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Abstract

We consider random best proximity point and cyclic contraction pair problems in uniformly convex
Banach spaces. We also prove some tripled best proximity and tripled fixed point theorems in complete
metric spaces. Our results present random version of [W. Sintunavarat, P. Kumam, Fixed point Theory
Appl., 2012 (2012), 16 pages] and many others. c©2016 All rights reserved.
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1. Introduction and Preliminaries

Random coincidence point theorems are stochastic generalizations of classical coincidence point theorems.
Some random fixed point theorems play an important role in the theory of random differential and random
integral equations (see [17], [21]). Random fixed point theorems for contractive mappings on separable
complete metric spaces have been proved by several authors ([1], [2], [7], [8], [12] and [18]). The stochastic
version of the well known Schauder’s fixed point theorem was proved by Sehgal and Singh [26]. Ćirić and
Lakshmikantham [9], Zhu and Xiao [34], Hussain et al. [16] and Khan et al. [19] proved some coupled
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random fixed point and coupled random coincidence point results in partially ordered complete metric
spaces. Hussain et al. [14] and Kutbi et al. [20] proved coupled and tripled coincidence point results for
generalized compatible and hybrid type mappings. In 1969, Fan [11] introduced and established a classical
best approximation theorem, that is, if A is a nonempty compact convex subset of a Hausdorff locally
convex topological vector space B and T : A → B is continuous mapping, then there exists an element
x ∈ A such that d(x, Tx) = d (Tx,A). Afterward, many authors have derived extensions of Fan’s theorem
and best approximation theorem in many directions, such as Prolla [23], Reich [24], Sehgal and Singh [27, 28],
Wlodarczyk and Plebaniak [33], Vetrival et al. [31], Eldred and Veeramani [10], Hussain and Hussain et al.
[15], [13], Mongkolkeha and Kumam [22] and Sadiq Basha and Veeramani [3], [4], [5], [6].

The purpose of this article is to prove the results for coupled random best proximity points for cyclic
contraction for a pair of two binary mappings introduced by W. Sintunavarat and P. Kumam [29]. We prove
tripled best proximity and tripled fixed point results in complete metric spaces. Moreover, we apply these
results in uniformly convex Banach spaces.

For nonempty subsets A and B of a metric space (X, d), we let

d (A,B) := inf {d (x, y) : x ∈ A and y ∈ B}

stand for the distance between A and B.
Let

B0 := {b ∈ B : d (a, b) = d (A,B) for an a ∈ A}
and

A0 := {a ∈ A : d (a, b) = d (A,B) for a b ∈ B} .

Definition 1.1. A Banach space X is said to be:
(i) strictly convex if for all x, y ∈ X, ||x|| = ||y|| = 1 and x 6= y imply that

∣∣∣∣x+y
2

∣∣∣∣ < 1,
(ii) uniformly convex if for each ε with 0 < ε ≤ 2, there exists a δ > 0 such that

||x|| ≤ 1, ||y|| ≤ 1 and ||x− y|| ≥ ε⇒
∣∣∣∣∣∣∣∣x+ y

2

∣∣∣∣∣∣∣∣ < 1− δ for all x, y ∈ X.

It is easy to see that a uniformly convex Banach space is strictly convex, but the converse is not true.
Throughout in this article, we denote by N the set of all positive integers and by R the set of all real numbers.

Definition 1.2 ([30]). Let A and B be nonempty subsets of a metric space (X, d). The ordered pair (A,B)
has the property UC if the following holds:

If {xn} and {zn} are sequences in A and {yn} is a sequence in B such that d (xn, yn) → d (A,B) and
d (zn, yn)→ d (A,B), then d (xn, zn)→ 0.

Example 1.3 ([30]). The following are examples of a pair of nonempty subsets (A,B) having the property
UC.

(1) Every pair of nonempty subsets A,B of a metric space (X, d) such that d (A,B) = 0.

(2) Every pair of nonempty subsets A,B of a uniformly convex Banach space X such that A is convex.

(3) Every pair of nonempty subsets A,B of a strictly convex Banach space where A is convex and relatively
compact and the closure of B is weakly compact.

Definition 1.4. Let A and B be nonempty subsets of a metric space (X, d). The ordered pair (A,B) has
the property UC ∗ if (A,B) has the property UC and the following condition holds:

If {xn} and {zn} are sequences in A and {yn} is a sequence in B satisfying:

(1) d (zn, yn)→ d (A,B) ;

(2) for every ε > 0 there exists an N ∈ N such that

d (xm, yn) ≤ d (A,B) + ε

for all m > n ≥ N , then for every ε > 0 there exists an N1 ∈ N such that
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d (xm, zn) ≤ d (A,B) + ε

for all m > n ≥ N1.

Example 1.5. The following are examples for a pair of nonempty subsets (A,B) having the property UC ∗:

(1) Every pair of nonempty subsets A,B of a metric space(X, d) such that d (A,B) = 0.

(2) Every pair of nonempty closed subsets A,B of a uniformly convex Banach space X such that A is
convex [10, Lemma 3.7].

Definition 1.6. Let A and B be nonempty subsets of a metric space (X, d) and T : A→ B a mapping. A
point x ∈ A is said to be a best proximity point of T if

d (x, Tx) = d(A,B).

Definition 1.7 ([29]). Let A and B be nonempty subsets of a metric space X and F : A×A→ B. A point
(x, x′) ∈ A×A is called a coupled best proximity point of F if

d
(
x, F

(
x, x′

))
= d

(
x′, F

(
x′, x

))
= d (A,B) .

It is easy to see that if A = B in Definitions 1.6 and 1.7, then a best proximity point (coupled best
proximity point) reduces to a fixed point (coupled fixed point).

Definition 1.8 ([29]). Let A and B be nonempty subsets of a metric space X, F : A × A → B and
G : B × B → A. The ordered pair (F,G) is said to be a cyclic contraction if there exists a nonnegative
number α < 1 such that

d
(
F
(
x, x′

)
, G

(
y, y′

))
≤ α

2
[d (x, y) + d

(
x′, y′

)
] + (1− α)d (A,B)

for all (x, x′) ∈ A×A and (y, y′) ∈ B ×B.

Note that if (F,G) is a cyclic contraction, then (G,F ) is also a cyclic contraction.
In [29], Kumam et al. proved the following theorem using cyclic contraction.

Theorem 1.9. Let A and B be nonempty closed subsets of a complete metric space X such that (A,B) and
(B,A) have the property UC∗. Let F : A×A→ B, G : B ×B → A and (F,G) be a cyclic contraction. Let
(x0, x

′
0) ∈ A×A and define

x2n+1 = F (x2n, x
′
2n) , x′2n+1 = F (x′2n, x2n) and x2n+2 = G

(
x2n+1, x

′
2n+1

)
, x′2n+1 = G

(
x′2n+1, x2n+1

)
for all n ∈ N ∪ {0}. Then F has a coupled best proximity point (p, q) ∈ A × A and G has a coupled best
proximity point (p′, q′) ∈ B × B such that d (p, p′) + d (q, q′) = 2d (A,B). Moreover, we have x2n → p,
x′2n → q, x2n+1 → p′, x′2n+1 → q′.

2. Random best proximity results

Let (Ω,Σ) be a measurable space with Σ a sigma algebra of subsets of Ω and let (X, d) be a metric
space. A mapping T : Ω → X is called Σ-measurable if for any open subset U of X, one has T−1 (U) =
{ω : T (ω) ∈ U} ∈ Σ. In what follows, when we speak of measurability we will mean Σ-measurability. A
mapping T : Ω × X → X is called a random operator if for any x ∈ X, the set T (., x) is measurable. A
measurable mapping ζ : Ω → X is called a random fixed point of a random function T : Ω × X → X if
ζ(ω) = T (ω, ζ(ω)) for every ω ∈ Ω. A measurable mapping ζ : Ω → X is called a random coincidence of
T : Ω×X → X and g : Ω×X → X if g (ω, ζ(ω)) = T (ω, ζ(ω)) for every ω ∈ Ω.
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Definition 2.1. Let A and B be nonempty subsets of a separable metric space (X, d) and (Ω,Σ) be a
measurable space. If ζ, η : Ω→ A are measurable mappings, then the random operator F : Ω×(A×A)→ B
has a coupled random best proximity point if for each ω ∈ Ω, we have

d (ζ(ω), F (ζ(ω), η(ω))) = d(η(ω), F (η(ω), ζ(ω)) = d (A,B) .

Theorem 2.2. Let (X, d) be a complete separable metric space, (Ω,Σ) be a measurable space and A and B
be nonempty closed subsets of X. Suppose that F : Ω × (A × A) → B and G : Ω × (B × B) → A are two
random operators. Define

x2n+1(ω) = F (ω, (x2n(ω), y2n(ω)) , y2n+1(ω) = F (ω, (y2n(ω), x2n(ω))) (2.1)

and
x2n+2(ω) = G (ω, (x2n+1 (ω) , y2n+1ω)) , y2n+2 (ω) = G (ω, (y2n+1(ω), x2n+1(ω))) (2.2)

for all n ∈ N ∪ {0} and ω ∈ Ω. Let F be continuous and suppose that
(i) F (., v) and G (., u) are measurable for all v ∈ A×A and u ∈ B ×B respectively;
(ii) (A,B) and (B,A) have the property UC∗;
(iii) (F,G) is a cyclic contraction.
Then F and G have a coupled random best proximity point.

Proof. Let Θ = {ζ : Ω→ X} be a family of measurable mappings. Define a function h = Ω×X → R+ by

h (ω, x) = d (x, F (ω, x)) .

Since x → F (ω, x) is continuous for all ω ∈ Ω, we conclude that h (ω, .) is continuous for all ω ∈ Ω. Also,
since x → F (ω, x) is measurable for all x ∈ X, we conclude that h (., x) is measurable for all ω ∈ Ω (see
[32, p. 868]). Thus h (ω, x) is the Caratheodory function. Therefore, if ζ : Ω→ X is a measurable mapping,
then ω → h (ω, ζ(ω)) is also measurable (see [25]). Also, for each ζ ∈ Θ, the function η : Ω→ X defined by
η(ω) = F (ω, ζ (ω)) is also measurable, that is, η ∈ Θ. Now, we shall construct two sequences {ζn(ω)} and
{ηn(ω)} of measurable mappings in Ω and will prove the theorem in three steps:

Step I: For each n ∈ N ∪ {0}, we have from (2.1) and (2.2)

d (ζ2n(ω), ζ2n+1(ω)) = d (ζ2n(ω), F (ω, (ζ2n(ω), η2n(ω))))
= d (G (ω, (ζ2n−1(ω), η2n−1(ω))) , F (ω, (G (ω, (ζ2n−1(ω), η2n−1 (ω))) , G (ω, (η2n−1 (ω) , ζ2n−1) (ω)))))
≤ α

2 [d (ζ2n−1(ω), G (ω, (ζ2n−1(ω), η2n−1 (ω)))) + d (η2n−1(ω), G (ω, (η2n−1(ω), ζ2n−1(ω))))]
+ (1− α) d (A,B)

= α
2 [d (F (ω, (ζ2n−2 (ω) , η2n−2(ω))) , G (ω, F (ω, (ζ2n−2(ω), η2n−2(ω))) , F (ω, (η2n−2(ω), ζ2n−2(ω)))))
+d (F (ω, (η2n−2(ω), ζ2n−2(ω))) , G (ω, F (ω, (η2n−2(ω), ζ2n−2 (ω))) , F (ω, (ζ2n−2 (ω) , η2n−2(ω)))))]
+ (1− α) d (A,B)
≤ α

2 [α2 [d (ζ2n−2 (ω) , F (ω, (ζ2n−2(ω), η2n−2(ω)))) + d (η2n−2(ω), F (ω, (η2n−2(ω), ζ2n−2(ω))))
+ (1− α) d (A,B)] + α

2 [d (η2n−2(ω), F (ω, (η2n−2(ω), ζ2n−2 (ω))))
+d (ζ2n−2(ω), F (ω, (ζ2n−2(ω), η2n−2(ω)))) + (1− α) d (A,B)]] + (1− α) d (A,B)

= α2

2 [d (ζ2n−2(ω), F (ω, (ζ2n−2(ω), η2n−2(ω)))) d (η2n−2(ω), F (ω, (η2n−2(ω), ζ2n−2(ω))))]
+
(
1− α2

)
d (A,B) .

By induction, we can see that

d (ζ2n(ω), ζ2n+1(ω)) ≤ α2n

2
[d (ζ0 (ω) , F (ω, (ζ0(ω), η0(ω)))) + d (η0(ω), F (ω, (η0(ω), ζ0(ω))))]

+
(
1− α2n

)
d (A,B) .

Taking n→∞, we obtain
d (ζ2n(ω), ζ2n+1(ω))→ d (A,B) . (2.3)
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By similar arguments, we can prove that

d (ζ2n+1(ω), ζ2n+2 (ω))→ d (A,B) , (2.4)

d (η2n(ω), η2n+1(ω))→ d (A,B) , (2.5)

d (η2n+1(ω), η2n+2(ω))→ d (A,B) . (2.6)

Now, we have to show that for every ε > 0, there exists a positive integer N0 such that for all m > n > N0,

1
2 [d (η2m(ω), η2n+1(ω)) + d (ζ2m (ω) , ζ2n+1(ω))] < d (A,B) + ε. (2.7)

Since the pairs (A,B) and (B,A) have the property UC, therefore from (2.3), (2.4), (2.5), and (2.6) we
get d (ζ2n, ζ2n+2) → 0, d (η2n, η2n+2) → 0, d (ζ2n+1, ζ2n+3) → 0 and d (η2n+1, η2n+3) → 0. Assume contrary
that (2.7) does not hold. Then there would exists an ε′ > 0 such that for all k ∈ N, there would be an
mk > nk ≥ k satisfying

1

2
[d (η2mk

(ω), η2nk+1(ω)) + d (ζ2mk
(ω), ζ2nk+1(ω))] ≥ d (A,B) + ε′

and
1

2
[d (η2mk−2(ω), η2nk+1(ω)) + d (ζ2mk−2(ω), ζ2nk+1(ω))] < d (A,B) + ε′.

That is, we would have

d (A,B) + ε′ ≤ 1

2
[d (η2mk

(ω), η2nk+1(ω)) + d
(
ζ2mk

(ω), ζ2nk+1(ω)

)
]

≤ 1

2
[d (η2mk

(ω), η2mk−2(ω)) + d (η2mk−2(ω), η2nk+1(ω)) + d (ζ2mk
(ω), ζ2mk−2(ω))

+d (ζ2mk−2(ω), ζ2nk+1(ω))]

<
1

2
[d (η2mk

(ω), η2mk−2(ω)) + d (ζ2mk
(ω), ζ2mk−2(ω))] + d (A,B) + ε′.

Letting k →∞, we would have

1

2
[d (η2mk

(ω), η2nk+1(ω)) + d (ζ2mk
(ω), ζ2nk+1(ω))]→ d (A,B) + ε′. (2.8)

By using the triangle inequality, we would get

1
2 [d (η2mk

(ω), η2nk+1(ω)) + d (ζ2mk
(ω), ζ2nk+1(ω))]

≤ 1
2 [d (η2mk

(ω), η2mk+2(ω)) + d (η2mk+2(ω), η2nk+3(ω)) + d (η2nk+3(ω), η2nk+1(ω))
+d (ζ2mk−2(ω), ζ2mk+2(ω)) + d (ζ2mk+2(ω), ζ2nk+3(ω)) + d (ζ2nk+3(ω), ζ2nk+1(ω))]

= 1
2 [d (η2mk

(ω), η2mk+2(ω)) + d (G (ω, (η2mk+1(ω), ζ2mk+1 (ω))) , F (ω, (η2nk+2(ω), ζ2nk+2(ω))))
+d (η2nk+3(ω), η2nk+1(ω)) + d (ζ2mk

(ω), ζ2mk+2(ω))
+d (G (ω, (ζ2mk+1(ω), ζ2mk+1(ω))) , F (ω, (ζ2nk+2(ω), η2mk+2(ω)))) + d (ζ2nk+3(ω), ζ2nk+1(ω))]
≤ 1

2 [d (η2mk
(ω), η2mk+2(ω)) + α

2 [d (η2mk+1(ω), η2nk+2(ω)) + d (ζ2mk+1(ω), ζ2nk+2(ω))]
+ (1− α) d (A,B) + d (η2nk+3(ω), η2nk+1(ω)) + d (ζ2mk−2(ω), ζ2mk+2(ω)) + α

2 [d (ζ2mk+1(ω), ζ2nk+2(ω))
+d (η2mk+1(ω), η2nk+2(ω))] + (1− α) d (A,B) + d (ζ2nk+3(ω), ζ2nk+1 (ω))]

= 1
2 [d (η2mk

(ω), η2mk+2(ω)) + d (η2nk+3(ω), η2nk+1(ω)) + d (ζ2mk
(ω), ζ2mk+2(ω))

+d (ζ2nk+3(ω), ζ2nk+1(ω))] + α
2 [d (ζ2mk+1(ω), ζ2nk+2(ω)) + d (η2mk+1(ω), η2nk+2(ω))] + (1− α) d (A,B)

= 1
2 [d (η2mk

(ω), η2mk+2(ω)) + d (η2nk+3(ω), η2nk+1(ω)) + d (ζ2mk
(ω), ζ2mk+2(ω))

+d (ζ2nk+3(ω), ζ2nk+1(ω))] + α
2 [d (F (ω, (ζ2mk

(ω), η2mk
(ω))) , G (ω, (ζ2nk+1 (ω) , η2nk+1(ω))))

+d (F (ω, (η2mk
(ω), ζ2mk

(ω))) , G (ω, (η2nk+1(ω), ζ2nk+1(ω))))] + (1− α) d (A,B)
≤ 1

2 [d (η2mk
(ω), η2mk+2(ω)) + d (η2nk+3(ω), η2nk+1(ω)) + d (ζ2mk

(ω), ζ2mk+2(ω))
+d (ζ2nk+3(ω), ζ2nk+1(ω))] + α

2 [α2 [d (ζ2mk
(ω) , ζ2nk+1(ω)) , d (η2mk+1(ω), η2nk+1(ω)) + (1− α) d (A,B)]

+α
2 [d (η2mk

(ω), η2nk+1(ω)) , d (ζ2mk+1(ω), ζ2nk+1(ω)) + (1− α) d (A,B)]] + (1− α) d (A,B)
= 1

2 [d (η2mk
(ω), η2mk+2(ω)) + d (η2nk+3(ω), η2nk+1(ω)) + d (ζ2mk

(ω), ζ2mk+2(ω))

+d (ζ2nk+3(ω), ζ2nk+1(ω))] + α2

2 [d (ζ2mk
(ω), ζ2nk+1(ω)) + d (η2mk

(ω), η2nk+1(ω))] +
(
1− α2

)
d (A,B) .
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Taking k →∞, we would get

d (A,B) + ε′ ≤ α2[d(A,B) + ε′] +
(
1− α2

)
d (A,B)

= d (A,B) + α2ε′,

which is a contradiction. Therefore, we can conclude that (2.7) holds.
Step II: Now, we will show that {ζ2n (ω)} , {η2n(ω)} , {ζ2n+1(ω)}, and {η2n+1(ω)} are Cauchy sequences.

Since from (2.3) and (2.4), we have d (ζ2n, ζ2n+1)→ d (A,B) and d (ζ2n+1, ζ2n+2)→ d (A,B) and (A,B) has
the property UC ∗, we get d (ζ2n, ζ2n+2)→ 0. As (B,A) has the same property, we have d (ζ2n+1, ζ2n+3)→ 0.
Here, we show that for every ε > 0 there exists an N such that

d (ζ2m(ω), ζ2n+1(ω)) ≤ d (A,B) + ε (2.9)

for all m > n ≥ N . Assume contrary, that there exists an ε > 0 such that for all k ∈ N there exists an
mk > nk ≥ k such that

d (ζ2mk
(ω), ζ2nk+1 (ω)) > d (A,B) + ε.

Now, we would have

d (A,B) + ε < d (ζ2mk
(ω), ζ2nk+1(ω))

≤ d (ζ2mk
(ω), ζ2nk−1(ω)) + d (ζ2nk−1(ω), ζ2nk+1(ω))

≤ d (A,B) + ε+ d (ζ2nk−1 (ω) , ζ2nk+1(ω)) .

Taking k → ∞, we would get d (ω, (ζ2mk
(ω), ζ2nk+1(ω))) → d (A,B) + ε. By using the triangle inequality

and (2.7) we would have,

d (ζ2mk
(ω), ζ2nk+1 (ω))

≤ d (ζ2mk
(ω), ζ2mk+2(ω)) + d (ζ2mk+2(ω), ζ2nk+3(ω)) + d (ζ2nk+3(ω), ζ2nk+1(ω))

= d (ζ2mk
(ω), ζ2mk+2(ω)) + d (G (ω, (ζ2mk+1(ω), η2mk+1(ω))) , F (ω, (ζ2nk+2 (ω) , η2nk+2(ω))))

+d (ζ2nk+3(ω), ζ2nk+1(ω))
≤ d (ζ2mk

(ω), ζ2mk+2(ω)) + α
2 [d (ζ2mk+1(ω), ζ2nk+2(ω)) + d (η2mk+1(ω), η2nk+2(ω))] + (1− α) d(A,B))

+d (ζ2nk+3(ω), ζ2nk+1(ω)) .
= α

2 [d (F (ω, (ζ2mk
(ω), η2mk

(ω))) , G (ω, (ζ2nk+1(ω), η2nk+1(ω))))
+d (F (ω, (η2mk

(ω), ζ2mk
(ω))) , G (ω, (η2nk+1(ω), ζ2nk+1(ω))))] + (1− α) d (A,B)

+d (ζ2mk
(ω), ζ2mk+2(ω)) + d (ζ2nk+3(ω), ζ2nk+1(ω))

≤ α
2 [α2 [d (ζ2mk

(ω), ζ2nk+1(ω)) + d (η2mk
(ω), η2nk+1(ω)) + (1− α) d(A,B)]

α
2 [d (η2mk

(ω), η2nk+1(ω)) + d (ζ2mk
(ω), ζ2nk+1(ω)) + (1− α) d(A,B)]] + (1− α) d (A,B)

+d (ζ2mk
(ω), ζ2mk+2(ω)) + d (ζ2nk+3(ω), ζ2nk+1(ω)) .

= α2 1
2 [d (ζ2mk

(ω), ζ2nk+1(ω)) + d (η2mk
(ω), η2nk+1(ω))] +

(
1− α2

)
d (A,B) + d (ζ2mk

(ω), ζ2mk+2(ω))
+d (ζ2nk+3(ω), ζ2nk+1(ω))

< α2 (d (A,B) + ε) +
(
1− α2

)
d (A,B) + d (ζ2mk

(ω), ζ2mk+2(ω)) + d (ζ2nk+3(ω), ζ2nk+1(ω))
= d (A,B) + α2ε+ d (ζ2mk

(ω), ζ2mk+2(ω)) + d (ζ2nk+3(ω), ζ2nk+1 (ω)) .

Taking k →∞, we would get
d (A,B) + ε ≤ d (A,B) + α2ε,

which contradicts the assumption. Therefore, condition (2.9) holds. By (2.9) and d ((ζ2n(ω), ζ2n+1 (ω)))→
d ((A,B)) and using the property UC ∗ of (A,B), we have that {ζ2n(ω)} is a Cauchy sequence. In a similar
way, we can prove that {η2n(ω)} , {ζ2n+1(ω)} and {η2n+1(ω)} are Cauchy sequences.

Step III: Since A and B are subsets of a complete metric space X, therefore there exist ζ(ω) and η(ω)
such that ζ2n (ω)→ ζ(ω) and η2n(ω)→ η(ω). We have

d(A,B) ≤ d (ζ(ω), ζ2n−1 (ω)) ≤ d (ζ(ω), ζ2n(ω)) + d (ζ2n(ω), ζ2n−1(ω)) .
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Letting n → ∞, we get d (ζ(ω), ζ2n−1(ω)) → d (A,B). By a similar argument, we can also get
d (η(ω), η2n−1(ω))→ d (A,B). It follows that

d (ζ2n(ω), F (ω, (ζ(ω), η(ω))))
= d (G (ω, (ζ2n−1(ω), η2n−1(ω))) , F (ω, (ζ(ω), η(ω))))
≤ α

2 [d (ζ2n−1(ω), ζ(ω)) + d (η2n−1(ω), η(ω))] + (1− α) d (A,B) .

Taking n→∞, we get
d (ζ(ω), F (ω, (ζ(ω), η (ω)))) = d (A,B) .

Similarly, we can prove that d (η(ω), F (ω, (η(ω), ζ(ω)))) = d (A,B). Therefore, we have that (ζ (ω) , η(ω))
is a coupled random best proximity point of F . By the same argument, we can prove that there exist ζ ′(ω),
η′(ω) ∈ B such that ζ2n+1(ω)→ ζ ′(ω) and η′2n+1 (ω)→ η′(ω).

Moreover, we also have d (ζ ′(ω), G (ω, (ζ ′(ω), η′ (ω)))) = d (A,B) and d (η′(ω), G (ω, (η′ (ω) , ζ ′(ω)))) =
d (A,B) and so (ζ ′ (ω) , η′(ω)) is a coupled random best proximity point of G.

Here, we note that if (A,B) is a pair of nonempty closed subsets of a uniformly convex Banach space X
such that A is convex, then (A,B) has the property UC∗. Then, we have the following corollary.

Corollary 2.3. Let (X, d) be a complete separable metric space, (Ω,Σ) a measurable space and let A and B be
nonempty closed subsets of a uniformly convex separable Banach space X. Suppose that F : Ω×(A×A)→ B
and G : Ω× (B ×B)→ A are two random operators. Define

x2n+1(ω) = F (ω, (x2n(ω), y2n(ω)) , y2n+1(ω) = F (ω, (y2n(ω), x2n(ω)))

and
x2n+2(ω) = G (ω, (x2n+1 (ω) , y2n+1ω)) , y2n+2 (ω) = G (ω, (y2n+1(ω), x2n+1(ω)))

for all n ∈ N ∪ {0} and ω ∈ Ω. Let F be continuous and suppose that
(i) F (., v) and G (., u) are measurable for all v ∈ A×A and u ∈ B ×B respectively;
(ii) (F,G) is a cyclic contraction.
Then F and G have a coupled random best proximity point.

Theorem 2.4. Let (X, d) be a separable metric space, (Ω,Σ) a measurable space and let A and B be
nonempty compact subsets of X. Suppose that F : Ω × (A × A) → B and G : Ω × (B × B) → A are two
random operators. Define

x2n+1(ω) = F (ω, (x2n(ω), y2n(ω)) , y2n+1(ω) = F (y2n(ω), x2n(ω))

and
x2n+2(ω) = G (x2n+1(ω), y2n+1(ω)) , y2n+2 (ω) = G (y2n+1(ω), x2n+1 (ω))

for all n ∈ N ∪ {0} and ω ∈ Ω. Let F be continuous and suppose that
(i) F (., v) and G (., u) are measurable for all v ∈ A×A and u ∈ B ×B respectively;
(ii) (F,G) is a cyclic contraction.
Then F and G have a coupled random best proximity point.

Proof. As in Theorem 2.2, we have that ζ, η : Ω→ X are measurable mappings and

ζ2n+1(ω) = F (ω, (ζ2n(ω), η2n(ω)) , η2n+1 (ω) = F (η2n(ω), ζ2n (ω))

and
ζ2n+2(ω) = G (ζ2n+1 (ω) , η2n+1(ω)) , η2n+2(ω) = G (η2n+1(ω), ζ2n+1(ω))

for all n ∈ N ∪ {0}, we have ζ2n(ω), η2n(ω) ∈ A and ζ2n+1 (ω) , η2n+1(ω) ∈ B for all n ∈ N ∪ {0}. Since A
is compact, the sequences {ζ2n(ω)} and {η2n (ω)} have convergent subsequences {ζ2nk

(ω)} and {η2nk
(ω)}

respectively, that is, ζ2nk
(ω)→ ζ(ω) and η2nk

(ω)→ η(ω). Now, we have
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d (A,B) ≤ d (ζ(ω), ζ2nk−1(ω)) ≤ d (ζ (ω) , ζ2nk
(ω)) + d (ζ2nk

(ω), ζ2nk−1(ω)) . (2.10)

By (2.3), we have d (ζ2nk
(ω), ζ2nk−1(ω))→ d (A,B). Taking k →∞ in (2.10), we get d (ζ(ω), ζ2nk−1 (ω))→

d (A,B). Similarly, we can prove that d (η(ω), ζ2nk−1(ω))→ d (A,B). Note that

d (A,B) ≤ d (ζ2nk
(ω), F (ω, (ζ(ω), η (ω))))

= d (G (ω, (ζ2nk−1(ω), η2nk−1(ω))) , F (ω, (ζ(ω), η(ω))))
≤ α

2 [d (ζ2nk−1(ω), ζ(ω)) + d (η2nk−1(ω), η(ω))] + (1− α) d (A,B) .

Taking k →∞ in the above inequality, we get d (ζ(ω), F (ζ(ω), η(ω))) = d (A,B). Using the same argument,
we can prove that d (η(ω), F (η(ω), ζ(ω))) = d (A,B). Thus F has a coupled random best proximity point
(ζ(ω), η(ω)). In a similar way, since B is compact, we can prove that G has a coupled random best proximity
point.

3. Tripled best proximity point results

In this section, we study the existence and convergence of tripled best proximity points for cyclic con-
traction pairs. We begin by the notion of tripled best proximity point.

Definition 3.1. Let A and B be nonempty subsets of a metric space X and F : A×A×A→ B. A point
(x, y, z) ∈ A×A×A is called a tripled best proximity point of F if

d (x, F (x, y, z)) = d (y, F (y, x, z)) = d (z, F (z, y, x)) = d (A,B) .

It is easy to see that if A = B in the definition above, then a tripled best proximity point reduces to a
tripled fixed point.

Next, we introduce the notion of a cyclic contraction for a pair of two binary mappings.

Definition 3.2. Let A and B be nonempty subsets of a metric space (X, d) and F : A× A× A→ B, and
G : B ×B ×B → A two mappings. The ordered pair (F,G) is said to be cyclic α-contractive if there exists
a scalar α with 0 ≤ α < 1 such that

d (F (x, y, z) , G (u, v, w)) ≤ α

3
[d (x, u) + d (y, v) + d(z, w)] + (1− α)d (A,B)

for all (x, y, z) ∈ A×A×A and (u, v, w) ∈ B ×B ×B.

Observe that if (F,G) is cyclic α-contractive, then so is (G,F ).

Example 3.3. Let X = R with the usual metric d (x, y) = |x− y| and let A = [2, 4] and B = [−4,−2].
Then d (A,B) = 4. Define F : A×A×A→ B and G : B ×B ×B → A by

F (x, y, z) =
−(x+ y + z + 6)

6
and G(x, y, z) =

−(x+ y + z − 6)

6
.

Then for (x, y, z) ∈ A×A×A, (u, v, w) ∈ B ×B ×B and for α = 1
2 , we have

d (F (x, y, z) , G (u, v, w)) =

∣∣∣∣−(x+ y + z + 6)

6
− −(u+ v + w − 6)

6

∣∣∣∣
≤ |x− u|+ |y − v|+ |z − w|

6
+

1

2
(4)

=
α

3
[d (x, u) + d (y, v) + d(z, w)] + (1− α)d (A,B) .

Thus (F,G) is cyclic 1
2 -contractive.
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Example 3.4. Let X = R3 with the metric d (F (x, y, z) , G (u, v, w)) = max {|x− u| , |y − v| , |z − w|} and
let A = {(x, 0, 0) : 0 ≤ x ≤ 1} and B = {(x, 0, 1) : 0 ≤ x ≤ 1}. It is easy to prove that d (A,B) = 1. Define
the mappings F : A×A×A→ B and G : B ×B ×B → A by

F ((x, 0, 0) , (y, 0, 0) , (z, 0, 0)) =

(
x+ y + z

3
, 0, 1

)
and G ((x, 0, 1) , (y, 0, 1) , (z, 0, 1)) =

(
x+ y + z

3
, 0, 0

)
.

Then

d (F ((x, 0, 0) , (y, 0, 0) , (z, 0, 0)), G ((u, 0, 1) , (v, 0, 1) , (w, 0, 1)))

= d

((
x+ y + z

3
, 0, 1

)
,

(
u+ v + w

3
, 0, 0

))
= 1,

and for all α > 0, we get

α

3
[d ((x, 0, 0) , (u, 0, 1)) + d ((y, 0, 0) , (v, 0, 1) + d((z, 0, 0), (w, 0, 1))] + (1− α) d (A,B)

=
α

3
[max {|x− u| , 0, 1}+ max {|y − v| , 0, 1}+ max{|z − w| , 0, 1}] + (1− α) d (A,B)

=
α

3
× 3 + (1− α) = 1.

This implies that (F,G) is cyclic α-contractive.

The following lemma is very useful to prove our main results.

Lemma 3.5. Let A and B be nonempty subsets of a metric space (X, d), F : A × A × A → B, G :
B × B × B → A two mappings and (F,G) cyclic α-contractive. Let (x0, y0, z0) ∈ A × A × A. If for each
n ≥ 0, we define

x2n+1 = F (x2n, y2n, z2n) , y2n+1 = F (y2n, x2n, z2n) , z2n+1 = F (z2n, y2n, x2n) and

x2n+2 = G (x2n+1, y2n+1, z2n+1) , y2n+2 = G (y2n+1, x2n+1, z2n+1) , z2n+2 = G (z2n+1, y2n+1, x2n+1) ,

then

lim
n→∞

d (x2n, x2n+1) = d (A,B) = lim
n→∞

d (x2n+1, x2n+2) ;

lim
n→∞

d (y2n, y2n+1) = d (A,B) = lim
n→∞

d (y2n+1, y2n+2) ;

lim
n→∞

d (z2n, z2n+1) = d (A,B) = lim
n→∞

d (z2n+1, z2n+2) .

Proof. For each n ≥ 0, we have

d (x2n, x2n+1) = d (x2n, F (x2n, y2n, z2n))
= d (G (x2n−1, y2n−1, z2n−1) , F (G (x2n−1, y2n−1, z2n−1) , G (y2n−1, x2n−1, z2n−1) , G (z2n−1, y2n−1, x2n−1)))
≤ α

3 [d (x2n−1, G (x2n−1, y2n−1, z2n−1)) + d (y2n−1, G (y2n−1, x2n−1, z2n−1)
+d(z2n−1, G (z2n−1, y2n−1, x2n−1))] + (1− α) d (A,B)

= α
3 [d (F (x2n−2, y2n−2, z2n−2) , G (F (x2n−2, y2n−2, z2n−2) , F (y2n−2, x2n−2, z2n−2) , F (z2n−2, y2n−2, x2n−2)))
+d (F (y2n−2, x2n−2, z2n−2) , G (F (y2n−2, x2n−2, z2n−2) , F (x2n−2, y2n−2, z2n−2) , F (z2n−2, y2n−2, x2n−2)))
+d (F (z2n−2, y2n−2, z2n−2) , G (F (z2n−2, y2n−2, x2n−2) , F (y2n−2, x2n−2, z2n−2) , F (x2n−2, y2n−2, z2n−2)))]
+ (1− α) d (A,B)
≤ α

3 [α3 [dx2n−2, F (x2n−2, y2n−2, z2n−2) + d(y2n−2, F (y2n−2, x2n−2, z2n−2)
+d(z2n−2, F z2n−2, y2n−2, x2n−2) + (1− α) d (A,B) + α

3 [d(y2n−2, F (y2n−2, x2n−2, z2n−2)
+d (x2n−2, F (x2n−2, y2n−2, z2n−2)) + d (z2n−2, F (z2n−2, y2n−2, x2n−2))] + (1− α) d (A,B)
+α

3 [d(z2n−2, , F (z2n−2, y2n−2, x2n−2)) + d(y2n−2, F (y2n−2, x2n−2, z2n−2))
+d(x2n−2, Fx2n−2, y2n−2, z2n−2)] + (1− α) d (A,B)] + (1− α) d (A,B)

= α2

3 [d (x2n−2, F (x2n−2, y2n−2, z2n−2) + d(y2n−2, F (y2n−2, x2n−2, z2n−2)
+d(z2n−2, F (z2n−2, y2n−2, x2n−2))] +

(
1− α2

)
d (A,B) .
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Using induction on n, we get

d (x2n, x2n+1) ≤
α2n

3
[d (x0, F (x0, y0, z0)) + d (y0, F (y0, x0, z0)) + d(z0, F (z0, y0, x0)] +

(
1− α2n

)
d (A,B) .

Since α < 1 and taking n→∞, we have

lim
n→∞

d (x2n, x2n+1) = d (A,B) .

By the same arguments, we can prove that

lim
n→∞

d (x2n+1, x2n+2) = lim
n→∞

d (y2n, y2n+1) = lim
n→∞

d (y2n+1, y2n+2)

= lim
n→∞

d (z2n, z2n+1) = lim
n→∞

d (z2n+1, z2n+2) = d (A,B) .

Lemma 3.6. Let A and B be nonempty subsets of a metric space (X, d) such that (A,B) and (B,A) have
the property UC. Let F : A×A×A→ B and G : B ×B ×B → A be mappings such that the ordered pair
(F,G) is cyclic α-contractive. Let (x0, y0, z0) ∈ A×A×A. If for each n ≥ 0, we define

x2n+1 = F (x2n, y2n, z2n) , y2n+1 = F (y2n, x2n, z2n) , z2n+1 = F (z2n, y2n, x2n)

x2n+2 = G (x2n+1, y2n+1, z2n+1) , y2n+2 = G (y2n+1, x2n+1, z2n+1) , z2n+2 = G (z2n+1, y2n+1, x2n+1) ,

then for ε > 0, there exists a positive integer n0 such that for all m > n ≥ n0,

1

3
[d (x2m, x2n+1) + d (y2m, y2n+1) + d(z2m, z2n+1)] < d (A,B) + ε. (3.1)

Proof. By Lemma 3.5, we have limn→∞ d (x2n, x2n+1) = d (A,B) = limn→∞ d (x2n+1, x2n+2). Since (A,B)
has the property UC, we get d (x2n, x2n+2) → 0. A similar argument shows that d (y2n, y2n+2) → 0 and
d (z2n, z2n+2)→ 0. As (B,A) has the property UC, we also have d (x2n+1, x2n+3)→ 0, d (y2n+1, y2n+3)→ 0
and d (z2n1, z2n+3)→ 0. Suppose that (3.1) does not hold. Then there would exists an ε′ > 0 such that for
all k ∈ N, there would be an mk > nk ≥ k satisfying

1

3
[d (x2mk

, x2nk+1) + d (y2mk
, y2nk+1) + d(z2mk

, z2nk+1)] ≥ d (A,B) + ε′

and
1

3
[d (x2mk−2, x2nk+1) + d (y2mk−2, y2nk+1) + d(z2mk−2, z2nk+1)] < d (A,B) + ε′.

Therefore, we would get

d (A,B) + ε′ ≤ 1

3
[d (x2mk

, x2nk+1) + d (y2mk
, y2nk+1) + d(z2mk

, z2nk+1)]

≤ 1

3
[d (x2mk

, x2mk−2) + d (x2mk−2, x2nk+1) + d (y2mk
, y2mk−2) + d (y2mk−2, y2nk+1)

+d (z2mk
, z2mk−2) + d (z2mk−2, z2nk+1)]

<
1

3
[d (x2mk

, x2mk−2) + d (y2mk
, y2mk−2) + d (z2mk

, z2mk−2)] + d (A,B) + ε′.

Applying limit as k →∞, we would get

d (A,B) + ε′ ≤ 1

3
lim
k→∞

[d (x2mk
, x2nk+1) + d (y2mk

, y2nk+1) + d(z2mk
, z2nk+1)]

≤ 1

3
lim
k→∞

[d (x2mk
, x2mk−2) + d (y2mk

, y2mk−2) + d (z2mk
, z2mk−2)] + d (A,B) + ε′

= d (A,B) + ε′,
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that is,
1

3
lim
k→∞

[d (x2mk
, x2nk+1) + d (y2mk

, y2nk+1) + d(z2mk
, z2nk+1)] = d (A,B) + ε′. (3.2)

Applying the triangle inequality to each term on the left of (3.2), we would get

1

3
[d (x2mk

, x2nk+1) + d (y2mk
, y2nk+1) + d(z2mk

, z2nk+1)]

≤ 1

3
[d(x2mk

, x2mk+2) + d (x2mk+2, x2nk+3) + d (x2nk+3, x2nk+1)

+ d (y2mk
, y2mk+2) + d (y2mk+2, y2nk+3) + d (y2nk+3, y2nk+1)

+ d (z2mk
, z2mk+2) + d (z2mk+2, z2nk+3) + d (z2nk+3, z2nk+1)].

=
1

3
[d (x2mk

, x2mk+2) + d (G (x2mk+1, y2mk+1, z2mk+1) , F (x2nk+2, y2nk+2, z2nk+2)) + d (x2nk+3, x2nk+1)

+ d (y2mk
, y2mk+2) + d (G (y2mk+1, x2mk+1, z2mk+1) , F (y2nk+2, x2nk+2, znk+2)) + d (y2nk+3, y2nk+1)

+ d (z2mk
, z2mk+2) + d (G (z2mk+1, y2mk+1, x2mk+1) , F (z2nk+2, y2nk+2, x2nk+2)) + d (x2nk+3, x2nk+1)]

≤ 1

3
[d (x2mk

, x2mk+2) +
α

3
[d (x2mk+1, x2nk+2) + d (y2mk+1, y2nk+2) + d (z2mk+1, z2nk+2)]

+ (1− α) d (A,B) + d (x2nk+3, x2nk+1)]

+
1

3
[d (y2mk

, y2mk+2) +
α

3
[d (y2mk+1, y2nk+2) + d(x2mk+1, x2nk+2) + d(z2mk+1, znk+2)]

+ (1− α) d (A,B) + d (y2nk+3, y2nk+1)]

+
1

3
[d (z2mk

, z2mk+2) +
α

3
[d (z2mk+1, z2nk+2) + d (y2mk+1, y2nk+2) + d (x2mk+1, x2nk+2)]

+ (1− α) d (A,B) + d (z2nk+3, z2nk+1)].

=
1

3
[d (x2mk

, x2mk+2) + d (x2nk+3, x2nk+1) + d (y2mk
, y2mk+2) + d (y2nk+3, y2nk+1) + d (z2mk

, z2mk+2)

+ d (z2nk+3, z2nk+1)] +
α

3
[d (x2mk+1, x2nk+2) + d (y2mk+1, y2nk+2) + d (z2mk+1, z2nk+2)]

+ (1− α) d (A,B) .

=
1

3
[d (x2mk

, x2mk+2) + d (x2nk+3, x2nk+1) + d (y2mk
, y2mk+2) + d (y2nk+3, y2nk+1) + d (z2mk

, z2mk+2)

+ d (z2nk+3, z2nk+1)] +
α

3
[d (F (x2mk

, y2mk
, z2mk

) , G (x2nk+1, y2nk+1, z2nk+1))

+ d (F (y2mk
, x2mk

, z2mk
) , G (y2nk+1, x2nk+1, z2nk+1))

+ d (F (z2mk
, y2mk

, x2mk
) , G (z2nk+1, y2nk+1, x2nk+1))] + (1− α) d (A,B)

≤ 1

3
[d (x2mk

, x2mk+2) + d (x2nk+3, x2nk+1) + d (y2mk
, y2mk+2) + d (y2nk+3, y2nk+1) + d (z2mk

, z2mk+2)

+ d (z2nk+3, z2nk+1)] +
α2

9
[d (x2mk

, x2nk+1) + d (y2mk
, y2nk+1) + d (z2mk

, z2nk+1) +
α

3
(1− α) d (A,B)

+
α2

9
[d (y2mk

, y2nk+1) + d (x2mk
, x2nk+1) + d (z2mk

, z2nk+1)] +
α

3
(1− α) d (A,B)

+
α2

9
[d (z2mk

, z2nk+1) + d (y2mk
, y2nk+1) + d (x2mk

, x2nk+1)] +
α

3
(1− α) d (A,B) + (1− α) d (A,B) .

=
1

3
[d (x2mk

, x2mk+2) + d (x2nk+3, x2nk+1) + d (y2mk
, y2mk+2) + d (y2nk+3, y2nk+1)

+ d (z2mk
, z2mk+2) + d (z2nk+3, z2nk+1)]

+
α2

3
[d (x2mk

, x2nk+1) + d (y2mk
, y2nk+1) + d (z2mk

, z2nk+1)] +
(
1− α2

)
d (A,B) .
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Let k →∞. Then by (3.2), and since (A,B) and (B,A) have the UC, we would get

d (A,B) + ε′ ≤ α2[d (A,B) + ε′] +
(
1− α2

)
d (A,B) = d (A,B) + α2ε′,

which would imply that α ≥ 1, a contradiction. Thus (3.1) must hold.

Lemma 3.7. Let A and B be nonempty subsets of a metric space (X, d) such that (A,B) and (B,A) have
the property UC*. Let F : A × A × A → B and G : B × B × B → A be mappings with (F,G) cyclic
α-contractive. If (x0, y0, z0) ∈ A×A×A and if for n ≥ 0, we define

x2n+1 =F (x2n, y2n, z2n) , y2n+1 = F (y2n, x2n, z2n) , z2n+1 = F (z2n, y2n, x2n) ;

x2n+2 =G (x2n+1, y2n+1, z2n+1) , y2n+2 = G (y2n+1, x2n+1, z2n+1) , z2n+2 = G (z2n+1, y2n+1, x2n+1) ,

then {x2n} , {y2n} , {z2n}, and {x2n+1} , {y2n+1} , {z2n+1} are Cauchy sequences.

Proof. By Lemma 3.5, we have d (x2n, x2n+1)→ d (A,B) and d (x2n+1, x2n+2)→ d (A,B). Since (A,B) and
(B,A) have the property UC*, we get d (x2n, x2n+2) → 0 and d (x2n+1, x2n+3) → 0. We only show that
{x2n} is a Cauchy sequence. That other sequences are Cauchy ones, can be proved in a similar way. We
first show that for every ε > 0 there exist an N such that

d (x2m, x2n+1) ≤ d (A,B) + ε (3.3)

for all m > n ≥ N . Suppose (3.3) does not hold. Then there would exist an ε > 0 such that for all k ∈ N
there would exist an mk > nk ≥ k such that

d (x2mk
, x2nk+1) > d (A,B) + ε. (3.4)

Now

d (A,B) + ε < d (x2mk
, x2nk+1) ≤ d (x2mk

, x2nk−1) + d (x2nk−1, x2nk+1) ≤ d (A,B) + ε+ d (x2nk−1, x2nk+1)

would imply that limk→∞ d (x2mk
, x2nk+1) = d (A,B) + ε. By Lemma 3.6, there would exist an n0 ∈ N such

that
1

3
[d (x2mk

, x2nk+1) + d (y2mk
, y2nk+1) + d(z2mk

, z2nk+1)] < d (A,B) + ε (3.5)

for all mk > nk ≥ n0. By using the triangle inequality we would get

d (x2mk
, x2nk+1) ≤d (x2mk

, x2mk+2) + d (x2mk+2, x2nk+3) + d (x2nk+3, x2nk+1)

=d (x2mk
, x2mk+2) + d (G (x2mk+1, y2mk+1, z2mk+1) , F (x2nk+2, y2nk+2, z2mk+2))

+ d (x2nk+3, x2nk+1)

≤d (x2mk
, x2mk+2) +

α

3
[d (x2mk+1, x2nk+2) + d (y2mk+1, y2nk+2) + d (z2mk+1, z2nk+2)]

+ (1− α) d(A,B) + d (x2nk+3, x2nk+1)

=
α

3
[d (F (x2mk

, y2mk
, z2mk

) , G (x2nk+1, y2nk+1, z2nk+1))

+ d (F (y2mk
, x2mk

, z2mk
) , G (y2nk+1, x2nk+1, z2nk+1))]

+ d (F (z2mk
, y2mk

, x2mk
) , G (z2nk+1, y2nk+1, x2nk+1))

+ (1− α) d (A,B) + d (x2mk
, x2mk+2) + d (x2nk+3, x2nk+1)

≤α
3

[
α

3
[d (x2mk

, x2nk+1) + d (y2mk
, y2nk+1) + d (z2mk

, z2nk+1) + (1− α) d (A,B)]

+
α

3
[d (y2mk

, y2nk+1) + d (x2mk
, x2nk+1) + d (z2mk

, z2nk+1) + (1− α) d (A,B)]

+
α

3
[d (z2mk

, z2nk+1) + d (y2mk
, y2nk+1) + d (x2mk

, x2nk+1) + (1− α) d (A,B)]]
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+ (1− α) d (A,B) + d (x2mk
, x2mk+2) + d (x2nk+3, x2nk+1)

=
α2

3
[d (x2mk

, x2nk+1) + d (y2mk
, y2nk+1) + d (z2mk

, z2nk+1)] +
(
1− α2

)
d (A,B)

+ d (x2mk
, x2mk+2) + d (x2nk+3, x2nk+1)

<α2 (d (A,B) + ε) +
(
1− α2

)
d (A,B) + d (x2mk

, x2mk+2) + d (x2nk+3, x2nk+1)

=d (A,B) + α2ε+ d (x2mk
, x2mk+2) + d (x2nk+3, x2nk+1) .

Letting k →∞, we would get
d (A,B) + ε ≤ d (A,B) + α2ε,

which would imply that α ≥ 1, a contradiction. Thus, (3.3) must hold. Now by (3.3) and since
d (x2n, x2n+1) → d (A,B), and (A,B) has the property UC* , we can conclude that {x2n} is a Cauchy
sequence. This completes the proof of the lemma.

The following two theorems are the main results of this section which ensure the existence and con-
vergence of tripled best proximity points for cyclic α-contractive pairs on nonempty subsets of the metric
spaces having the property UC*.

Theorem 3.8. Let A and B be nonempty closed subsets of a complete metric space X such that (A,B) and
(B,A) have the property UC*. Let F : A× A→ B,G : B ×B → A and (F,G) be cyclic α-contractive. Let
(x0, y0, z0) ∈ A×A×A and define

x2n+1 =F (x2n, y2n, z2n) , y2n+1 = F (y2n, x2n, z2n) , z2n+1 = F (z2n, y2n, x2n) ;

x2n+2 =G (x2n+1, y2n+1, z2n+1) , y2n+2 = G (y2n+1, x2n+1, z2n+1) , z2n+2 = G (z2n+1, y2n+1, x2n+1) ,

for all n ≥ 0. Then F has a tripled best proximity point (a1, a2, a3) ∈ A× A× A and G has a tripled best
proximity point (b1, b2, b3) ∈ B ×B ×B such that

1

3
[d (a1, b1) + d(a2, b2) + d(a3, b3)] = d (A,B) .

Furthermore, (x2n, y2n, z2n)→ (a1,a2, a3), and (x2n+1, y2n+1, z2n+1)→ (b1,b2, b3) as n→∞.

Proof. By Lemma 3.5, d (x2n, x2n+1)→ d(A,B), and by Lemma 3.7, the sequences {x2n}, {y2n}, and {z2n}
are Cauchy ones. Thus, there exists an (a1, a2, a3) ∈ A×A×A such that (x2n, y2n, z2n)→ (a1,a2, a3). Hence
we have

d (A,B) ≤ d (a1, x2n−1) ≤ d (a1, x2n) + d (x2n, x2n−1)→ d(A,B). (3.6)

This implies that limn→∞ d (a1, x2n−1) = d (A,B). Similarly, we get limn→∞ d (a2, y2n−1) = d (A,B) =
limn→∞ d (a3, z2n−1). From this it follows that

d (x2n, F (a1, a2, a3)) = d (G (x2n−1, y2n−1, z2n−1) , F (a1, a2, a3))

≤ α

3
[d (x2n−1, a1) + d (y2n−1, a2) + d (z2n−1, a3)] + (1− α) d (A,B) .

Letting n → ∞, we get d (a1, F (a1, a2, a3)) = d (A,B). Similarly, we get d (a2, F (a2, a1, a3)) = d (A,B) =
d (a3, F (a3, a2, a1)). Thus, (a1, a2, a3) ∈ A × A × A is a tripled best proximity point of F . By similar
arguments, we can prove that there exists a (b1, b2, b3) ∈ B × B × B such that (x2n+1, y2n+1, z2n+1)→ (b1,
b2, b3) and hence d (b1, F (b1, b2, b3)) = d (b2, F (b2, b1, b3)) = d (b3, F (b3, b2, b1)) = d (A,B). Thus (b1, b2, b3) ∈
B ×B ×B is a tripled best proximity point of G.

To show that 1
3 [d (a1, b1) + d(a2, b2) + d(a3, b3)] = d (A,B), for n ≥ 0, we use

d (x2n, x2n+1) = d (G (x2n−1, y2n−1, z2n−1) , F (x2n, y2n, z2n))

≤ α

3
[d (x2n−1, x2n) + d (y2n−1, y2n) + d (z2n−1, z2n)] + (1− α) d (A,B) ,
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d (y2n, y2n+1) = d(G (y2n−1, x2n−1, z2n−1) , F (y2n, x2n, z2n))

≤ α

3
[d (y2n−1, y2n) + d (x2n−1, x2n) + d(z2n−1, z2n)] + (1− α) d (A,B) ,

d (z2n, z2n+1) = d(G (z2n−1, y2n−1, x2n−1) , F (z2n, y2n, x2n))

≤ α

3
[d (z2n−1, z2n) + d (y2n−1, y2n) + d(x2n−1, x2n)] + (1− α) d (A,B) .

Taking the limit as n→∞, we get

d (a1, b1) ≤
α

3
[d(a1, b1) + d (a2, b2) + d(a3, b3)] + (1− α) d (A,B) , (3.7)

d (a2, b2) ≤
α

3
[d (a2, b2) + d (a1, b1) + d(a3, b3)] + (1− α) d (A,B) (3.8)

and
d (a3, b3) ≤

α

3
[d (a3, b3) + d (a2, b2) + d(a1, b1)] + (1− α) d (A,B) . (3.9)

It follows from (3.7), (3.8), and (3.9) that

d(a1, b1) + d (a2, b2) + d(a3, b3) ≤ α[d(a1, b1) + d (a2, b2) + d(a3, b3)] + 3 (1− α) d (A,B) ,

which implies that
d(a1, b1) + d (a2, b2) + d(a3, b3) ≤ 3d (A,B) . (3.10)

Since d (A,B) ≤ d(a1, b1), d (a2, b2) , d(a3, b3), we get

3d(A,B) ≤ d(a1, b1) + d (a2, b2) + d(a3, b3).

Thus d(a1, b1) + d (a2, b2) + d(a3, b3) = 3d(A,B) and the thorem is proved.

Remark 3.9. Since every pair of nonempty closed subsets A,B of a uniformly convex Banach space X with
A convex have the property UC*, we have Corollary 3.10.

Corollary 3.10. Let A and B be nonempty closed convex subsets of a uniformly convex Banach space X.
Let F : A×A×A→ B, and G : B ×B ×B → A be mappings such that (F,G) is cyclic α-contractive. Let
(x0, y0, z0) ∈ A×A×A and define

x2n+1 = F (x2n, y2n, z2n) , y2n+1 = F (y2n, x2n, z2n) , z2n+1 = F (z2n, y2n, x2n) ;

x2n+2 = G (x2n+1, y2n+1, z2n+1) , y2n+2 = G (y2n+1, x2n+1, z2n+1) , z2n+2 = G (z2n+1, y2n+1, x2n+1) ,

for n ≥ 0. Then F has a tripled best proximity point (a1, a2, a3) ∈ A × A × A and G has a tripled best
proximity point (b1, b2, b3) ∈ B ×B ×B such that

d(a1, b1) + d (a2, b2) + d(a3, b3) = 3d(A,B).

Furthermore, (x2n, y2n, z2n)→ (a1,a2, a3), and (x2n+1, y2n+1, z2n+1)→ (b1,b2, b3) as n→∞.

Example 3.11. The space X = R with the usual norm is a uniformly convex Banach space. Let A = [1, 2]
and B = [−2,−1]. Then d (A,B) = 2. Define F : A×A×A→ B and G : B ×B ×B → A by

F (x, y, z) =
−(x+ y + z + 3)

6
and G(x, y, z) =

−(x+ y + z − 3)

6
.

Then for (x, y, z) ∈ A×A×A, (u, v, w) ∈ B ×B ×B and for α = 1
2 , we have

d (F (x, y, z) , G (u, v, w)) =

∣∣∣∣−(x+ y + z + 3)

6
− −(u+ v + w − 3)

6

∣∣∣∣
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≤ |x− u|+ |y − v|+ |z − w|
6

+
1

2
(2)

=
α

3
[d (x, u) + d (y, v) + d(z, w)] + (1− α)d (A,B) .

Thus (F,G) is cyclic 1
2 -contractive. Since A and B are convex, we have that (A,B) and (B,A) have the

property UC*. Therefore, all the hypothesis of Corollary 3.10 hold. So each of F and G has a tripled best
proximity point. Observe that (1, 1, 1) ∈ A × A × A is a unique tripled best proximity point of F and
(−1,−1,−1) ∈ B ×B ×B is a unique tripled best proximity point of G. Furthermore, we get

d (1,−1, ) + d(1,−1) + d(1,−1) = 6 = 3d (A,B) .

Theorem 3.12. Let A and B be nonempty compact subsets of a metric space (X, d). Let F : A×A×A→ B,
and G : B ×B ×B → A be mappings such that (F,G) is cyclic α-contractive and (x0, y0, z0) ∈ A×A×A.
For n ≥ 0, define

x2n+1 = F (x2n, y2n, z2n) , y2n+1 = F (y2n, x2n, z2n) , z2n+1 = F (z2n, y2n, x2n) ,

x2n+2 = G (x2n+1, y2n+1, z2n+1) , y2n+2 = G (y2n+1, x2n+1, z2n+1) , z2n+2 = G (z2n+1, y2n+1, x2n+1) .

Then F has a trippled best proximity point (a1, a2, a3) ∈ A×A×A and G has a tripled best proximity point
(b1, b2, b3) ∈ B ×B ×B such that

1

3
[d (a1, b1) + d(a2, b2) + d(a3, b3)] = d (A,B) .

Furthermore, (x2n, y2n, z2n)→ (a1,a2, a3), and (x2n+1, y2n+1, z2n+1)→ (b1,b2, b3) as n→∞.

Proof. By definition, for each n ≥ 0, we have x2n, y2n, z2n ∈ A and x2n+1, y2n+1, z2n+1 ∈ B. Since A is
compact, the sequences {x2n}, {y2n} and {z2n} have convergent subsequences {x2nk

}, {y2nk
} and {z2nk

},
respectively, such that

(x2nk
, y2nk

, z2nk
)→ (a1, a2, a3) ∈ A×A×A.

Now, we have
d (A,B) ≤ d (a1, x2nk−1) ≤ d (a1, x2nk

) + d (x2nk
, x2nk−1) . (3.11)

By Lemma 3.5, limk→∞ d (x2nk
, x2nk−1) = d (A,B). Therefore, letting k → ∞ in (3.11), we get

d (a1, x2nk−1)→ d (A,B). By a similar argument we can get d (a2, x2nk−1)→ d (A,B) and d (a3, x2nk−1)→
d (A,B). Also, observe that

d (A,B) ≤ d (x2nk
, F (a1, a2, a3))

= d (G (x2nk−1, y2nk−1, z2nk−1) , F (a1, a2, a3))

≤ α

3
[d(x2nk−1, a1) + d (y2nk−1, a2) + d (z2nk−1, a3)] + (1− α) d (A,B) .

So letting k →∞, we get d (a1, F (a1, a2, a3)) = d (A,B). Similarly, we can prove that d (a2, F (a2, a1, a3)) =
d(A,B) = d (a3, F (a3, a2, a1)). Thus F has a tripled best proximity point (a1, a2, a3) ∈ A × A × A. In a
similar way, since B is compact, we can also prove that G has a tripled best proximity point (b1, b2, b3) ∈
B×B×B. The proof that d (a1, b1) + d(a2, b2) + d(a3, b3) = 3d (A,B) is similar to the last part of the proof
of Theorem 3.8. Hence the theorem follows.

As a consequence of the above best proximity results, we get the following tripled fixed point theorem.

Theorem 3.13. . Let A and B be nonempty closed subsets of a complete metric space (X, d). Let F :
A × A × A → B, and G : B × B × B → A be mappings such that (F,G) is cyclic α-contractive. Let
(x0, y0, z0) ∈ A×A×A. For n ≥ 0, define

x2n+1 = F (x2n, y2n, z2n) , y2n+1 = F (y2n, x2n, z2n) , z2n+1 = F (z2n, y2n, x2n) ,
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and

x2n+2 = G (x2n+1, y2n+1, z2n+1) , y2n+2 = G (y2n+1, x2n+1, z2n+1) , z2n+2 = G (z2n+1, y2n+1, x2n+1) .

If d (A,B) = 0, then F and G have a unique common tripled fixed point (a, b, c) ∈ A ∩B ×A ∩B ×A ∩B.
Moreover, we have x2n, x2n+1 → a, y2n, y2n+1 → b and z2n, z2n+1 → c.

Example 3.14. ConsiderX = R with the usual metric, A = [−1, 0] andB = [0, 1]. Define F : A×A×A→ B
by F (x, y, z) = −x+y+z

6 and G : B ×B ×B → A by G (x, y) = −x+y+z
6 . Then d (A,B) = 0, and (F,G) is a

cyclic α-contraction with α = 1
2 . Indeed, for arbitrary (x, y, z) ∈ A×A×A and (u, v, w) ∈ B ×B ×B, we

have

d (F (x, y, z) , G (u, v, w)) =

∣∣∣∣−x+ y + z

6
+
u+ v + w

6

∣∣∣∣
≤ 1

6
(|x− u|+ |y − v|+ |z − w|)

=
α

3
[d (x, u) + d(y, v) + d(z, w)] + (1− α) d (A,B) .

Therefore, all the hypotheses of Theorem 3.13 holds and so, by Theorem 3.13, F and G have a unique
common tripled fixed point which is (0, 0, 0).

If we take A = B in Theorem 3.13, then we get the following results.

Corollary 3.15. Let A be a nonempty closed subset of a complete metric space (X, d). Let F,G : A×A×A→
A be mappings such that (F,G) is cyclic α-contractive, and let (x0, y0, z0) ∈ A×A×A. For n ≥ 0, define

x2n+1 = F (x2n, y2n, z2n) , y2n+1 = F (y2n, x2n, z2n) , z2n+1 = F (z2n, y2n, x2n) ,

and

x2n+2 = G (x2n+1, y2n+1, z2n+1) , y2n+2 = G (y2n+1, x2n+1, z2n+1) , z2n+2 = G (z2n+1, y2n+1, x2n+1) .

Then F and G have a unique common tripled fixed point (a, b, c) ∈ A × A × A. Moreover, we have
x2n, x2n+1 → a, y2n, y2n+1 → b, and z2n, z2n+1 → c.
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