

x1, y1 ∈ H, z1 ∈ H3 chosen arbitrarily,

wn = T (xn+Byn+Czn3 ), tn = T1(xn − τ(xn − wn)),
un = T2(yn − τB∗(Byn − wn)), vn = T3(zn − τC∗(Czn − wn),
Cn+1 ×Qn+1 ×Kn+1 = {(x, y, z) ∈ Cn ×Qn ×Kn : ‖tn − x‖2 + ‖un − y‖2 + ‖vn − z‖2

≤ ‖xn − x‖2 + ‖yn − y‖2 + ‖zn − z‖2},
xn+1 = PCn+1(x1), yn+1 = PCn+1(y1), zn+1 = PCn+1(z1), n ∈ N,



Z. He, J. Sun , J. Nonlinear Sci. Appl. 9 (2016), 906–919 913

where ξ > 0, τ ∈ (0,min{1, 1
‖B‖2 ,

1
‖C‖2 }) are constants. If

Ω = {t = (p, q, r) ∈ F (T1)× F (T2)× F (T3) : p = Bq = Cr ∈ F (T )} 6= ∅,

then the following statements hold.

(a) {(xn, yn, zn)} converges strongly to (x∗, y∗, z∗);

(b) {wn} converges strongly to x∗, where x∗ = By∗ = Cz∗, (x∗, y∗, z∗) ∈ Ω.

If H = H1 = H2 and A = B = I in Theorem 3.1, then Theorem 3.5 holds.

Theorem 3.5. Let H,H3 be real Hilbert spaces. Let T, Ti : H → H(i = 1, 2), T3 : H3 → H3 be nonexpansive
mappings. C : H3 → H is linear and bounded operators with its adjoint operators C∗. Let C1 = Q1 = H,
K1 = H3, {xn}, {yn} and {zn} be sequences generated by the following algorithm:

x1, y1 ∈ H, z1 ∈ H3 chosen arbitrarily,

wn = T (xn+yn+Czn3 ), tn = T1(xn − τ(xn − wn)),
un = T2(yn − τ(yn − wn)), vn = T3(zn − τC∗(Czn − wn),
Cn+1 ×Qn+1 ×Kn+1 = {(x, y, z) ∈ Cn ×Qn ×Kn : ‖tn − x‖2 + ‖un − y‖2 + ‖vn − z‖2

≤ ‖xn − x‖2 + ‖yn − y‖2 + ‖zn − z‖2},
xn+1 = PCn+1(x1), yn+1 = PCn+1(y1), zn+1 = PCn+1(z1), n ∈ N,

where ξ > 0, τ ∈ (0,min{1, 1
‖C‖2 }) are constants. If Ω = {r ∈ F (T3) : p = Cr ∈ F (T )

⋂
F (T1)

⋂
F (T2)} 6= ∅,

then the following statements hold.

(a) {(xn, yn, zn)} converges strongly to (x∗, x∗, z∗);

(b) {wn} converges strongly to x∗, where x∗ = Cz∗, z∗ ∈ Ω.

Proof. Ω can be rewritten as

Ω = {t = (p, p, r) ∈ F (T1)× F (T2)× F (T3) : p = Cr ∈ F (T )} 6= ∅,

hence Theorem 3.5 is correct by Theorem 3.1.

If H = H1 = H2 = H3 in Theorem 3.1, we have Theorem 3.6.

Theorem 3.6. Let H,H1 be real Hilbert spaces. Let T1, T2, T3, T : H → H be nonexpansive mappings.
A,B,C : H → H is linear and bounded operators with their adjoint operators A∗, B∗, C∗, respectively. Let
C1 = Q1 = K1 = H, {xn}, {yn} and {zn} be sequences generated by the algorithm (3.1). If

Ω = {t = (p, q, r) ∈ F (T1)× F (T2)× F (T3) : Ap = Bq = Cr ∈ F (T )} 6= ∅,

then the following statements hold.

(a) {(xn, yn, zn)} converges strongly to (x∗, y∗, z∗);

(b) {wn} converges strongly to w∗, where w∗ := Ax∗ = By∗ = Cz∗, (x∗, y∗, z∗) ∈ Ω.

If H = H1 = H2 = H3 and A = B = C = I in Theorem 3.1, we have

Theorem 3.7. Let H be real Hilbert spaces. Let T1, T2, T3, T : H → H be nonexpansive mappings. Let
C1 = Q1 = K1 = H, {xn}, {yn} and {zn} be sequences generated by the following algorithm:

x1, y1, z1 ∈ H chosen arbitrarily,

wn = T (xn+yn+zn3 ), tn = T1(xn − τ(xn − wn)),
un = T2(yn − τ(yn − wn)), vn = T3(zn − τ(zn − wn),
Cn+1 ×Qn+1 ×Kn+1 = {(x, y, z) ∈ Cn ×Qn ×Kn : ‖tn − x‖2 + ‖un − y‖2 + ‖vn − z‖2

≤ ‖xn − x‖2 + ‖yn − y‖2 + ‖zn − z‖2},
xn+1 = PCn+1(x1), yn+1 = PCn+1(y1), zn+1 = PCn+1(z1), n ∈ N,

where ξ > 0, τ ∈ (0, 1) are constants. If Ω = F (T1)
⋂
F (T2)

⋂
F (T3)

⋂
F (T ) 6= ∅, then {xn}, {yn}, {zn} and

{wn} all converge strongly to p, where p ∈ Ω.
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Proof. Ω can be rewritten as

Ω = {t = (p, q, r) ∈ F (T1)× F (T2)× F (T3) : p = q = r ∈ F (T )} 6= ∅.

Hence, Theorem 3.7 can be deduced by Theorem 3.1.

Remark 3.8. The problem studied by Theorem 3.6 is a multilevel split common fixed point problem under
the same space. And the problem studied by Theorem 3.7 is one to find a common fixed point to some
nonlinear mappings.

4. Applications to multilevel split variational inclusion problems

In this section, we apply the algorithm (3.1) to multilevel split variational inclusion problems.
Let T : H → 2H be a set-valued mapping. The classical variational inclusion problem((CVIP), for

short) is to find x∗ ∈ H such that 0 ∈ Tx∗ or x∗ ∈ T−1(0). The point x∗ is also called a zero point of
T . When T is a set-valued maximal monotone mapping, a well known method to solve the (CVIP) is the
proximal point algorithm established by the resolvent mapping JTr = (I + rT )−1, r > 0. For more detail,
see the References [9, 11, 19, 25]. Besides of the proximal point algorithm, some other iterative algorithms
are also introduced in [4, 16, 17], which are used to find the approximation solution of the (CVIP).

In 2011, A. Moudafi [22] generalized the (CVIP) to the split variational inclusion problems(SFVIP ,
for short ). The so-called SFVIP is the following problem:

Find p ∈ H1 such that 0 ∈ T1(p) and 0 ∈ T2(Ap)( or p ∈ T−11 (0), Ap ∈ T−12 (0)),

where A : H1 → H2 is a linear and bounded operator with its adjoint operator A∗. T1 : H1 → 2H1 and
T2 : H2 → 2H2 are two set-valued maximal monotone mappings.

In [22], prof. Moudafi obtained a weak convergence solution of the (SFVIP) by the iterative sequence
{xn} defined

xn+1 = JT1λ (xn + γA∗(JT2λ − I)Axn),

where λ and γ are fixed numbers. To obtain a strong convergence solution of the (SFVIP), prof. Chuang
[21] introduced the following Halpern-Mann type iterative process with perturbation:

xn+1 = anu+ bnxn + cnJ
T1
βn

(xn − ρnA∗(I − JT2βn )Axn) + dnvn.

Then he proved the above sequence {xn} converges strongly to a solution of the (SFVIP) under some
appropriate conditions.

Very recently, the (SFVIP) has been generalized to the general split variational inclusion problem((GSVIP),
for short) by prof. Shih-sen Chang et al. The so-called (GSVIP) is the following problem:

Find p ∈ H1 such that 0 ∈
∞⋂
i=1

Ti(p), 0 ∈
∞⋂
i=1

Si(Ap)(p ∈
∞⋂
i=1

T−1i (0), Ap ∈
∞⋂
i=1

S−1i (0)),

where A : H1 → H2 is a linear and bounded operator with its adjoint operator A∗. Ti : H1 → 2H1 and
Si : H2 → 2H2 (i ∈ N) are two families of set-valued maximal monotone mappings. Let {xn} be defined by

xn+1 = αnxn + ξnf(xn) +
∞∑
i=1

cn,iJ
Ti
βn,i

(xn − γn,iA∗(I − JSi
βn,i

)Axn).

Then Chang and Wang [9] proved that {xn} converges strongly to a solution of the (GSVIP) under some
appropriate conditions.

We note that both the (SFVIP) and the (GSVIP) are confined to two real Hilbert spaces. Naturally,
an important problem is whether both of them can be generalized to more set-valued maximal monotone
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mappings under more different Hilbert spaces or not. Based on this question, in this paper, we study and
investigate the following new problem:

(MSVIP) Find u ∈ H1, v ∈ H2, w ∈ H3 such that 0 ∈ S1(u), 0 ∈ S2(v), 0 ∈ S3(w)
and t := Au = Bv = Cw, 0 ∈ S(t),

which can also be rewritten as follows.

(MSVIP) Find u ∈ H1, v ∈ H2, w ∈ H3 such that u ∈ S−11 (0), v ∈ S−12 (0), w ∈ S−13 (0)
and t := Au = Bv = Cw, t ∈ S−1(0),

where A : H1 → H, B : H2 → H and C : H3 → H are three linear and bounded operators with their adjoint
operators A∗, B∗ and C∗, respectively. Si : Hi → 2Hi and S : H → 2H(i = 1, 2, 3) are set-valued maximal
monotone mappings. We regard the problem as a multilevel split variational inclusion problem((MSVIP),
for short). The following examples are some special cases of (MSVIP).

Example 4.1. If i = 1 in (MSVIP), then (MSVIP) reduces to (SFVIP).

Example 4.2. If H1 = H2(or H2 = H3), then (MSVIP) reduces to find

u, v ∈ H1, w ∈ H2( or u ∈ H1, v, w ∈ H2) such that 0 ∈ S1(u), 0 ∈ S2(v), 0 ∈ S3(w)
and t := Au = Bv = Cw, 0 ∈ S(t),

where A,B : H1 → H, C : H2 → H(or A : H1 → H, B,C : H2 → H) are three linear and bounded
operators with their adjoint operators A∗, B∗ and C∗, respectively. S1, S2 : H1 → 2H1 , S3 : H2 → 2H2 (or
S1 : H1 → 2H1 , S2, S3 : H2 → 2H2) and S : H → 2H are set-valued maximal monotone mappings.

Example 4.3. If H1 = H2 = H3, then (MSVIP) reduces to find

u, v, w ∈ H1 such that 0 ∈ S1(u)
⋂
S2(v)

⋂
S3(w) and t := Au = Bv = Cw, 0 ∈ S(t),

where A : H1 → H, B : H1 → H and C : H1 → H are three linear and bounded operators with their adjoint
operators A∗, B∗ and C∗, respectively. S1, S2, S3 : H1 → 2H1 , and S : H → 2H are set-valued maximal
monotone mappings.

Example 4.4. If H1 = H2 = H3 = H, then (MSVIP) reduces to find

u, v, w ∈ H1 such that 0 ∈ S1(u)
⋂
S2(v)

⋂
S3(w) and t := Au = Bv = Cw, 0 ∈ S(t),

where A : H → H, B : H → H and C : H → H are three linear and bounded operators with their adjoint
operators A∗, B∗ and C∗, respectively. S1, S2, S3, S : H → 2H are set-valued maximal monotone mappings.

In essence, the case in Example 4.4 is a multilevel split solution problem under the same space. But
until now, we haven’t found any researched results related to this problem.

Example 4.5. If H1 = H2 = H3 = H and A = B = C is an identity operator, then (MSVIP) reduces to
find p ∈ H such that 0 ∈ S1(p)

⋂
S2(p)

⋂
S3(p)

⋂
S(p), where S1, S2, S3, S : H → 2H are set-valued maximal

monotone mappings.

In essence, the case in Example 4.5 belongs to a class of problems to find a common solution to some
variational inclusion problems. It has been investigated by [16, 17].

Remark 4.6. Although Examples 4.2 - 4.4 are all the special cases of (MSVIP), they are still different from
(SFVIP) obviously. So, these special cases are also new problems.

Let S1, S2, S3, S be set-valued maximal monotone mappings, their resolvent mappings are
JS1
ξ , JS2

ξ , JS3
ξ , JSξ (ξ > 0), respectively. Next, we will give some strong convergence algorithms for (MSVIP).
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Theorem 4.7. Let H,H1, H2, H3 be real Hilbert spaces. Let Si : Hi → 2Hi(i = 1, 2, 3) and S : H → 2H

be set-valued maximal monotone mappings. A : H1 → H, B : H2 → H and C : H3 → H are three linear
and bounded operators with their adjoint operators A∗, B∗ and C∗, respectively. Let C1 = H1, Q1 = H2,
K1 = H3, {xn}, {yn} and {zn} be sequences generated by the following algorithm:

x1 ∈ H1, y1 ∈ H2, z1 ∈ H3 chosen arbitrarily,

wn = JSξ (Axn+Byn+Czn3 ), tn = JS1
ξ (xn − τA∗(Axn − wn)),

un = JS2
ξ (yn − τB∗(Byn − wn)), vn = JS3

ξ (zn − τC∗(Czn − wn),

Cn+1×Qn+1×Kn+1={(x, y, z)∈Cn×Qn×Kn :‖tn−x‖2+‖un−y‖2+‖vn−z‖2
≤ ‖xn − x‖2 + ‖yn − y‖2 + ‖zn − z‖2},

xn+1 = PCn+1(x1), yn+1 = PCn+1(y1), zn+1 = PCn+1(z1), n ∈ N,

(4.1)

where ξ > 0, τ ∈ (0,min{ 1
‖A‖2 ,

1
‖B‖2 ,

1
‖C‖2 }) are constants. If

Ω = {t = (p, q, r) ∈ S−11 (0)× S−12 (0)× S−13 (0) : Ap = Bq = Cr ∈ S−1(0)} 6= ∅,

then the following statements hold.

(a) {(xn, yn, zn)} converges strongly to (p, q, r);

(b) {wn} converges strongly to w, where w := Ap = Bq = Cr, (p, q, r) ∈ Ω.

Proof. By Remark 2.5, all JS1
ξ , JS2

ξ , JS3
ξ , JSξ are nonexpansive. So, by Theorem 3.1, Theorem 4.7 is correct.

This completes the proof of Theorem 4.7.

The following convergence theorems can be established by applying Theorem 4.7.
If H1 = H2 in Theorem 4.7, then Theorem 4.8 holds.

Theorem 4.8. Let H,H1, H3 be real Hilbert spaces. Let Si : H1 → 2H1(i = 1, 2), S3 : H3 → 2H3 and
S : H → 2H be set-valued maximal monotone mappings. A,B : H1 → H and C : H3 → H are three
linear and bounded operators with their adjoint operators A∗, B∗ and C∗, respectively. Let C1 = Q1 = H1,
K1 = H3, {xn}, {yn} and {zn} be sequences generated by the algorithm (4.1) . If

Ω = {t = (p, q, r) ∈ S−11 (0)× S−12 (0)× S−13 (0) : Ap = Bq = Cr ∈ S−1(0)} 6= ∅,

then the following statements hold.

(a) {(xn, yn, zn)} converges strongly to (p, q, r);

(b) {wn} converges strongly to w, where w := Ap = Bq = Cr, (p, q, r) ∈ Ω.

If H1 = H2 = H3 in Theorem 4.7, we have Theorem 4.9.

Theorem 4.9. Let H,H1 be real Hilbert spaces. Let Si : H1 → 2H1(i = 1, 2, 3) and S : H → 2H be set-
valued maximal monotone mappings. A,B,C : H1 → H are three linear and bounded operators with their
adjoint operators A∗, B∗ and C∗, respectively. Let C1 = Q1 = K1 = H1, {xn}, {yn} and {zn} be sequences
generated by the algorithm (4.1). If

Ω = {t = (p, q, r) ∈ S−11 (0)× S−12 (0)× S−13 (0) : Ap = Bq = Cr ∈ S−1(0)} 6= ∅,

then the following statements hold.

(a) {(xn, yn, zn)} converges strongly to (p, q, r);

(b) {wn} converges strongly to w, where w := Ap = Bq = Cr, (p, q, r) ∈ Ω.

If H = H1 = H2 and A = I in Theorem 4.7, then Theorem 4.10 holds.
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Theorem 4.10. Let H,H3 be real Hilbert spaces. Let S, Si : H → 2H(i = 1, 2), S3 : H3 → 2H3 be set-valued
maximal monotone mappings. B : H → H, C : H3 → H are two linear and bounded operators with their
adjoint operators B∗ and C∗, respectively. Let C1 = Q1 = H, K1 = H3, {xn}, {yn} and {zn} be sequences
generated by the following algorithm:

x1, y1 ∈ H, z1 ∈ H3 chosen arbitrarily,

wn = JSξ (xn+Byn+Czn3 ), tn = JS1
ξ (xn − τ(xn − wn)),

un = JS2
ξ (yn − τB∗(Byn − wn)), vn = JS3

ξ (zn − τC∗(Czn − wn),

Cn+1 ×Qn+1 ×Kn+1 = {(x, y, z) ∈ Cn ×Qn ×Kn : ‖tn − x‖2 + ‖un − y‖2 + ‖vn − z‖2
≤ ‖xn − x‖2 + ‖yn − y‖2 + ‖zn − z‖2},

xn+1 = PCn+1(x1), yn+1 = PCn+1(y1), zn+1 = PCn+1(z1), n ∈ N,

where ξ > 0, τ ∈ (0,min{1, 1
‖B‖2 ,

1
‖C‖2 }) are constants. If

Ω = {t = (p, q, r) ∈ S−11 (0)× S−12 (0)× S−13 (0) : p = Bq = Cr ∈ S−1(0)} 6= ∅,

then the following statements hold.

(a) {(xn, yn, zn)} converges strongly to (p, q, r);

(b) {wn} converges strongly to p, where p = Bq = Cr, (p, q, r) ∈ Ω.

If H = H1 = H2 and A = B = I in Theorem 4.7, then Theorem 4.11 holds.

Theorem 4.11. Let H,H3 be real Hilbert spaces. Let S, Ti : H → 2H(i = 1, 2), T3 : H3 → 2H3 be set-valued
maximal monotone mappings. C : H3 → H is linear and bounded operators with its adjoint operators C∗.
Let C1 = Q1 = H, K1 = H3, {xn}, {yn} and {zn} be sequences generated by the following algorithm:

x1, y1 ∈ H, z1 ∈ H3 chosen arbitrarily,

wn = JSξ (xn+yn+Czn3 ), tn = JT1ξ (xn − τ(xn − wn)),

un = JT2ξ (yn − τ(yn − wn)), vn = JT3ξ (zn − τC∗(Czn − wn),

Cn+1 ×Qn+1 ×Kn+1 = {(x, y, z) ∈ Cn ×Qn ×Kn : ‖tn − x‖2 + ‖un − y‖2 + ‖vn − z‖2
≤ ‖xn − x‖2 + ‖yn − y‖2 + ‖zn − z‖2},

xn+1 = PCn+1(x1), yn+1 = PCn+1(y1), zn+1 = PCn+1(z1), n ∈ N,

where ξ > 0, τ ∈ (0,min{1, 1
‖C‖2 }) are constants. If

Ω = {t = (p, p, r) ∈ T−11 (0)× T−12 (0)× T−13 (0) : p = Cr ∈ S−1(0)} 6= ∅,

then the following statements hold.

(a) {(xn, yn, zn)} converges strongly to (p, p, r);

(b) {wn} converges strongly to p, where p = Cr, (p, p, r) ∈ Ω.

If H = H1 = H2 = H3 in Theorem 4.7, we have Theorem 4.12.

Theorem 4.12. Let H,H1 be real Hilbert spaces. Let T1, T2, T3, S : H → 2H be set-valued maximal monotone
mappings. A,B,C : H → H is linear and bounded operators with their adjoint operators A∗, B∗ and C∗,
respectively. Let C1 = Q1 = K1 = H, {xn}, {yn} and {zn} be sequences generated by the following algorithm:

x1, y1, z1 ∈ H chosen arbitrarily,

wn = JSξ (Axn+Byn+Czn3 ), tn = JT1ξ (xn − τA∗(Axn − wn)),

un = JT2ξ (yn − τB∗(Byn − wn)), vn = JT3ξ (zn − τC∗(Czn − wn),

Cn+1 ×Qn+1 ×Kn+1 = {(x, y, z) ∈ Cn ×Qn ×Kn : ‖tn − x‖2 + ‖un − y‖2 + ‖vn − z‖2
≤ ‖xn − x‖2 + ‖yn − y‖2 + ‖zn − z‖2},

xn+1 = PCn+1(x1), yn+1 = PCn+1(y1), zn+1 = PCn+1(z1), n ∈ N,
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where ξ > 0, τ ∈ (0,min{ 1
‖A‖2 ,

1
‖B‖2 ,

1
‖C‖2 }) are constants. If

Ω = {t = (p, q, r) ∈ T−11 (0)× T−12 (0)× T−13 (0) : Ap = Bq = Cr ∈ S−1(0)} 6= ∅,

then the following statements hold.

(a) {(xn, yn, zn)} converges strongly to (p, q, r);

(b) {wn} converges strongly to w, where w := Ap = Bq = Cr, (p, q, r) ∈ Ω.

If H = H1 = H2 = H3 and A = B = C = I in Theorem 4.7, we have Theorem 4.13.

Theorem 4.13. Let H be real Hilbert spaces. Let T1, T2, T3, S : H → 2H be set-valued maximal monotone
mappings. Let C1 = Q1 = K1 = H, {xn}, {yn} and {zn} be sequences generated by the following algorithm:

x1, y1, z1 ∈ H chosen arbitrarily,

wn = JSξ (xn+yn+zn3 ), tn = JT1ξ (xn − τ(xn − wn)),

un = JT2ξ (yn − τ(yn − wn)), vn = JT3ξ (zn − τ(zn − wn),

Cn+1 ×Qn+1 ×Kn+1 = {(x, y, z) ∈ Cn ×Qn ×Kn : ‖tn − x‖2 + ‖un − y‖2 + ‖vn − z‖2
≤ ‖xn − x‖2 + ‖yn − y‖2 + ‖zn − z‖2},

xn+1 = PCn+1(x1), yn+1 = PCn+1(y1), zn+1 = PCn+1(z1), n ∈ N,

where ξ > 0, τ ∈ (0, 1) are constants. If Ω = T−11 (0)
⋂
T−12 (0)

⋂
T−13 (0)

⋂
S−1(0) 6= ∅, then {xn}, {yn},

{zn} and {wn} converge all strongly to p, where p ∈ Ω.

Proof. Ω can be rewritten as

Ω = {t = (p, q, r) ∈ T−11 (0)× T−12 (0)× T−13 (0) : p = q = r ∈ S−1(0)} 6= ∅.

Hence, Theorem 4.13 can be deduced by Theorem 4.7.

Remark 4.14. The problem studied by Theorem 4.12 is a multilevel split variational inclusion problem
under the same space. And the problem studied by Theorem 4.13 is one to find a common solution to
some variational inclusion problems. Theorem 4.7 and Theorem 4.12 generalize many known results in the
literature, for example, [3, 4, 9, 11, 12, 16, 17, 19, 22, 24, 25] and references therein.

5. Conclusion

It is well known that many nonlinear problems can be solved by numerical methods. In general, a
numerical method only solves a problem. However, if some nonlinear problems can be converted into the
fixed point problem of mappings, then by the geometrical knowledge of Hilbert spaces and our experience,
these problems can be solved by an iterative method of fixed point of nonlinear mappings, for example[14].
This shows that the iterative method can provide an approach to solve different problems which implies
that it is important.

The iterative method is an important method to solve some nonlinear problems. However, for a problem
with logic choice, for example, the differential systems with impulsive effects suffered by logic choice, see
[27], can we solve such a problem by the iterative method?
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