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Abstract

In this paper, we prove some new common fixed point theorems for compatible and weakly compatible
self-maps under ¢-contractive conditions in Menger probabilistic G-metric spaces. Our results improve and
generalize many comparable results in existing literature. Finally, an example is given as an application of
our main results. (©2016 All rights reserved.
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1. Introduction

The concept of a probabilistic metric space was introduced and studied by Menger [10, [13]. Since then,
many fixed point results for maps satisfying different contractive conditions have been studied [4}, 5] [6, 15, [17].
Mustafa and Sims [12] defined the concept of a G-metric space and many fixed point theorems for contractive
maps in G-metric spaces have been studied [I, 2]. Zhou et al. [16] defined the notion of a generalized
probabilistic metric space (or a PGM-space), which was a generalization of a PM-space and a G-metric
space. Since then, some results in Menger probabilistic G-metric spaces have been studied [18§].

Jungck [7] initiated the concept of compatible maps in metric spaces and obtained some common fixed
point theorems. In [§], the concept of weakly compatible maps was given. Mishra [11] introduced the
concept of compatible maps in a Menger space, then, other authors have obtained many fixed point results
for compatible maps and weakly compatible maps [3] 9, [14].
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In this paper, we first introduce the notion of compatible maps and weakly compatible maps in Menger
probabilistic G-metric spaces. Then, we prove some new common fixed point theorems for compatible maps
and weakly compatible maps satisfying ¢-contractive conditions in Menger probabilistic G-metric spaces with
a continuous t-norm A of H-type. As an application, we present an example to illustrate the validity of our
main results. Our results generalize the results of [3] and many other results in corresponding literatures.

2. Preliminaries

Let R denote the set of reals, RT the nonnegative reals and Z* be the set of all positive integers.
A mapping F : R — RT is called a distribution function if it is nondecreasing and left continuous with
inﬂg F(t) = 0 and sup F'(t) = 1. We will denote by D the set of all distribution functions, while H will always
S teR

denote the specific distribution function defined by

0, t<0,
H(t):{ 1, t>0.

A mapping A : [0,1] x [0,1] — [0,1] is called a triangular norm (for short, a ¢-norm) if the following
conditions are satisfied:

(1) A(a,1) =a

(2) Ala,b) = A(b,a);

(3) a>b,c>d= Ala,c) > A(b,d);

(4) A(a, A(b,c)) = A(A(a,b),c).

A typical example of a t-norm is Ap;y, where Ayin(a,b) = min{a, b}, for each a,b € [0, 1].

Definition 2.1 ([5]). A t-norm A is said to be of H-type if the family of functions {A™(¢)}2°_; is equicon-
tinuous at ¢t = 1, where

Al(t) = A(t,t),  A™(t) = A(t,A™ (1)), form=2,3,..,t€][0,1].

The t-norm Ay, is a trivial example of H-type, but there are other t-norms A of H-type with A # Apin
(see, e.g., [5]).

Definition 2.2 ([12]). Let X be a nonempty set and G : X x X x X — R* be a function satisfying the
following conditions:
(G-1) G(z,y,2) =0if x =y =z for all x,y,z € X
(G-2) G(z,x,y) > 0 for all z,y € X with = # y;
(G-3) G(z,x,y) < G(z,y,z) for all z,y,z € X with z # y;
(G-4) G(z,y,2) = G(x, z,y) = G(y,z,z) = -+ for all x,y,z € X
(G-5) G(z,y,2) < G(x,a,a) + G(a,y, z) for all z,y,z,a € X.
Then G is called a generalized metric or a G-metric on X and the pair (X, G) is a G-metric space.

Definition 2.3 ([I6]). A Menger probabilistic G-metric space (shortly, a PGM-space) is a triple (X, G*, A),
where X is a nonempty set, A is a continuous ¢-norm and G* is a mapping from X x X x X into D (G}, .
denotes the value of G* at the point (x,y, z)) satisfying the following conditions:

(PGM-1) G, .(t) = 1 for all 7,y,2 € X and ¢ > 0 if and only if z = y = 2;
(PGM-2) xl,y( ) > G;yz( ) for all z,y,z € X with z # y and ¢t > 0;
(PGM-3) G x ) =G5, (1) =G, L (t) = ...(symmetry in all three variables);
(PGM-4) G, .(t+s) > A(G} 4.a(5),Gh 2(1)) for all 7,y,2,a € X and s,t > 0.

:cyz

Example 2.4. Let (X, G) be a G-metric space. Define a mapping G* : X x X x X — D by

G*(2,y,2)(t) = Gy o (8) = H(t = G(2,y,2)) (2.1)

for z,y,z € X and t > 0. Then (X, G*, A) is a Menger PG M-space called the induced Menger PG M -space
by (X, G).
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Definition 2.5 ([16]). Let (X, G*, A) be a Menger PGM-space and xy be any point in X. For any € > 0
and 6 with 0 < § < 1, and (e, §)-neighborhood of z( is the set of all points y in X for which G >1-0
and G () >1—0. We write

Y,Z0,T0
170(6 5>_{y€X Gxoyy() 6GZI0I0<)>1_6}7

which means that Ny, (e, ) is the set of all points y in X for which the probability of the distance from zg
to y being less than e is greater than 1 — 4.

Definition 2.6 ([16]). Let (X,G*, A) be a PGM-space, {x,} is a sequence in X.

(1) {xy} is said to be convergent to a point x € X (write x,, — ), if for any € > 0 and 0 < ¢ < 1, there
exists a positive integer M, 5 such that x,, € Ny, (€,0) whenever n > M, s;

(2) {zn} is called a Cauchy sequence, if for any € > 0 and 0 < § < 1,there exists a positive integer M, ;
such that G, . (€) >1— ¢ whenever n,m,l > M s;

(3) (X,G*, A) is said to be complete if every Cauchy sequence in X converges to a point in X.

Definition 2.7. Let ¢ : Rt — R™ be a function and ¢"(¢) be the nth iteration of ¢(t),

(i) ¢ is non-decreasing;

(i)’ ¢ is strictly increasing;

(ii) ¢ is upper semi-continuous from the right;

(i) D02 o @™ (t) < 400 and ¢(t) < t/2 for all t > 0.
We define @ the class of functions ¢ : RT — RT satisfying conditions (i), (i), (iii) and ®; the class of
functions ¢ : RT — RT satisfying conditions (i)’, (ii), (iii).

Definition 2.8 ([4]). Let Fy, F> € D. The algebraic sum F} @ F» of F; and F; is defined by
(F1 @ F>)(t) = sup min{F(t1), Fa(t2)},

t1+to=t

:Jcoyy()

for all t € R.
We can analogously prove the following lemma as in Menger PM-spaces.

Lemma 2.9. Let (X,G*,A) be a Menger PGM -space with A a continuous t-norm, {x,}, {yn} and {z,}
be sequences in X and x,y,z € X, if {zpn} — z, {yn} = x and {z,} — x as n — oco. Then

(1) l1m1nf G gnon () = G (2) for all t > 0;
(2) chyz(t +o0) > limsup G}, , . () for allt > 0.
n—oo
Lemma 2.10 ([5]). Let (X,G*,A) be a Menger PGM-space. For each A € (0,1], define a function G5 by
GX(z,y,2) = mf{t >0:Gy, () >1—-A} (2.2)
for any x,y,z € X, then
(1) G\(w,y,2) <t if and only if G, .(t) > 1= \;

(2) GX\(x,y,2) =0 for all A € (0,1] if and only if x =y = z;

(3) Gi(ﬂj‘,y, Z) = G;(ya Zz, Z) = Gi(yv 2733) = ey

(4) If A = Apin, then for every X € (0,1], G} (z,y, 2) < GX(z,a,a) + G} (a,y, 2).
Lemma 2.11 ([I8]). Let (X,G*,A) be a Menger PGM-space and let {Gy}, A € (0,1] be a family of
functions on X defined by [2.2). If A is a t-norm of H-type, then for each X € (0,1], there exists pu € [0, \],
such that for each m € Z7T,

m—

*
G)\<1'0,l'm,xm E xwxl-‘rhxl-f—l)

m—
G)\(.Z'O,.%'(),xm E xumivx’i-f—l)

for all xg,x1,...,21m € X.
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Lemma 2.12 ([I8]). Let (X,G*,A) be a Menger PGM -space and A be a continuous t-norm. Then the
following statements are equivalent:

(i) the sequence {z,} is a Cauchy sequence;

(ii) for any € > 0 and 0 < X\ < 1, there exists M € Z" such that G () > 1=, for alln,m > M.

Tn,Tm,Tm

3. Main results

In this section, we will establish some new common fixed point theorems for compatible maps and weakly
compatible maps in Menger PG M-spaces. To this end, we first introduce the concepts of compatible maps
and weakly compatible maps in Menger PG M-spaces.

Definition 3.1. Let S and T be two self-maps of a Menger PG M-space (X,G*,A). S and T are said to be
compatible if Ggr,. 15, 152, (t) = 1and Gir, s7.. 75, (1) — 1 for all £ > 0 whenever {z,,} is a sequence

in X such that lim Sz, = lim Tz, = u for some u € X.
n—oo n—oo

Definition 3.2. Let S and T be two self-maps of a Menger PGM-space (X,G*,A). S and T are said
to be weakly compatible (or coincidentally commuting) if they commute at their coincidence points, i.e., if
Tu = Su for some u € X implies that T'Su = STu.

The following lemmas will be useful in proving our main results.

Lemma 3.3. Let {y,} be a sequence in a Menger PGM -space (X, G*,A), where A is a t-norm of H-type.
If there exists a function ¢ € @, such that

G;nﬂynﬂ,ynﬂ (0(t)) = min{Gy, . .. (D), Gzn,ynﬂ,ynﬂ (t)} (3.1)
for allt >0 and n € Z*. Then {y,} is a Cauchy sequence in X.

Proof. Let {G3}, A € (0,1] be the family of pseudo-metrics defined by (2.2)). For each A € (0,1] and n € Z¥,
putting a, = G5 (Yn—1,Yn, Yn), we will prove that

an+1 < ¢(ap) (3.2)

for all n € Z*. In fact, since ¢ is upper semi-continuous from the right, for given ¢ > 0 and each a,,, there
exist p, > a, such that ¢(p,) < ¢(ay) + €. By Lemma it follows from p,, > an = G} (Yn—1, Yn, Yn) that
G* (pn) > 1— X for all n € Z*. Thus, by (3.1]), we get

Yn—1,Yn,Yn
GZnyyn+1,yn+1 (¢(max{pn7pn+1})) > min{GZn_l,yn,yn (pn)7 GZnyyn+1,yn+1 (pn+1)} >1-A

Similarly by Lemma [2.10] we can have
Gi(?ﬁu Yn+1, yn+1) < ¢(max{pnapn+1}) = max{¢(pn)7 ¢(pn+1)} < ¢(max{an7 an—l—l}) + €.
By the arbitrariness of ¢, we have
ant1 = GA(Yn, Un+1, Ynt1) < d(max{an, ani1})- (3.3)

So, we can infer that a,1 < a,. If not, then by (3.3]), we have ap+1 < ¢(ant1) < ant+1/2 < apy1, which is
a contradiction. Hence, (3.3]) implies that a,+1 < ¢(ay), and (3.2)) is proved.
Repeatedly using (3.2), we get

G;(ynvyn-f-l?yn'f'l) S QS(G;(yn—l?yn?yn)) S e S ¢n(G§(yanl7y1)) (34)
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for all n € Z*. Noting that A is a t-norm of H-type. By Lemma for each A € (0,1], there exists
p € (0, A], such that

m—1

G5 Yns Yo ym) < Y Gl Yir1, Yin1) (3.5)

1=n

for all m,n € Z* with m > n. Since ¢ € @9, we have ¢" (G}, (yo,y1,¥1)) < 400. So for given € > 0, there
exists ng € Z* such that 3 ¢™(G}(yo,y1,91)) < € for all n > ng. Thus, it follows from (3.5) that

G (Uns Yo ym) < D ™ (Gr(yo, y1, 1)) < €

=n
for all n > ng, which implies that G, . (€) > 1— A forall m,n € ZT with m > n > ng. By Lemmam
{yn} is a Cauchy sequence in X. O

Lemma 3.4. Let (X,G*,A) be a Menger PGM -space and x,y € X. If there exists ¢ € ®q, such that

Gryy(@t) +0) 2 Gy, (1/2) (3.6)

for allt > 0. Then z = y.
Proof. Let A € (0,1] and we put a/2 = G}(x,y,y). Since ¢(-) is upper semi-continuous from the right at

the point a, for given € > 0, there exists s > a such that ¢(s) < ¢(a)+e. By Lemma 5/2 > Gy (x,y,9)
implies that G% ., (s/2) > 1 — A. So, it follows from (3.6) that

w?y7y
G;,y,y(d)(s) + 6) > G;,y,y(gb(s) + 0) > G;,y,y(s/z) >1-A
which implies that G} (z,y,y) < ¢(s) + € < ¢(a) + 2e. By the arbitrariness of €, we get a/2 = G} (z,y,y) <
¢(a), thus a =0, i.e., G}(z,y,y) = 0. By (2) of Lemma we conclude that z = y. O

Lemma 3.5. Let (X, G*, Apin) be a Menger PGM -space. Suppose that there ezists a function ¢ € ®, such
that

G ($(1) +0) > min{G%, (1), G% (D)}, (3.7)

z,Y,Y x,Y,Y Y,T,T
Then x =y.
Proof. We know that

Gy oalt) = Gy () > DGy, (1/2). G (1/2)) > Gy (1/2).

y?z7x m?y’m $7y7y

Since ¢ is upper-continuous from the right, it follows from (3.7)) that
Gryy(0(t) +0) 2 min{G (1), Goy o (8/2)} = Gy (8/2).

$7y’y ‘T’y7y m’y’y

Then by Lemma [3.4] we can conclude that x = y. O

We are now ready to give our main results.

Theorem 3.6. Let L, M, P and Q be self-maps on a complete Menger PGM-space (X,G*, Apmin), If the
following conditions are satisfied:

(i) L(X) € Q(X), M(X) C P(X);

(ii) either P or L is continuous;

(i1i) (L, P) is compatible and (M, Q) is weakly compatible;

(iv) there exists ¢ € ®q, such that

Gzz,My,My(¢(t)) > min{G};x,Lx,Lx (t)7 GZQy,My,My (t)7 G};LQy,Qy(t)?
G*Qy,Lx,Lz(ﬁt)a [G};x,&f ® Gg,My,My]((2 - ﬁ)t)}
forall z,y,§ € X, B €(0,2) andt > 0. Then L, M, P and Q have a unique common fized point in X.

(3.8)
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Proof. Let zp € X. From condition (i), there exist xj,z2 € X, such that Lxrg = Qx; = yo and
Mz = Pxy = y;. Inductively, we can construct two sequences {z,} and {y,} in X, such that

Lxoy, = Qxony1 = Yon, Mzopt1 = Propto = Yopy1, n=0,1,2,....

e Assume that there exists ¢ € @, such that (3.8) holds. Putting x = xay,, ¥ = y2n+1, £ = Y2n in (3.8), we
get

22n7y2n+lvy2n+1 (d)(t)) = zﬂczn,Mﬂcan,Mﬂcan (¢(t))
Z min{G};an,Ll‘Qn,Ll‘Qn (t) G*ngn+1,Mzgn+1,Mz2n+1 (t)’ G};IanQaQnJrvaTQnJrl (t)’

GQx2n+17L$2n»Lx2n (ﬁt) [ Pxon,y2n,y2n ® GZQnny2n+1»Mx2n+1]((2 - B)t)}

> mln{Gan 1)y2n7y2n( ) G22n7y2n+1yy2n+l( ) GZQ’VL 17y2nyy2n((2 - '8)/2)7
GZQnyy2n+17y2n+l(( - )/2)}

Letting 5 — 0, we obtain

GZQn,'an-&-l,an-Q—l (¢(t)) > mln{Gan 17y2nyy2n( ) G22n7y2n+1,'92n+1 (t)} (39)

Similarly, we can prove that

G22n+17y2n+2 Yan+42 (¢(t)) > mln{Gy2n y2n+17y2n+1( ) G;2n+17y2n+2ay2n+2 (t)} (310)

It follows from and - that
GZnyyn+1yyn+1 (¢(t)) 2 min{Ganlyynvyn (t)’ G?jnvyn+17yn+l (t)}’ n= 1’ 27 e

By Lemma we know that {y,} is a Cauchy sequence in X. Since (X, G*, A) is complete, we can assume
that y, — z € X, and so

lim Lxo, = hm Pxs, = hm Qront1 = hm Mzxopi1 = 2. (3.11)
n—oo

Now we prove z is a common fixed point of L, M, P and Q.
Case I. Suppose that P is continuous. By (3.11) we have PLzy, — Pz and PPxs, — Pz. Noting that
(L, P) is compatible, we get G p,, pru,. pre,, (t) — 1 forall ¢ >0, and thus

LPaon Pz.Pz(t) = A(GLpay, PLosy PLyoy t/2)s GPLay, pzp2(t/2)) = 1, (n — o0)

which shows that LPxg, — Pz(n — c0).
We first prove that z is a fixed point of P and L. Putting * = Pxap, ¥y = Tont1, & = LPx9, and =1

in (3.8), we get
*Lngn,Mx2n+1,Mx2n+1 ((b(t))
2 min{G}k?Pzgn,Lszn,Lngn (t), G*Qx2n+1,M$2n+1,M$2n+1 ), G};Pm2n,Q1'2n+1:Qx2n+1 (1),
G*ngn+1,LP1‘2n,LP$2n (t)? [ *PP:EQTL,LP.Z’Qn,Lngn @ G*LP$2n,MI2n+1,M.Z’2n+1:|(t)}
2 min{G};Pzzn,LP:vszszn (t), G*Qw2n+1,Mrr2n+1,Mx2n+1 (®), G;PIZmQx2n+1:Qm2n+1 (1),

G Qa1 LPz2m,LPw2n (1) GPPasy LPwsn, LP220 (€)) GLPagw Mg i1, Maaniy (E— €)1

where € € (0,t). Letting n — oo, by Lemma we get

*Pz,z,z((b( )+O> > mln{Ll’GPzzz( ) Z,PZ,PZ( ) 1 GPzzz( - 6)}
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Letting e — 0, we get
G*Pz,z,z((ﬁ(t) + O) > min{G*Pz,z,z(t)? Z,Pz,Pz(t)}’

which implies that Pz = z by Lemma [3.3
Putting x = { = 2z, y = 29,41 and =1 in (3.8]), we get

GEZ,M?D%H,MZ%H (¢(t)) 2 min{GTDZ,LZ,LZ (t)’ Géran,M?ﬂan,anH (t)’ G*szQx2n+l’Qx2n+1 (t)’
Gz}:cgn+1,Lz,Lz (t)? [ *Pz,z,z S G;,Mx2n+1,Mx2n+1](t)}
= min{G*Pz7LZ7Lz (t)7 G*Qx2n+1,M1‘2n+1,M12n+1 (t)7 G;Z,Q$2n+17Q$2n+1 (t)’
),

G*ngnJrl ,Lz,Lz (t Gz,ngnJrl JMxon1 (t) } .

Letting n — oo, by Lemma [2.9] we get

*Lz,z,z(¢(t) + 0) > min{G;Lz,Lz(t)? 1? 1? G:,LZ,LZ (t), 1} - G:’,Lz,Lz(t) > G*Lz7z,z<t/2)

for all ¢ > 0. By Lemma [3.4] we conclude that Lz = z. Therefore, z is a common fixed point of P and L.
Next, from Lz = z and , we can prove that z is also a common fixed point of M and @, i.e.,
Mz=Qz=z.
In fact, since L(X) C Q(X), there exists v € X, such that z = Lz = Qu. Putting x = x9,, y=v,{ =2
and S =11in , we get

szzn,M’U,MU ((b(t)) > min{G*ngn,Lxgn,Lxgn (t) ) GZ)U,MU,MU (t> ) G*ngn,Qv,Qv (t)?
Gav,szn,Lxgn (t)> [G}xgn,z,z D G;MU,Mv] (t)}
Z min{G*P:in,La:Qn,Latgn (t) ) G*QU,Mv,MU (t) ) G*ngn,Qv,Qv (t)’

GZ}v,Lxgn,szn (t)v G*ngn,z,z(€)7 z,M’U,M’U (t - 6)}

Letting n — oo, by Lemma we get

z,MU,Mv(gb(t) + O) > min{l’ G:,Mv,Mv(t)v 17 17 17 Gz,MU,MU(t - E)} = Gz,MU,MU(t - E)

for all t > 0 and € € (0,¢). Letting ¢ — 0, we obtain Mv = z by Lemma So, we have Qv = z = Mw,
i.e., v is a coincidence point of @ and M. Since (M, Q) is weakly compatible, we have M Qv = QMwv, and
thus Mz = Qz = z. Therefore, z is a common fixed point of L, M, P and Q.

Case II. Suppose that L is continuous. Noting that Lxo, — z and Pxs, — z. We have LLxs, — Lz
and LPz, — Lz. Since (L, P) is compatible, we have Gpp,. [ pyy 1ps,, (t) — 1 for all £ > 0. From this
fact, it is easy to prove that PLxs, — Lz. Putting x = Lxo,, y = Tont+1, { = Lz and =1 in , we get

LLwon, Maon i1, Mzt (P(F))
> min{GPp ey, LLesn,LLaon () GOranir Maanir , Maznis () GPLrsn Quansr . Quanst (1)
GQwan i1, LLasn,LLwan (U (GPLgn 12,12 ® Gz Magnir Mo i) ()}
> min{Gpra,, LLzon, LLean (1) GOzan i Masmir,Masnss (s GPLzoy Quonst,Quanst (E)s

Gz):cgn+1,LLa:2n,LLx2n (t)? G*PLxgn,Lz,Lz(6)7 G*Lz,Mx2n+1,Mx2n+1 (t - 6)}

for all t > 0 and € € (0,t). Letting n — oo, by Lemma we get

Zz,z,z(é(t) + 0) > min{l? 17 Gzz,z,z(t)7 z,Lz,Lz(t)ﬂ 17 G*Lz,z,z (t - 6)}

Letting € — 0, it follows that

G*Lz,z,z(¢(t) + O) > min{Gzz,z,z(t)7 Gz,Lz,LZ(t)}
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for all ¢ > 0, which implies that Lz = z.
In the same way as in Case I, from Lz = z and (3.11)), it is not difficult to prove that Mz = Qz = z.
Next, we only need to show that Pz = z.
Since M (X) C P(X), there exists w € X, such that z = Mz = Pw. Putting x = w, y = zop4+1, £ = 2
and 8 =1 in (3.8)), we get
zw7M$2n+17M$2n+1 (¢(t) = min{G}Svavaw (t), G22$2n+1,M$2n+1,Mz2n+1 (1), G};va$2n+lan2n+l (t),
GZ)xQn_H,Lw,Lw (t)7 [ >'IBw,z,z D G;,M:tgn+1,Mx2n+1](t)}
> min{G};w,Lw,Lw (), G*Qﬂc2n+1,M$2n+1,M$2n+1 (1), G}w7Q12n+1’Q$2n+1 (t),
Gax2n+1,Lw,Lw (t)7 Gz,Mx2n+1,Mx2n+1 (t)}
Letting n — oo, by Lemma we get

*Lw,z,z(¢(t) + 0) > min{Gz,Lw,Lw(t)v 17 17 Gz,Lw,Lw(t)7 1} = :,Lw,Lw (t) > sz,z,z(t/2)

for all ¢ > 0, which implies that Lw = z = Pw. Noting that (L, P) is compatible and so it is also weakly
compatible. Hence Pz = PLw = LPw = Lz = z. This shows that z is a common fixed point of L, M, P,
and Q.

Finally, we show the uniqueness. Let u be another common fixed point of L, M, P, and ). Then
Lu=Mu=Pu=Qu=wu. Puttingz=¢(=2,y=wuwand f=11in ,Weget

Gz,u,u(¢(t)) = Gzz,Mu,Mu(d)(t))
> min{G}’z,Lz,LZ (t)’ G*Qu,Mu,Mu(t)v G}z,Qu,Qu(t)7

Gau,Lz,Lz (t)v [G};z,z,z D G;,Mu,Mu](t)}
> min{l,1, G, (1), G (1), G . (6)}

Z,u,u U2,z Z,U,U
= min{G (1), G, . . (1)},
which implies that z = u. Therefore, z is a unique common fixed point of L, M, P, and Q. O

Taking ¢(t) = kt in Theorem [3.6] where k£ € (0,1/2) is a constant, we get the following consequence.

Corollary 3.7. Let L, M, P and Q be self-maps on a complete Menger PGM -space (X, G*, Amin), satisfying
conditions (i)-(iii) in Theorem [3.6] and the following
(iv) there exists a constant k € (0,1/2), such that

sz,My,My(kt) > min{G};z,Lm,Lr (t)’ GZ?y,My,My(t)? G*Pm,Qy,Qy (t)’
GZ)y,L:v,Lz (IBt)a [G};x,f,g ® G(E,My,My]((2 - B)t)}
forallx,y,§ € X, 5€(0,2) andt > 0. Then L, M, P and Q have a unique common fized point in X.

Corollary 3.8. Let L, M, P and Q be self-maps on a complete Menger PGM -space (X, G*, Anin), satisfying
conditions (i)-(iii) in Theorem [3.6) and the following:
()" there exists k € (0,1/2) such that

(3.12)

Gzp,Mq,Mq(kx) > min{G*Pp,Lp,Lp(x)7 GZQq,Mq,Mq('T)7 G*Pp,Qq,Qq(x)?
G Oq.Lp.Lp(BT)s Gpp vigaig (2 — B)z)}
forallp,qe X, B €(0,2) and x > 0. Then L, M, P and QQ have a unique common fized point in X.
Proof. By (PGM-4), we have

(3.13)

Gpony,y(t) > OS<UI<)t min{Gp, ¢ ¢(5), Ge ary ary(t = 8)} = [Gpug e ® G nry gl (t)
S

for all z,y,£ € X, t > 0. Hence, it is not difficult to see that (3.13) implies (3.12)). So, the conclusion of
Corollary [3.8] follows from Corollary [3.7] immediately. O
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Taking P = @ = I (the identity mapping on X), L = A, M = B in Theorem we have the following
corollary.

Corollary 3.9. Let A and B be self-maps on a complete Menger PGM -space (X, G*, Awin). If there exists
a function ¢ € ®g, such that

G*Aa:,By,By(gb(t)) > min{G;kc,Aac,Aac (t)v GZ,By,By (t)7 G;,y,y (t)’ G;,Aac,Aac (t)v [G;,E,f @ GZ,By,By]((2 - B)t)}
forall z,y, & € X, B €(0,2),t>0. Then A and B have a unique common fixed point in X.

Theorem 3.10. Let A, B, S, T, L and M be self-maps on a complete Menger PGM -space (X, G*, Apin),
satisfying the following conditions:

(i) L(X) C ST(X), M(X) C AB(X);

(ii) AB=BA, ST =TS, LB=BL, MT =TM;

(iii) either AB or L is continuous;

(iv) (L, AB) is compatible and (M, ST) is weakly compatible;

(v) there exists ¢ € ®¢, such that

Glamy vy (O(1) > min{GUp, 10 1) Gsry vy vy (V) Gapa,sTy.s7y (1),
GZTy,L:r,Lx(/Bt)a [szlB;v,g,f @ GZ,My,My]((Q - /B)t)}
forallx,y,& € X, 3€(0,2),t>0. Then A, B, S, T, L and M have a unique common fixed point in X.

Proof. Putting P = AB and @ = ST, it is easy to see that conditions (i) and (iii)-(v) of the theorem imply
conditions (i)-(iv) of Theorem Therefore, by Theorem [3.6] L, M, P and @ have a unique common fixed
point z in X, i.e.,

(3.14)

Lz=Mz=Pz=Qz=z. (3.15)
Now, we prove that z is a common fixed point of A and B. By (3.15) and condition (ii), we have
LBz = BLz = Bz and PBz = (AB)Bz = (BA)Bz = B(AB)z = BPz = Bz. thus, by condition (iv) of
Theorem putting =& = Bz, y = z and 8 =1 in (3.8]), we get
G*Bz,z,z(¢(t)) = GEBz,Mz,Mz(QZ)(t))
> min{G*PBz,LBz,LBz (t)7 G*Qz,Mz,Mz (t), G}BZ,QZ,QZ (t)v
Gaz,LBz,LBz (t)7 [G};BZ,BZ,BZ D G*Bz,Mz,Mz] (t)}
> min{17 17 G*Bz,z,z (t>7 :,Bz,Bz(t)? *Bz,z,z(t)}
:min{G*Bz,z,z(t)? z,Bz7Bz(t)}7

which implies that Bz = z, and so 2z = Pz = ABz = Az. Therefore, z is a common fixed point of A and B.
We next prove that z is also a fixed point of 7" and S. In fact, by (3.15) and condition (ii), we have
MTz=TMz=Tzand QTz= (ST)Tz= (TS)Tz=TQz=Tz. Puttingz =¢(=2,y=Tzand f=11in
(3-8), we get
z,Tz,Tz(qb(t)) = GEz,MTz,MTz(QS(t))
>min{Gp, 1. 1.(t), Gorsprsmr=(), Gps o1 012 (1),
GZ)TZ,LZ,Lz(t)7 [ *Pz,z,z D G;,MTZ,MTZ](t)}
> min{l? 17 Gz,Tz,Tz (t)7 G;“z,z,z (t)v z,Tz,Tz (t)}
= min{G:,Tz,Tz (t)v G;"zvz,z (t)}7

which implies that Tz = z, and so Sz = STz = )z = z. This shows that z is also a common fixed point of
T and S. Therefore, z is a common fixed point of A, B, S, T, L and M. Since z is a unique common fixed
point of P, @, L and M, it is easy to see that z is also a unique common fixed point of A, B, S, T, L and
M. This completes the proof. O
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Remark 3.11. We can also obtain Theorem [3.6] by putting B =T =TI and S = @ and A = P in Theorem
Therefore, Theorem [3.6] and Theorem are equivalent.

Taking ¢(t) = kt in Theorem where k € (0,1/2) is a constant, we get the following consequence.
Corollary 3.12. Let A, B, S, T, L and M be self-maps on a complete Menger PGM -space (X, G*, Apin),
satisfying the conditions (i)-(iv) of Theorem and the following:

(v) there exists k € (0,1/2), such that

sz,M%My(kt) > min{szle,L:c,L;v(t)? GETy,My,My@)? GZBJ:,STy,STy(t)v
Gty 10,128 [Gapree © Genryayl (2 = B)1)}

forallz,y,6 € X, 8€(0,2) andt > 0. Then A, B, S, T, L and M have a unique common fized point in X .

(3.16)

Corollary 3.13. Let A, B, S, T, L and M be self-maps on a complete Menger PGM -space (X,G*,A),
satisfying the conditions (i)-(iv) of Theorem and the following:
(v)" there exists k € (0,1/2), such that

sz,My,My(kt) > min{GZBx,Lm,Lx(t)7 GETy,My,My@)? Gsz,STy,STy(t)v
GgTy,Lz,La;(/Bt)’ GZBI,My,My((2 - ﬁ)t)}

forall z,y, £ € X, B €(0,2) andt > 0. Then A, B, S, T, L and M have a unique common fized point in
X.

(3.17)

Proof. We know that G% g, vy aiy(t) = [Glapeee © GEpryary)(t) for all 2.y, € X and t > 0. Hence, it is
not difficult to see that (3.17) in Corollary implies (3.16) in Corollary and so the conclusion of
Corollary follows from Corollary immediately. O

Theorem 3.14. Let Py, P, ..., Ps,, Qo and Q1 be self-maps on a complete Menger PGM -space
(X, G*, Amin), satisfying conditions:
(1) Qo(X)C PiPs Pop—1(X),Q1(X) C PPy -+ Pop(X);
(ZZ) Pg(P4-~P2n):(P4"'P2n)P27
PoPy(Ps -+ Pop) = (Ps - -+ Pon) P2 Py,

Py Py 1(Pop) = (Pay)Pa -+ Payq,
Qo(Py- -+ Pop) = (Py- - Popn)Qo,
Qo(FPs -+ Pon) = (Ps - - Pon)Qo,

QO(PQH) — (PZn)Q07
Pi(P3-- Pop_1) = (P3--- Poy1) P,
P\P3(Ps---Pop1) = (Ps-- Pop—1)P1 P,

Py Poy_3(Pon—1) = (Pon—1)P1 -+ - Pap—3,
Qi1(Ps-- Pop_1) = (P3--- Pop—1)Q1,
Qi(Ps---Pop—1) = (P5 -+ Pap—1)Q1,

Q1Pop—1 = Pop1Q1;
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(1i1) either Py--- Poy or Qg is continuous;
(1v) (Qo, Py - Pay) is compatible and (Q1, Py - Pap—1) is weakly compatible;
(v)  there existsp € ®g, such that

Gaox,Q1y7Q1y(¢(t)) 2 min{G}’2P4'~P2nz7Qom,Qox(t)’G*P1P3~~-P2n71y,Q1y7Q1y(t)’
G}2P4~"P2nft,P1P3mP2n—1y,P1P3'~~P2n71y(t)’ G}1P3'"P2n71y7Qox,Qow('Bt)’
(GhapsPone g6 © GeQuy,@uyl (2= B)1)} (3.18)
forall x,y,& € X, B € (0,2) andt > 0. Then Py, Ps, ..., Py, Qo and Q1 have a unique common fized
point in X.

Proof. The proof is similar to that of Theorem [3.10 O

4. Common fixed point theorems in G-metric spaces

In this section, we shall use the obtained results in Section [3] to get some corresponding fixed point
theorems for compatible and weakly compatible maps in G-metric spaces.

Theorem 4.1. Let L, M, P and Q be self-maps on a complete G-metric space (X, G) satisfying the following
conditions:

(i) L(X) C Q(X), M(X) C P(X);

(ii) either P or L is continuous;

(iii) (L, P) is compatible and (M, Q) is weakly compatible;

(iv) there exists ¢ € @1, such that for all z,y,€ X,

G(Lz, My, My) < ¢(G(x,y,y)),
where
G(z,y,y) = max{G(Px, Lz, Lx), G(Qy, My, My), G(Pz, Qy, Qy), [G(Qy, Lz, Lz) + G(Px, My, My)]/2}.
Then L, M, P and @ have a unique common fixed point in X.

Proof. Let (X, G*, Amin) be the induced Menger PG M-space by (X, G), where G* is defined by . It is
easy to see that conditions (i)-(iii) of Theorem |4.1| imply conditions (i)-(iii) of Theorem respectively. It
remains to prove that condition (iv) of Theorem implies condition (iv) of Theorem

By (2.1), we know that the value of each function G}, ,(-) (u,v € X) in the induced Menger PGM-space
only can equal 0 or 1. Hence, without loss of generality, we may assume that

min{Gp, 1., 1) GOy vy vy (1) GPr.0y.0y (1) GOy L.z (B), (Gpuge © G ary 1y )((2 = B)1)} = 1.
This implies that
G(Px, Lz, Lx) < t, G(Qy, My, My) < t, G(Pz,Qy,Qy) <t
and
G(Qy, Lz, Lz) < fBt, G(Px, My, My) < (2 — B)t. (4.1)

It follows from that implies that [G(Qy, Lz, Lv)+G(Pz, My, My)]/2 < t. Thus, we have G(z,y,y) < t.
Noting that ¢ is strictly increasing, by condition (iv) we get G(Lx, My, My) < ¢(G(z,y,y)) < ¢(t), which
implies that G7, s, rr,(#(t)) = 1. Hence inequality holds, i.e., condition (iv) of Theorem is
satisfied. Therefore, the conclusion follows from Theorem immediately. O
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In the same way, by Theorem [3.10, we can prove the following theorem.

Theorem 4.2. Let A, B, S, T, L and M be self-maps on a complete G-metric space (X,G) satisfying the
following conditions:

(i) L(X) C ST(X), M(X) C AB(X);

(i) AB = BA, ST =TS, LB = BL, MT = TM;

(i1i) either AB or L is continuous;

(iv) (L, AB) is compatible and (M, ST) is weakly compatible;

(v) there exists ¢ € ®1, such that for all z,y € X,

G(Ll', My, My) < (ﬁ(Gl(Z', Y, y))u

where

Gi(z,y,y) = min{G(ABx, Lz, Lz),G(STy, My, My),G(ABx, STy, STy),
[G(STy, Lz, Lz) + G(ABxz, My, My)]/2}.

Then A, B, S, T, L and M have a unique common fixed point in X.
Taking P=Q =1, L = A, M = B in Theorem we get the following consequence.

Corollary 4.3. Let A and B be self-maps on a complete G-metric space (X, G), if that there exists ¢ € ®q,
such that

G(Az, By, By) < ¢(max{G(z, Az, Ax),G(y, By, By),G(x,y,y), [G(y, Az, Az) + G(x, By, By)]/2})

for all z,y € X. Then A and B have a unique common fized point in X.

5. An application
In this section, we provide an example to illustrate the validity of Theorem

Example 5.1. Let X = [0,1]. Define a function G* : X* x [0,1] — [0,1] by G% , (t) = m
G(z,y,z) =z —y|l+ |y — 2| + |z — |, for all z,y,z € X, and ¢t > 0. It is easy to verify that (X, G*, Anin)
is a Menger PG M-space. Define L, M, P and @): X — X as follows

, where

1 0, =€][0,1),
Lr = — Mxr = ’ 2
xr 8(1?, X { %7 [% 11.

—

1 i, ze€l0,)
_ = — 34 WA
Pr=gw,  Qu { 1, zelil

Let ¢(t) = %t. Then it is obvious that ¢ € ®j. Consider the sequence {z,, = %} in X, then

lim Lz, = lim Px, = 0.
n—o0 n—oo

We can verify that G1p, pr.. pra,(t) = 1 and Gpr, 1p. ppg, () — 1 for all £ > 0. So (L,P) is
compatible. Also, (M, Q) is weakly compatible.
On the other hand, if z € [0,1] and y € [0, %), then for any ¢ > 0, we have

3 t t
Glamymy(5t) >
My,My 7 3
7 t+ {57 t+ 3w

min{G;’x,Lx,Lx (t)7 Gay,My,My (t)7 G};az,Qy,Qy(t)a GZQy,L:L‘,Lz (/Bt)7
(Gpoge® G pryaryl((2 = B)1)}.

= G}x,Lx,Lm (t)

v
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If 2 € [0,1] and y € [3,1], then for any ¢ > 0, we have

sz,My,My(?t)

3 t t

t+ % — %x ~ t+ %x

> min{G};x,Lx,Lr (t)7 Gay,My,My (t)7 G};x,Qy,Qy(t): GZ)y,LJ},Lz (/Bt)7
(Gpuee® GE pryaryl (2= 6)1)}.

= G?%c,La:,Lx (t)

Thus, all the conditions of Theorem are satisfied and 0 is the unique common fixed point in X.
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