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Abstract

In this paper, we prove some new common fixed point theorems for compatible and weakly compatible
self-maps under φ-contractive conditions in Menger probabilistic G-metric spaces. Our results improve and
generalize many comparable results in existing literature. Finally, an example is given as an application of
our main results. c©2016 All rights reserved.
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1. Introduction

The concept of a probabilistic metric space was introduced and studied by Menger [10, 13]. Since then,
many fixed point results for maps satisfying different contractive conditions have been studied [4, 5, 6, 15, 17].
Mustafa and Sims [12] defined the concept of a G-metric space and many fixed point theorems for contractive
maps in G-metric spaces have been studied [1, 2]. Zhou et al. [16] defined the notion of a generalized
probabilistic metric space (or a PGM -space), which was a generalization of a PM-space and a G-metric
space. Since then, some results in Menger probabilistic G-metric spaces have been studied [18].

Jungck [7] initiated the concept of compatible maps in metric spaces and obtained some common fixed
point theorems. In [8], the concept of weakly compatible maps was given. Mishra [11] introduced the
concept of compatible maps in a Menger space, then, other authors have obtained many fixed point results
for compatible maps and weakly compatible maps [3, 9, 14].
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In this paper, we first introduce the notion of compatible maps and weakly compatible maps in Menger
probabilistic G-metric spaces. Then, we prove some new common fixed point theorems for compatible maps
and weakly compatible maps satisfying φ-contractive conditions in Menger probabilisticG-metric spaces with
a continuous t-norm ∆ of H-type. As an application, we present an example to illustrate the validity of our
main results. Our results generalize the results of [3] and many other results in corresponding literatures.

2. Preliminaries

Let R denote the set of reals, R+ the nonnegative reals and Z+ be the set of all positive integers.
A mapping F : R → R+ is called a distribution function if it is nondecreasing and left continuous with
inf
t∈R

F (t) = 0 and sup
t∈R

F (t) = 1. We will denote by D the set of all distribution functions, while H will always

denote the specific distribution function defined by

H(t) =

{
0, t ≤ 0,
1, t > 0.

A mapping ∆ : [0, 1] × [0, 1] → [0, 1] is called a triangular norm (for short, a t-norm) if the following
conditions are satisfied:

(1) ∆(a, 1) = a;
(2) ∆(a, b) = ∆(b, a);
(3) a ≥ b, c ≥ d⇒ ∆(a, c) ≥ ∆(b, d);
(4) ∆(a,∆(b, c)) = ∆(∆(a, b), c).
A typical example of a t-norm is ∆min, where ∆min(a, b) = min{a, b}, for each a, b ∈ [0, 1].

Definition 2.1 ([5]). A t-norm ∆ is said to be of H-type if the family of functions {∆m(t)}∞m=1 is equicon-
tinuous at t = 1, where

∆1(t) = ∆(t, t), ∆m(t) = ∆(t,∆m−1(t)), for m = 2, 3, ..., t ∈ [0, 1].
The t-norm ∆min is a trivial example of H-type, but there are other t-norms ∆ of H-type with ∆ 6= ∆min

(see, e.g., [5]).

Definition 2.2 ([12]). Let X be a nonempty set and G : X × X × X → R+ be a function satisfying the
following conditions:

(G-1) G(x, y, z) = 0 if x = y = z for all x, y, z ∈ X;
(G-2) G(x, x, y) > 0 for all x, y ∈ X with x 6= y;
(G-3) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with z 6= y;
(G-4) G(x, y, z) = G(x, z, y) = G(y, z, x) = · · · for all x, y, z ∈ X;
(G-5) G(x, y, z) ≤ G(x, a, a) +G(a, y, z) for all x, y, z, a ∈ X.

Then G is called a generalized metric or a G-metric on X and the pair (X,G) is a G-metric space.

Definition 2.3 ([16]). A Menger probabilistic G-metric space (shortly, a PGM -space) is a triple (X,G∗,∆),
where X is a nonempty set, ∆ is a continuous t-norm and G∗ is a mapping from X ×X ×X into D (G∗x,y,z
denotes the value of G∗ at the point (x, y, z)) satisfying the following conditions:

(PGM-1) G∗x,y,z(t) = 1 for all x, y, z ∈ X and t > 0 if and only if x = y = z;
(PGM-2) G∗x,x,y(t) ≥ G∗x,y,z(t) for all x, y, z ∈ X with z 6= y and t > 0;
(PGM-3) G∗x,y,z(t) = G∗x,z,y(t) = G∗y,x,z(t) = ...(symmetry in all three variables);
(PGM-4) G∗x,y,z(t+ s) ≥ ∆(G∗x,a,a(s), G

∗
a,y,z(t)) for all x, y, z, a ∈ X and s, t ≥ 0.

Example 2.4. Let (X,G) be a G-metric space. Define a mapping G∗ : X ×X ×X → D by

G∗(x, y, z)(t) = G∗x,y,z(t) = H(t−G(x, y, z)) (2.1)

for x, y, z ∈ X and t > 0. Then (X,G∗,∆) is a Menger PGM -space called the induced Menger PGM -space
by (X,G).
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Definition 2.5 ([16]). Let (X,G∗,∆) be a Menger PGM -space and x0 be any point in X. For any ε > 0
and δ with 0 < δ < 1, and (ε, δ)-neighborhood of x0 is the set of all points y in X for which G∗x0,y,y(ε) > 1−δ
and G∗y,x0,x0(ε) > 1− δ. We write

Nx0(ε, δ) = {y ∈ X : G∗x0,y,y(ε) > 1− δ,G∗y,x0,x0(ε) > 1− δ},

which means that Nx0(ε, δ) is the set of all points y in X for which the probability of the distance from x0
to y being less than ε is greater than 1− δ.
Definition 2.6 ([16]). Let (X,G∗,∆) be a PGM -space, {xn} is a sequence in X.

(1) {xn} is said to be convergent to a point x ∈ X (write xn → x), if for any ε > 0 and 0 < δ < 1, there
exists a positive integer Mε,δ such that xn ∈ Nx0(ε, δ) whenever n > Mε,δ;

(2) {xn} is called a Cauchy sequence, if for any ε > 0 and 0 < δ < 1,there exists a positive integer Mε,δ

such that G∗xn,xm,xl(ε) > 1− δ whenever n,m, l > Mε,δ;
(3) (X,G∗,∆) is said to be complete if every Cauchy sequence in X converges to a point in X.

Definition 2.7. Let φ : R+ → R+ be a function and φn(t) be the nth iteration of φ(t),
(i) φ is non-decreasing;
(i)′ φ is strictly increasing;
(ii) φ is upper semi-continuous from the right;
(iii)

∑∞
n=0 φ

n(t) < +∞ and φ(t) < t/2 for all t > 0.
We define Φ0 the class of functions φ : R+ → R+ satisfying conditions (i), (ii), (iii) and Φ1 the class of
functions φ : R+ → R+ satisfying conditions (i)′, (ii), (iii).

Definition 2.8 ([4]). Let F1, F2 ∈ D. The algebraic sum F1 ⊕ F2 of F1 and F2 is defined by

(F1 ⊕ F2)(t) = sup
t1+t2=t

min{F1(t1), F2(t2)},

for all t ∈ R.

We can analogously prove the following lemma as in Menger PM -spaces.

Lemma 2.9. Let (X,G∗,∆) be a Menger PGM -space with ∆ a continuous t-norm, {xn}, {yn} and {zn}
be sequences in X and x, y, z ∈ X, if {xn} → x, {yn} → x and {zn} → x as n→∞. Then

(1) lim inf
n→∞

G∗xn,yn,zn(t) ≥ G∗x,y,z(t) for all t > 0;

(2) G∗x,y,z(t+ o) ≥ lim sup
n→∞

G∗xn,yn,zn(t) for all t > 0.

Lemma 2.10 ([5]). Let (X,G∗,∆) be a Menger PGM -space. For each λ ∈ (0, 1], define a function G∗λ by

G∗λ(x, y, z) = inf
t
{t ≥ 0 : G∗x,y,z(t) > 1− λ} (2.2)

for any x, y, z ∈ X, then
(1) G∗λ(x, y, z) < t if and only if G∗x,y,z(t) > 1− λ;
(2) G∗λ(x, y, z) = 0 for all λ ∈ (0, 1] if and only if x = y = z;
(3) G∗λ(x, y, z) = G∗λ(y, x, z) = G∗λ(y, z, x) = ...;
(4) If ∆ = ∆min, then for every λ ∈ (0, 1], G∗λ(x, y, z) ≤ G∗λ(x, a, a) +G∗λ(a, y, z).

Lemma 2.11 ([18]). Let (X,G∗,∆) be a Menger PGM -space and let {G∗λ}, λ ∈ (0, 1] be a family of
functions on X defined by (2.2). If ∆ is a t-norm of H-type, then for each λ ∈ (0, 1], there exists µ ∈ [0, λ],
such that for each m ∈ Z+,

G∗λ(x0, xm, xm) ≤
m−1∑
i=0

G∗µ(xi, xi+1, xi+1),

G∗λ(x0, x0, xm) ≤
m−1∑
i=0

G∗µ(xi, xi, xi+1)

for all x0, x1, ..., xm ∈ X.
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Lemma 2.12 ([18]). Let (X,G∗,∆) be a Menger PGM -space and ∆ be a continuous t-norm. Then the
following statements are equivalent:

(i) the sequence {xn} is a Cauchy sequence;
(ii) for any ε > 0 and 0 < λ < 1, there exists M ∈ Z+ such that G∗xn,xm,xm(ε) > 1−λ, for all n,m > M .

3. Main results

In this section, we will establish some new common fixed point theorems for compatible maps and weakly
compatible maps in Menger PGM -spaces. To this end, we first introduce the concepts of compatible maps
and weakly compatible maps in Menger PGM -spaces.

Definition 3.1. Let S and T be two self-maps of a Menger PGM -space (X,G∗,∆). S and T are said to be
compatible if G∗STxn,TSxn,TSxn(t)→ 1 and G∗STxn,STxn,TSxn(t)→ 1 for all t > 0 whenever {xn} is a sequence
in X such that lim

n→∞
Sxn = lim

n→∞
Txn = u for some u ∈ X.

Definition 3.2. Let S and T be two self-maps of a Menger PGM -space (X,G∗,∆). S and T are said
to be weakly compatible (or coincidentally commuting) if they commute at their coincidence points, i.e., if
Tu = Su for some u ∈ X implies that TSu = STu.

The following lemmas will be useful in proving our main results.

Lemma 3.3. Let {yn} be a sequence in a Menger PGM -space (X,G∗,∆), where ∆ is a t-norm of H-type.
If there exists a function φ ∈ Φ0, such that

G∗yn,yn+1,yn+1
(φ(t)) ≥ min{G∗yn−1,yn,yn(t), G∗yn,yn+1,yn+1

(t)} (3.1)

for all t > 0 and n ∈ Z+. Then {yn} is a Cauchy sequence in X.

Proof. Let {G∗λ}, λ ∈ (0, 1] be the family of pseudo-metrics defined by (2.2). For each λ ∈ (0, 1] and n ∈ Z+,
putting an = G∗λ(yn−1, yn, yn), we will prove that

an+1 ≤ φ(an) (3.2)

for all n ∈ Z+. In fact, since φ is upper semi-continuous from the right, for given ε > 0 and each an, there
exist pn > an such that φ(pn) < φ(an) + ε. By Lemma 2.10, it follows from pn > an = G∗λ(yn−1, yn, yn) that
G∗yn−1,yn,yn(pn) > 1− λ for all n ∈ Z+. Thus, by (3.1), we get

G∗yn,yn+1,yn+1
(φ(max{pn, pn+1})) ≥ min{G∗yn−1,yn,yn(pn), G∗yn,yn+1,yn+1

(pn+1)} > 1− λ.

Similarly by Lemma 2.10, we can have

G∗λ(yn, yn+1, yn+1) < φ(max{pn, pn+1}) = max{φ(pn), φ(pn+1)} ≤ φ(max{an, an+1}) + ε.

By the arbitrariness of ε, we have

an+1 = G∗λ(yn, yn+1, yn+1) ≤ φ(max{an, an+1}). (3.3)

So, we can infer that an+1 ≤ an. If not, then by (3.3), we have an+1 ≤ φ(an+1) < an+1/2 < an+1, which is
a contradiction. Hence, (3.3) implies that an+1 ≤ φ(an), and (3.2) is proved.

Repeatedly using (3.2), we get

G∗λ(yn, yn+1, yn+1) ≤ φ(G∗λ(yn−1, yn, yn)) ≤ · · · ≤ φn(G∗λ(y0, y1, y1)) (3.4)
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for all n ∈ Z+. Noting that ∆ is a t-norm of H-type. By Lemma 2.11, for each λ ∈ (0, 1], there exists
µ ∈ (0, λ], such that

G∗λ(yn, ym, ym) ≤
m−1∑
i=n

G∗µ(yi, yi+1, yi+1) (3.5)

for all m,n ∈ Z+ with m > n. Since φ ∈ Φ0, we have φn(G∗µ(y0, y1, y1)) < +∞. So for given ε > 0, there
exists n0 ∈ Z+ such that

∑∞
i=n φ

n(G∗µ(y0, y1, y1)) < ε for all n ≥ n0. Thus, it follows from (3.5) that

G∗λ(yn, ym, ym) ≤
∞∑
i=n

φn(G∗µ(y0, y1, y1)) < ε

for all n ≥ n0, which implies that G∗yn,ym,ym(ε) > 1−λ for all m,n ∈ Z+ with m > n ≥ n0. By Lemma 2.12,
{yn} is a Cauchy sequence in X.

Lemma 3.4. Let (X,G∗,∆) be a Menger PGM -space and x, y ∈ X. If there exists φ ∈ Φ0, such that

G∗x,y,y(φ(t) + o) ≥ G∗x,y,y(t/2) (3.6)

for all t > 0. Then x = y.

Proof. Let λ ∈ (0, 1] and we put a/2 = G∗λ(x, y, y). Since φ(·) is upper semi-continuous from the right at
the point a, for given ε > 0, there exists s > a such that φ(s) < φ(a) + ε. By Lemma 2.10, s/2 > G∗λ(x, y, y)
implies that G∗x,y,y(s/2) > 1− λ. So, it follows from (3.6) that

G∗x,y,y(φ(s) + ε) ≥ G∗x,y,y(φ(s) + o) ≥ G∗x,y,y(s/2) > 1− λ

which implies that G∗λ(x, y, y) < φ(s) + ε < φ(a) + 2ε. By the arbitrariness of ε, we get a/2 = G∗λ(x, y, y) ≤
φ(a), thus a = 0, i.e., G∗λ(x, y, y) = 0. By (2) of Lemma 2.10, we conclude that x = y.

Lemma 3.5. Let (X,G∗,∆min) be a Menger PGM -space. Suppose that there exists a function φ ∈ Φ, such
that

G∗x,y,y(φ(t) + o) ≥ min{G∗x,y,y(t), G∗y,x,x(t)}. (3.7)

Then x = y.

Proof. We know that

G∗y,x,x(t) = G∗x,y,x(t) ≥ ∆(G∗x,y,y(t/2), G∗y,y,x(t/2)) ≥ G∗x,y,y(t/2).

Since φ is upper-continuous from the right, it follows from (3.7) that

G∗x,y,y(φ(t) + o) ≥ min{G∗x,y,y(t), G∗x,y,y(t/2)} = G∗x,y,y(t/2).

Then by Lemma 3.4, we can conclude that x = y.

We are now ready to give our main results.

Theorem 3.6. Let L, M , P and Q be self-maps on a complete Menger PGM-space (X,G∗,∆min), If the
following conditions are satisfied:

(i) L(X) ⊆ Q(X), M(X) ⊆ P (X);
(ii) either P or L is continuous;
(iii) (L,P ) is compatible and (M,Q) is weakly compatible;
(iv) there exists φ ∈ Φ0, such that

G∗Lx,My,My(φ(t)) ≥ min{G∗Px,Lx,Lx(t), G∗Qy,My,My(t), G
∗
Px,Qy,Qy(t),

G∗Qy,Lx,Lx(βt), [G∗Px,ξ,ξ ⊕G∗ξ,My,My]((2− β)t)}
(3.8)

for all x, y, ξ ∈ X, β ∈ (0, 2) and t > 0. Then L, M , P and Q have a unique common fixed point in X.
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Proof. Let x0 ∈ X. From condition (i), there exist x1, x2 ∈ X, such that Lx0 = Qx1 = y0 and
Mx1 = Px2 = y1. Inductively, we can construct two sequences {xn} and {yn} in X, such that

Lx2n = Qx2n+1 = y2n, Mx2n+1 = Px2n+2 = y2n+1, n = 0, 1, 2, . . . .

• Assume that there exists φ ∈ Φ0, such that (3.8) holds. Putting x = x2n, y = y2n+1, ξ = y2n in (3.8), we
get

G∗y2n,y2n+1,y2n+1
(φ(t)) = G∗Lx2n,Mx2n+1,Mx2n+1

(φ(t))

≥ min{G∗Px2n,Lx2n,Lx2n(t), G∗Qx2n+1,Mx2n+1,Mx2n+1
(t), G∗Px2n,Qx2n+1,Qx2n+1

(t),

G∗Qx2n+1,Lx2n,Lx2n(βt), [G∗Px2n,y2n,y2n ⊕G
∗
y2n,Mx2n+1,Mx2n+1

]((2− β)t)}
≥ min{G∗y2n−1,y2n,y2n(t), G∗y2n,y2n+1,y2n+1

(t), G∗y2n−1,y2n,y2n((2− β)/2),

G∗y2n,y2n+1,y2n+1
((2− β)/2)}.

Letting β → 0, we obtain

G∗y2n,y2n+1,y2n+1
(φ(t)) ≥ min{G∗y2n−1,y2n,y2n(t), G∗y2n,y2n+1,y2n+1

(t)}. (3.9)

Similarly, we can prove that

G∗y2n+1,y2n+2,y2n+2
(φ(t)) ≥ min{G∗y2n,y2n+1,y2n+1

(t), G∗y2n+1,y2n+2,y2n+2
(t)}. (3.10)

It follows from (3.9) and (3.10) that

G∗yn,yn+1,yn+1
(φ(t)) ≥ min{G∗yn−1,yn,yn(t), G∗yn,yn+1,yn+1

(t)}, n = 1, 2, . . . .

By Lemma 3.3, we know that {yn} is a Cauchy sequence in X. Since (X,G∗,∆) is complete, we can assume
that yn → z ∈ X, and so

lim
n→∞

Lx2n = lim
n→∞

Px2n = lim
n→∞

Qx2n+1 = lim
n→∞

Mx2n+1 = z. (3.11)

Now we prove z is a common fixed point of L, M , P and Q.
Case I. Suppose that P is continuous. By (3.11) we have PLx2n → Pz and PPx2n → Pz. Noting that

(L,P ) is compatible, we get G∗LPx2n,PLx2n,PLx2n(t)→ 1 for all t > 0, and thus

G∗LPx2n,P z,Pz(t) ≥ ∆(G∗LPx2n,PLx2n,PLx2n(t/2), G∗PLx2n,P z,Pz(t/2))→ 1, (n→∞)

which shows that LPx2n → Pz(n→∞).
We first prove that z is a fixed point of P and L. Putting x = Px2n, y = x2n+1, ξ = LPx2n and β = 1

in (3.8), we get

G∗LPx2n,Mx2n+1,Mx2n+1
(φ(t))

≥ min{G∗PPx2n,LPx2n,LPx2n(t), G∗Qx2n+1,Mx2n+1,Mx2n+1
(t), G∗PPx2n,Qx2n+1,Qx2n+1

(t),

G∗Qx2n+1,LPx2n,LPx2n(t), [G∗PPx2n,LPx2n,LPx2n ⊕G
∗
LPx2n,Mx2n+1,Mx2n+1

](t)}
≥ min{G∗PPx2n,LPx2n,LPx2n(t), G∗Qx2n+1,Mx2n+1,Mx2n+1

(t), G∗PPx2n,Qx2n+1,Qx2n+1
(t),

G∗Qx2n+1,LPx2n,LPx2n(t), G∗PPx2n,LPx2n,LPx2n(ε), G∗LPx2n,Mx2n+1,Mx2n+1
(t− ε)},

where ε ∈ (0, t). Letting n→∞, by Lemma 2.9, we get

G∗Pz,z,z(φ(t) + o) ≥ min{1, 1, G∗Pz,z,z(t), G∗z,Pz,Pz(t), 1, G∗Pz,z,z(t− ε)}.
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Letting ε→ 0, we get
G∗Pz,z,z(φ(t) + o) ≥ min{G∗Pz,z,z(t), G∗z,Pz,Pz(t)},

which implies that Pz = z by Lemma 3.3.
Putting x = ξ = z, y = x2n+1 and β = 1 in (3.8), we get

G∗Lz,Mx2n+1,Mx2n+1
(φ(t)) ≥ min{G∗Pz,Lz,Lz(t), G∗Qx2n+1,Mx2n+1,Mx2n+1

(t), G∗Pz,Qx2n+1,Qx2n+1
(t),

G∗Qx2n+1,Lz,Lz(t), [G
∗
Pz,z,z ⊕G∗z,Mx2n+1,Mx2n+1

](t)}
= min{G∗Pz,Lz,Lz(t), G∗Qx2n+1,Mx2n+1,Mx2n+1

(t), G∗Pz,Qx2n+1,Qx2n+1
(t),

G∗Qx2n+1,Lz,Lz(t), G
∗
z,Mx2n+1,Mx2n+1

(t)}.

Letting n→∞, by Lemma 2.9, we get

G∗Lz,z,z(φ(t) + o) ≥ min{G∗z,Lz,Lz(t), 1, 1, G∗z,Lz,Lz(t), 1} = G∗z,Lz,Lz(t) ≥ G∗Lz,z,z(t/2)

for all t > 0. By Lemma 3.4, we conclude that Lz = z. Therefore, z is a common fixed point of P and L.
Next, from Lz = z and (3.11), we can prove that z is also a common fixed point of M and Q, i.e.,

Mz = Qz = z.
In fact, since L(X) ⊆ Q(X), there exists v ∈ X, such that z = Lz = Qv. Putting x = x2n, y = v, ξ = z

and β = 1 in (3.8), we get

G∗Lx2n,Mv,Mv(φ(t)) ≥ min{G∗Px2n,Lx2n,Lx2n(t), G∗Qv,Mv,Mv(t), G
∗
Px2n,Qv,Qv(t),

G∗Qv,Lx2n,Lx2n(t), [G∗Px2n,z,z ⊕G
∗
z,Mv,Mv](t)}

≥ min{G∗Px2n,Lx2n,Lx2n(t), G∗Qv,Mv,Mv(t), G
∗
Px2n,Qv,Qv(t),

G∗Qv,Lx2n,Lx2n(t), G∗Px2n,z,z(ε), G
∗
z,Mv,Mv(t− ε)}.

Letting n→∞, by Lemma 2.9, we get

G∗z,Mv,Mv(φ(t) + o) ≥ min{1, G∗z,Mv,Mv(t), 1, 1, 1, G
∗
z,Mv,Mv(t− ε)} = G∗z,Mv,Mv(t− ε)

for all t > 0 and ε ∈ (0, t). Letting ε → 0, we obtain Mv = z by Lemma 3.4. So, we have Qv = z = Mv,
i.e., v is a coincidence point of Q and M . Since (M,Q) is weakly compatible, we have MQv = QMv, and
thus Mz = Qz = z. Therefore, z is a common fixed point of L, M , P and Q.

Case II. Suppose that L is continuous. Noting that Lx2n → z and Px2n → z. We have LLx2n → Lz
and LPx2n → Lz. Since (L,P ) is compatible, we have G∗PLx2n,LPx2n,LPx2n(t) → 1 for all t > 0. From this
fact, it is easy to prove that PLx2n → Lz. Putting x = Lx2n, y = x2n+1, ξ = Lz and β = 1 in (3.8), we get

G∗LLx2n,Mx2n+1,Mx2n+1
(φ(t))

≥ min{G∗PLx2n,LLx2n,LLx2n(t), G∗Qx2n+1,Mx2n+1,Mx2n+1
(t), G∗PLx2n,Qx2n+1,Qx2n+1

(t),

G∗Qx2n+1,LLx2n,LLx2n(t), [G∗PLx2n,Lz,Lz ⊕G
∗
Lz,Mx2n+1,Mx2n+1

](t)}
≥ min{G∗PLx2n,LLx2n,LLx2n(t), G∗Qx2n+1,Mx2n+1,Mx2n+1

(t), G∗PLx2n,Qx2n+1,Qx2n+1
(t),

G∗Qx2n+1,LLx2n,LLx2n(t), G∗PLx2n,Lz,Lz(ε), G
∗
Lz,Mx2n+1,Mx2n+1

(t− ε)}

for all t > 0 and ε ∈ (0, t). Letting n→∞, by Lemma 2.9, we get

G∗Lz,z,z(φ(t) + o) ≥ min{1, 1, G∗Lz,z,z(t), G∗z,Lz,Lz(t), 1, G∗Lz,z,z(t− ε)}.

Letting ε→ 0, it follows that

G∗Lz,z,z(φ(t) + o) ≥ min{G∗Lz,z,z(t), G∗z,Lz,Lz(t)}
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for all t > 0, which implies that Lz = z.
In the same way as in Case I, from Lz = z and (3.11), it is not difficult to prove that Mz = Qz = z.

Next, we only need to show that Pz = z.
Since M(X) ⊆ P (X), there exists w ∈ X, such that z = Mz = Pw. Putting x = w, y = x2n+1, ξ = z

and β = 1 in (3.8), we get

G∗Lw,Mx2n+1,Mx2n+1
(φ(t)) ≥ min{G∗Pw,Lw,Lw(t), G∗Qx2n+1,Mx2n+1,Mx2n+1

(t), G∗Pw,Qx2n+1,Qx2n+1
(t),

G∗Qx2n+1,Lw,Lw(t), [G∗Pw,z,z ⊕G∗z,Mx2n+1,Mx2n+1
](t)}

≥ min{G∗Pw,Lw,Lw(t), G∗Qx2n+1,Mx2n+1,Mx2n+1
(t), G∗Pw,Qx2n+1,Qx2n+1

(t),

G∗Qx2n+1,Lw,Lw(t), G∗z,Mx2n+1,Mx2n+1
(t)}.

Letting n→∞, by Lemma 2.9, we get

G∗Lw,z,z(φ(t) + o) ≥ min{G∗z,Lw,Lw(t), 1, 1, G∗z,Lw,Lw(t), 1} = G∗z,Lw,Lw(t) ≥ G∗Lw,z,z(t/2)

for all t > 0, which implies that Lw = z = Pw. Noting that (L,P ) is compatible and so it is also weakly
compatible. Hence Pz = PLw = LPw = Lz = z. This shows that z is a common fixed point of L, M , P ,
and Q.

Finally, we show the uniqueness. Let u be another common fixed point of L, M , P , and Q. Then
Lu = Mu = Pu = Qu = u. Putting x = ξ = z, y = u and β = 1 in (3.8), we get

G∗z,u,u(φ(t)) = G∗Lz,Mu,Mu(φ(t))

≥ min{G∗Pz,Lz,Lz(t), G∗Qu,Mu,Mu(t), G∗Pz,Qu,Qu(t),

G∗Qu,Lz,Lz(t), [G
∗
Pz,z,z ⊕G∗z,Mu,Mu](t)}

≥ min{1, 1, G∗z,u,u(t), G∗u,z,z(t), G
∗
z,u,u(t)}

= min{G∗z,u,u(t), G∗u,z,z(t)},

which implies that z = u. Therefore, z is a unique common fixed point of L, M , P , and Q.

Taking φ(t) = kt in Theorem 3.6, where k ∈ (0, 1/2) is a constant, we get the following consequence.

Corollary 3.7. Let L, M , P and Q be self-maps on a complete Menger PGM -space (X,G∗,∆min), satisfying
conditions (i)-(iii) in Theorem 3.6 and the following

(iv)′ there exists a constant k ∈ (0, 1/2), such that

G∗Lx,My,My(kt) ≥ min{G∗Px,Lx,Lx(t), G∗Qy,My,My(t), G
∗
Px,Qy,Qy(t),

G∗Qy,Lx,Lx(βt), [G∗Px,ξ,ξ ⊕G∗ξ,My,My]((2− β)t)}
(3.12)

for all x, y, ξ ∈ X, β ∈ (0, 2) and t > 0. Then L, M , P and Q have a unique common fixed point in X.

Corollary 3.8. Let L, M , P and Q be self-maps on a complete Menger PGM -space (X,G∗,∆min), satisfying
conditions (i)-(iii) in Theorem 3.6 and the following:

(iv)′′ there exists k ∈ (0, 1/2) such that

G∗Lp,Mq,Mq(kx) ≥ min{G∗Pp,Lp,Lp(x), G∗Qq,Mq,Mq(x), G∗Pp,Qq,Qq(x),

G∗Qq,Lp,Lp(βx), G∗Pp,Mq,Mq((2− β)x)}
(3.13)

for all p, q ∈ X, β ∈ (0, 2) and x > 0. Then L, M , P and Q have a unique common fixed point in X.

Proof. By (PGM-4), we have

G∗Px,My,My(t) ≥ sup
0<s<t

min{G∗Px,ξ,ξ(s), G∗ξ,My,My(t− s)} = [G∗Px,ξ,ξ ⊕G∗ξ,My,My](t)

for all x, y, ξ ∈ X, t > 0. Hence, it is not difficult to see that (3.13) implies (3.12). So, the conclusion of
Corollary 3.8 follows from Corollary 3.7 immediately.
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Taking P = Q = I (the identity mapping on X), L = A, M = B in Theorem 3.6, we have the following
corollary.

Corollary 3.9. Let A and B be self-maps on a complete Menger PGM -space (X,G∗,∆min). If there exists
a function φ ∈ Φ0, such that

G∗Ax,By,By(φ(t)) ≥ min{G∗x,Ax,Ax(t), G∗y,By,By(t), G
∗
x,y,y(t), G

∗
y,Ax,Ax(t), [G∗x,ξ,ξ ⊕G∗ξ,By,By]((2− β)t)}

for all x, y, ξ ∈ X, β ∈ (0, 2), t > 0. Then A and B have a unique common fixed point in X.

Theorem 3.10. Let A, B, S, T , L and M be self-maps on a complete Menger PGM -space (X,G∗,∆min),
satisfying the following conditions:

(i) L(X) ⊆ ST (X), M(X) ⊆ AB(X);
(ii) AB = BA, ST = TS, LB = BL, MT = TM ;
(iii) either AB or L is continuous;
(iv) (L,AB) is compatible and (M,ST ) is weakly compatible;
(v) there exists φ ∈ Φ0, such that

G∗Lx,My,My(φ(t)) ≥ min{G∗ABx,Lx,Lx(t), G∗STy,My,My(t), G
∗
ABx,STy,STy(t),

G∗STy,Lx,Lx(βt), [G∗ABx,ξ,ξ ⊕G∗ξ,My,My]((2− β)t)}
(3.14)

for all x, y, ξ ∈ X, β ∈ (0, 2), t > 0. Then A, B, S, T , L and M have a unique common fixed point in X.

Proof. Putting P = AB and Q = ST , it is easy to see that conditions (i) and (iii)-(v) of the theorem imply
conditions (i)-(iv) of Theorem 3.6. Therefore, by Theorem 3.6, L, M , P and Q have a unique common fixed
point z in X, i.e.,

Lz = Mz = Pz = Qz = z. (3.15)

Now, we prove that z is a common fixed point of A and B. By (3.15) and condition (ii), we have
LBz = BLz = Bz and PBz = (AB)Bz = (BA)Bz = B(AB)z = BPz = Bz. thus, by condition (iv) of
Theorem 3.6, putting x = ξ = Bz, y = z and β = 1 in (3.8), we get

G∗Bz,z,z(φ(t)) = G∗LBz,Mz,Mz(φ(t))

≥ min{G∗PBz,LBz,LBz(t), G∗Qz,Mz,Mz(t), G
∗
PBz,Qz,Qz(t),

G∗Qz,LBz,LBz(t), [G
∗
PBz,Bz,Bz ⊕G∗Bz,Mz,Mz](t)}

≥ min{1, 1, G∗Bz,z,z(t), G∗z,Bz,Bz(t), G∗Bz,z,z(t)}
= min{G∗Bz,z,z(t), G∗z,Bz,Bz(t)},

which implies that Bz = z, and so z = Pz = ABz = Az. Therefore, z is a common fixed point of A and B.
We next prove that z is also a fixed point of T and S. In fact, by (3.15) and condition (ii), we have

MTz = TMz = Tz and QTz = (ST )Tz = (TS)Tz = TQz = Tz. Putting x = ξ = z, y = Tz and β = 1 in
(3.8), we get

G∗z,Tz,Tz(φ(t)) = G∗Lz,MTz,MTz(φ(t))

≥ min{G∗Pz,Lz,Lz(t), G∗QTz,MTz,MTz(t), G
∗
Pz,QTz,QTz(t),

G∗QTz,Lz,Lz(t), [G
∗
Pz,z,z ⊕G∗z,MTz,MTz](t)}

≥ min{1, 1, G∗z,Tz,Tz(t), G∗Tz,z,z(t), G∗z,Tz,Tz(t)}
= min{G∗z,Tz,Tz(t), G∗Tz,z,z(t)},

which implies that Tz = z, and so Sz = STz = Qz = z. This shows that z is also a common fixed point of
T and S. Therefore, z is a common fixed point of A, B, S, T , L and M . Since z is a unique common fixed
point of P , Q, L and M , it is easy to see that z is also a unique common fixed point of A, B, S, T , L and
M . This completes the proof.
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Remark 3.11. We can also obtain Theorem 3.6 by putting B = T = I and S = Q and A = P in Theorem
3.10. Therefore, Theorem 3.6 and Theorem 3.10 are equivalent.

Taking φ(t) = kt in Theorem 3.10, where k ∈ (0, 1/2) is a constant, we get the following consequence.

Corollary 3.12. Let A, B, S, T , L and M be self-maps on a complete Menger PGM -space (X,G∗,∆min),
satisfying the conditions (i)-(iv) of Theorem 3.10 and the following:

(v)′ there exists k ∈ (0, 1/2), such that

G∗Lx,My,My(kt) ≥ min{G∗ABx,Lx,Lx(t), G∗STy,My,My(t), G
∗
ABx,STy,STy(t),

G∗STy,Lx,Lx(βt), [G∗ABx,ξ,ξ ⊕G∗ξ,My,My]((2− β)t)}
(3.16)

for all x, y, ξ ∈ X, β ∈ (0, 2) and t > 0. Then A, B, S, T , L and M have a unique common fixed point in X.

Corollary 3.13. Let A, B, S, T , L and M be self-maps on a complete Menger PGM -space (X,G∗,∆),
satisfying the conditions (i)-(iv) of Theorem 3.10 and the following:

(v)′′ there exists k ∈ (0, 1/2), such that

G∗Lx,My,My(kt) ≥ min{G∗ABx,Lx,Lx(t), G∗STy,My,My(t), G
∗
ABx,STy,STy(t),

G∗STy,Lx,Lx(βt), G∗ABx,My,My((2− β)t)}
(3.17)

for all x, y, ξ ∈ X, β ∈ (0, 2) and t > 0. Then A, B, S, T , L and M have a unique common fixed point in
X.

Proof. We know that G∗ABx,My,My(t) ≥ [G∗ABx,ξ,ξ ⊕ G∗ξ,My,My](t) for all x, y, ξ ∈ X and t > 0. Hence, it is
not difficult to see that (3.17) in Corollary 3.13 implies (3.16) in Corollary 3.12, and so the conclusion of
Corollary 3.13 follows from Corollary 3.12 immediately.

Theorem 3.14. Let P1, P2, . . . , P2n, Q0 and Q1 be self-maps on a complete Menger PGM -space
(X,G∗,∆min), satisfying conditions:

(i) Q0(X) ⊆ P1P3 · · ·P2n−1(X), Q1(X) ⊆ P2P4 · · ·P2n(X);

(ii) P2(P4 · · ·P2n) = (P4 · · ·P2n)P2,

P2P4(P6 · · ·P2n) = (P6 · · ·P2n)P2P4,

...

P2 · · ·P2n−1(P2n) = (P2n)P2 · · ·P2n−1,

Q0(P4 · · ·P2n) = (P4 · · ·P2n)Q0,

Q0(P6 · · ·P2n) = (P6 · · ·P2n)Q0,

...

Q0(P2n) = (P2n)Q0,

P1(P3 · · ·P2n−1) = (P3 · · ·P2n−1)P1,

P1P3(P5 · · ·P2n−1) = (P5 · · ·P2n−1)P1P3,

...

P1 · · ·P2n−3(P2n−1) = (P2n−1)P1 · · ·P2n−3,

Q1(P3 · · ·P2n−1) = (P3 · · ·P2n−1)Q1,

Q1(P5 · · ·P2n−1) = (P5 · · ·P2n−1)Q1,

...

Q1P2n−1 = P2n−1Q1;
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(iii) either P2 · · ·P2n or Q0 is continuous;

(iv) (Q0, P2 · · ·P2n) is compatible and (Q1, P1 · · ·P2n−1) is weakly compatible;

(v) there existsφ ∈ Φ0, such that

G∗Q0x,Q1y,Q1y(φ(t)) ≥ min{G∗P2P4···P2nx,Q0x,Q0x(t), G∗P1P3···P2n−1y,Q1y,Q1y(t),

G∗P2P4···P2nx,P1P3···P2n−1y,P1P3···P2n−1y(t), G
∗
P1P3···P2n−1y,Q0x,Q0x(βt),

[G∗P2P4···P2nx,ξ,ξ ⊕G
∗
ξ,Q1y,Q1y]((2− β)t)} (3.18)

for all x, y, ξ ∈ X, β ∈ (0, 2) and t > 0. Then P1, P2, . . . , P2n, Q0 and Q1 have a unique common fixed
point in X.

Proof. The proof is similar to that of Theorem 3.10.

4. Common fixed point theorems in G-metric spaces

In this section, we shall use the obtained results in Section 3 to get some corresponding fixed point
theorems for compatible and weakly compatible maps in G-metric spaces.

Theorem 4.1. Let L, M , P and Q be self-maps on a complete G-metric space (X,G) satisfying the following
conditions:

(i) L(X) ⊆ Q(X), M(X) ⊆ P (X);
(ii) either P or L is continuous;
(iii) (L,P ) is compatible and (M,Q) is weakly compatible;
(iv) there exists φ ∈ Φ1, such that for all x, y,∈ X,

G(Lx,My,My) ≤ φ(G(x, y, y)),

where

G(x, y, y) = max{G(Px,Lx, Lx), G(Qy,My,My), G(Px,Qy,Qy), [G(Qy,Lx, Lx) +G(Px,My,My)]/2}.

Then L, M , P and Q have a unique common fixed point in X.

Proof. Let (X,G∗,∆min) be the induced Menger PGM -space by (X,G), where G∗ is defined by (2.1). It is
easy to see that conditions (i)-(iii) of Theorem 4.1 imply conditions (i)-(iii) of Theorem 3.6, respectively. It
remains to prove that condition (iv) of Theorem 4.1 implies condition (iv) of Theorem 3.10.

By (2.1), we know that the value of each function G∗u,v,v(·) (u, v ∈ X) in the induced Menger PGM-space
only can equal 0 or 1. Hence, without loss of generality, we may assume that

min{G∗Px,Lx,Lx(t), G∗Qy,My,My(t), G
∗
Px,Qy,Qy(t), G

∗
Qy,Lx,Lx(βt), [G∗Px,ξ,ξ ⊕G∗ξ,My,My]((2− β)t)} = 1.

This implies that

G(Px,Lx, Lx) < t, G(Qy,My,My) < t, G(Px,Qy,Qy) < t

and

G(Qy,Lx, Lx) < βt, G(Px,My,My) < (2− β)t. (4.1)

It follows from (4.1) that implies that [G(Qy,Lx, Lx)+G(Px,My,My)]/2 < t. Thus, we have G(x, y, y) < t.
Noting that φ is strictly increasing, by condition (iv) we get G(Lx,My,My) ≤ φ(G(x, y, y)) < φ(t), which
implies that G∗Lx,My,My(φ(t)) = 1. Hence inequality (3.8) holds, i.e., condition (iv) of Theorem 3.6 is
satisfied. Therefore, the conclusion follows from Theorem 3.6 immediately.
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In the same way, by Theorem 3.10, we can prove the following theorem.

Theorem 4.2. Let A, B, S, T , L and M be self-maps on a complete G-metric space (X,G) satisfying the
following conditions:

(i) L(X) ⊆ ST (X), M(X) ⊆ AB(X);
(ii) AB = BA, ST = TS, LB = BL, MT = TM ;
(iii) either AB or L is continuous;
(iv) (L,AB) is compatible and (M,ST ) is weakly compatible;
(v) there exists φ ∈ Φ1, such that for all x, y ∈ X,

G(Lx,My,My) ≤ φ(G1(x, y, y)),

where

G1(x, y, y) = min{G(ABx,Lx, Lx), G(STy,My,My), G(ABx, STy, STy),

[G(STy, Lx, Lx) +G(ABx,My,My)]/2}.

Then A, B, S, T , L and M have a unique common fixed point in X.

Taking P = Q = I, L = A, M = B in Theorem 4.1, we get the following consequence.

Corollary 4.3. Let A and B be self-maps on a complete G-metric space (X,G), if that there exists φ ∈ Φ1,
such that

G(Ax,By,By) ≤ φ(max{G(x,Ax,Ax), G(y,By,By), G(x, y, y), [G(y,Ax,Ax) +G(x,By,By)]/2})

for all x, y ∈ X. Then A and B have a unique common fixed point in X.

5. An application

In this section, we provide an example to illustrate the validity of Theorem 3.6.

Example 5.1. Let X = [0, 1]. Define a function G∗ : X3 × [0, 1] → [0, 1] by G∗x,y,z(t) = t
t+G(x,y,z) , where

G(x, y, z) = |x− y|+ |y − z|+ |z − x|, for all x, y, z ∈ X, and t > 0. It is easy to verify that (X,G∗,∆min)
is a Menger PGM -space. Define L, M , P and Q: X → X as follows

Lx =
1

8
x, Mx =

{
0, x ∈ [0, 12),
1
7 , x ∈ [12 , 1].

Px =
1

2
x, Qx =

{
1
3x, x ∈ [0, 12),
1, x ∈ [12 , 1].

Let φ(t) = 3
7 t. Then it is obvious that φ ∈ Φ0. Consider the sequence {xn = 1

n} in X, then

lim
n→∞

Lxn = lim
n→∞

Pxn = 0.

We can verify that G∗LPxn,PLxn,PLxn(t) → 1 and G∗PLxn,LPxn,LPxn(t) → 1 for all t > 0. So (L,P ) is
compatible. Also, (M,Q) is weakly compatible.

On the other hand, if x ∈ [0, 1] and y ∈ [0, 12), then for any t > 0, we have

G∗Lx,My,My(
3

7
t) =

t

t+ 7
12x

>
t

t+ 3
4x

= G∗Px,Lx,Lx(t)

≥ min{G∗Px,Lx,Lx(t), G∗Qy,My,My(t), G
∗
Px,Qy,Qy(t), G

∗
Qy,Lx,Lx(βt),

[G∗Px,ξ,ξ ⊕G∗ξ,My,My]((2− β)t)}.
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If x ∈ [0, 1] and y ∈ [12 , 1], then for any t > 0, we have

G∗Lx,My,My(
3

7
t) =

t

t+ 2
3 −

7
12x

>
t

t+ 3
4x

= G∗Px,Lx,Lx(t)

≥ min{G∗Px,Lx,Lx(t), G∗Qy,My,My(t), G
∗
Px,Qy,Qy(t), G

∗
Qy,Lx,Lx(βt),

[G∗Px,ξ,ξ ⊕G∗ξ,My,My]((2− β)t)}.

Thus, all the conditions of Theorem 3.6 are satisfied and 0 is the unique common fixed point in X.
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