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Abstract

The aim of this paper is to present some artwork produced via polynomiography of a few complex
polynomials and a few special polynomials arising in science as well as a few considered to arrive at beautiful
but anticipated designs. In this paper an iterative method corresponding to Simpson’s 1

3 rule is used instead
of Newton’s method. The word “polynomiography” coined by Kalantari for that visualization process. The
images obtained are called polynomiographs. Polynomiographs have importance for both the art and science
aspects. By using an iterative method corresponding to Simpson’s 1

3 rule, we obtain quite new nicely looking
polynomiographs that are different from Newton’s method. Presented examples show that we obtain very
interesting patterns for complex polynomial equations, permutation matrices, doubly stochastic matrices,
Chebyshev polynomial, polynomial arising in physics and Alexander polynomial in knot theory. We believe
that the results of this paper enrich the functionality of the existing polynomiography software. c©2016 All
rights reserved.
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1. Introduction

Polynomials are one of the most significant objects in many fields of mathematics. Polynomial root-
finding has played a key role in the history of mathematics. It is one of the oldest and most deeply studied
mathematical problems. In 2000 BC Babylonians solved quadratic equation (quadratics). The problem of
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polynomial roots finding was known since the Sumerians 3000 years B.C. Seventeen centuries later Euclid
solved quadratics with geometrical construction. In 1539 Cardan gave complete solution to cubics. In 1670
Isaac Newton proposed the method for finding the roots of polynomial. About seventy years later Lagrange
showed that polynomial of degree 5 or higher cannot be solved by the methods used for quadratics, cubics,
and quartics. In 1799 Gauss proved the Fundamental Theorem of Algebra. 27 years later Abel proved the
impossibility of generally solving equations of degree higher than 4. General root-finding method has to be
iterative and can only be done approximately. The strange and unpredictable chaotic behavior of Newton’s
method in the complex plane initially investigated by Cayley in 1879 while applying Newton’s method to
the equation z3 − 1 = 0, which is known as Cayley’s problem [2]. This problem was solved by Julia [4] in
1918 and then Mandelbrot [11]. The last interesting contribution to the polynomials root finding history
was made by Kalantari [7], who introduced the polynomiography. As a method which generates nice looking
graphics, it was patented by Kalantari [5] in 2005. Polynomiography is defined to be “the art and science
of visualization in approximation of the zeros of complex polynomials, via fractal and non fractal images
created using the mathematical convergence properties of iteration functions” [7]. An individual image is
called a ”polynomiographs”. Polynomiography combines both art and science aspects.

Polynomiography gives a new way to solve the ancient problem by using new algorithms and computer
technology. Polynomiography is based on the use of one or an infinite number of iteration methods formulated
for the purpose of approximation of the root of polynomials, for example, Newton’s method, Halley’s method,
etc. The word “fractal”, which partially appeared in the definition of polynomiography, was coined by the
famous mathematician Mandelbrot [11]. Both fractal images and polynomiographs can be obtained via
different iterative schemes. Fractals are self-similar and have typical structure and independent of scale.
On the other hand, polynomiographs are quite different. The ”polynomiograph” can be controlled by the
shape and designed in a more predictable way by using different iteration methods to the infinite variety
of complex polynomials. Generally, fractals and polynomiographs belong to different classes of graphical
objects. Polynomiography has diverse applications in math, science, education, art and design. According to
Fundamental Theorem of Algebra, any complex polynomial with complex coefficients {an, an−1, ..., a1, a0}:

p(z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0 (1.1)

or by its zeros (roots) {r1, r2, ..., rn−1, rn} :

p(z) = (z − r1)(z − r2) · · · (z − rn) (1.2)

of degree n has n roots (zeros) which may or may not be distinct. The degree of polynomial describes the
number of basins of attraction and placing roots on the complex plane manually localization of basins can
be controlled.

Usually, polynomiographs are colored based on the number of iterations needed to obtain the approxi-
mation of some polynomial roots with a given accuracy and a chosen iteration method. The description of
polynomiography, its theoretical background and artistic applications are described in [5, 6, 7, 9, 10, 12, 13,
15, 16].

In [10] Kotarski et al. used Mann and Ishikawa iterations instead of the standard Picard iteration to
obtain some generalization of Kalantari’s polynomiography and presented some polynomiographs for the
cubic equation z3 − 1 = 0, permutation, and double stochastic matrices. Kang et al. [9], using the ideas
from [10], have used the S-iteration in polynomiography. Earlier, the other types of iterations have been
used in [15] for superfractals and in [13] for fractals generated by iterative function systems. Julia sets and
Mandelbrot sets [1] and the antifractals [14] have been also investigated using Noor iteration instead of the
standard Picard iteration. Gdawiec et al. [3] have used different iterations, different convergence tests, and
different coloring to obtain a great variety of polynomiographs.

In this paper we use an iterative method corresponding to Simpson’s 1
3 rule instead of Newton method

and iteration methods from Basic Family of iterations [8] to obtain nice looking polynomiographs that are
quite new and interesting from the artistic point of view. Real parts of the parameters alter symmetry,
whereas imaginary ones cause asymmetric twisting of polynomiographs.
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The paper is organized as follows. In section 2 the theory of Newton’s method and Basic Family of
iterations is presented. Section 3 presents an iterative method corresponding to Simpson’s 1

3 rule. In
section 4 convergence test is defined. Section 5 presents many applications of polynomiographs obtained
experimentally as the result of the proposed iterative method corresponding to Simpson’s 1

3 rule for complex
equations, permutation matrices, doubly stochastic matrices and for some special polynomials. The last
section, section 6 concludes the paper and shows the future directions.

2. Newton’s method and basic family of iterations

It is of great importance to solve equations of the form

f(x) = 0, (2.1)

in many applications in mathematics, physics, chemistry, and of course in the computation of some important
mathematical constants or functions like square roots. Newton’s method for finding the roots of a complex
polynomial p is given by the formula:

zn+1 = zn −
p(zn)

p′(zn)
, n = 0, 1, 2, ..., (2.2)

where zo ∈ C is a starting point.
Fractals by Newton method can be seen at boundaries of basins. In [12, 16] basin boundaries of New-

ton method (2.2) are discussed. Generalizations procedures for approximation of all the roots of complex
polynomials, making use of a fundamental family of iteration functions given in [5, 7]. This family is called
“Basic Family”. It is represented as {Bm(z)}∞m=2. Let p(z) be a polynomial of degree n ≥ 2 with complex
coefficients. Define Do(z) = 1, and for each natural number m ≥ 1, Let

Dm(z) = det



p′(z) p′′(z)
2! · · · p(m−1)(z)

(m−1)!
p(m)(z)

(m)!

p(z) p′(z)
. . .

. . . p(m−1)(z)
(m−1)!

0 p(z)
. . .

. . .
...

...
...

. . . p′(z) p′′(z)
2!

0 0 · · · p(z) p′(z)


. (2.3)

Then Basic Family of iterations is defined as:

Bm(z) = z − p(z)Dm−2(z)

Dm−1(z)
, m = 2, 3, 4, .... (2.4)

It is clear that the first member of the sequence, B2(z) is the Newton method and B3(z) is the Halley
method. In this paper, we are only interested in one method to generate polynomiographs, “an iterative
method corresponding to Simpson’s 1

3 rule”, which is demonstrated as follows:

3. Iterative methods corresponding to Simpson’s 1
3
rule

During the last century, the different numerical techniques for solving nonlinear equation f(x) = 0 have
been successfully applied. Now we define

xn+1 = xn −
6f(xn)

f ′(xn) + 4f ′(xn+yn
2 ) + f ′(yn)

,

yn = xn −
f(xn)

f ′(xn)
, n = 0, 1, 2, ....

This is so-called an iterative method corresponding to Simpson’s 1
3 rule for solving nonlinear equations. Let

p(z) be the complex polynomial. Then
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zn+1 = zn −
6p(zn)

p′(zn) + 4p′( zn+yn
2 ) + p′(yn)

,

yn = zn −
p(zn)

p′(zn)
, n = 0, 1, 2, ...,

(3.1)

where zo ∈ C is a starting point, is so-called an iterative method corresponding to Simpson’s 1
3 rule for

solving nonlinear complex equations. The sequence {zn}∞n=0 is called the orbit of the point zo converges to
a root z∗ of p then, we say that zo is attracted to z∗. A set of all such starting points for which {zn}∞n=0

converges to root z∗ is called the basin of attraction of z∗.

4. Convergence test

In the numerical algorithms that are based on iterative processes we need a stop criterion for the process,
that is, a test that tells us that the process has converged or it is very near to the solution. This type of
test is called a convergence test. Usually, in the iterative processes that use a feedback, like the root finding
methods, the standard convergence test has the following form:

|zn+1 − zn| < ε, (4.1)

where zn+1 and zn are two successive points in the iteration process and ε > 0 is a given accuracy. In this
paper we also use the stop criterion (4.1).

5. Applications of an iterative method corresponding to Simpson’s 1
3
rule in polynomiography

The applications of an iterative method corresponding to Simpson’s 1
3 rule for solving nonlinear complex

equations perturbs the shape of polynomial basins and makes the polynomiographs look more “fractal”. The
aim of using an iterative method corresponding to Simpson’s 1

3 rule for solving nonlinear complex equations
is to create images that are quite new, different from images by Newton’s method and interesting from the
aesthetic point of view.

In this section we present some examples of polynomiographs for different complex polynomials equation
p(z) = 0, permutation matrices, doubly stochastic matrices and some special polynomials. The different
colors of a images depend upon number of iterations to reach a root with given accuracy ε = 0.00001. One
can obtain infinitely many nice looking polynomiographs by changing parameter k,where k is the upper
bound of the number of iterations, but we fixed k as k = 15 in this paper.

5.1. Polynomiograph for z3 − 1 = 0

Complex polynomial equation z3−1 = 0, has three roots: 1, −1
2−
√

3
2 i and −1

2 +
√

3
2 i. The polynomiograph

is presented in the following figure with three distinct basins of attraction to the three roots of the polynomial
z3 − 1 = 0.

Figure 1. Polynomiography for z3 − 1 = 0

5.2. Polynomiograph for z3 + 3 = 0
The polynomiograph is presented in the following figure with three distinct basins of attraction to the

three roots of the polynomial z3 + 3 = 0.
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Figure 2. Polynomiography for z3 + 3 = 0

5.3. Polynomiograph for z4 − 1 = 0

The polynomiographs is presented in the following figure with four distinct basins of attraction to the
four roots of the polynomial z4 − 1 = 0.

Figure 3. Polynomiograph for z4 − 1 = 0

5.4. Polynomiograph for z4 + 4 = 0

The polynomiograph is presented in the following figure with four distinct basins of attraction to the
four roots of the polynomial z4 + 4 = 0.

Figure 4. Polynomiograph for z4 + 4 = 0

5.5. Polynomiograph for z5 − 1 = 0

The polynomiograph is presented in the following figure with five distinct basins of attraction to the five
roots of the polynomial z5 − 1 = 0.
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Figure 5. Polynomiograph for z5 − 1 = 0 (Flower with five padels)

5.6. Polynomiograph of a Chebyshev polynomial

Polynomiograph here is that of a fifth degree Chebyshev polynomial using an iterative method corre-
sponding to Simpson’s 1

3 rule. The polynomiograph is presented in the following figure with five distinct
basins of attraction to the five roots of the polynomial 16z5 − 20z3 + 5z = 0.

Figure 6. Polynomiography for Chebyshev polynomial (Sparrow)

5.7. Polynomiograph with a Polynomial in Knot Theory

The next image is based on, Alexander polynomial z6 − 3z5 + 4z4 − 5z3 + 4z2 − 3z + 1 = 0 arising in
knot theory.

Figure 7. Polynomiograph for Alexander polynomial (Butterfly)

5.8. Polynomiograph for z7 + z2 − 1 = 0

The polynomiograph is presented in the following figure with seven distinct basins of attraction to the
seven roots of the polynomial z7 + z2 − 1 = 0.
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Figure 8. Polynomiograph for z7 + z2 − 1 = 0 (Carpet)

5.9. Polynomiographs for permutation matrices

An n × n matrix Π = (πij) is a matrix where rows and columns form a permutation of the identity
matrix. To each permutation matrix Π, we associate a complex polynomial defined as follows. First, we set
θij to be the complex number associated to the location (i, j).

θij = i+ ji, i =
√
−1.

Now given the matrix Π we define a corresponding matrix

Π = (πij), πij = πj,(n+1−i).

This matrix is analogues to the transpose, except that the i-th row of Π corresponds to the i-th column of
Π corresponds to the bottom up. Finally, the matrix Π = (πij) can be associated to a complex polynomial
pΠ(z) and can be defined as

pΠ(z) =
∏
πij=1

(z − θij),

a polynomial of degree n associated with the complex permutation polynomial corresponding to Π. We create
polynomiography with permutations polynomials. As an example, for n = 2 the permutation matrices Π1,
Π2,Π1 and Π2 and their corresponding polynomials are

Π1 =

(
1 0
0 1

)
, Π2 =

(
0 1
1 0

)
, Π1 =

(
0 1
1 0

)
, Π2 =

(
1 0
0 1

)
,

pΠ1
(z) = (z − (1 + 2i))(z − (2 + i)), (5.1)

pΠ2
(z) = (z − (1 + i))(z − (2 + i)). (5.2)

Many polynomiographs can be associated with these permutation polynomials. The polynomiographs of
above mentioned polynomials are presented in the following figures. Both images are obtained with accuracy
ε = 0.00001 and k = 15.

• Polynomiographs for equation (5.1):

Figure 9. Polynomiograph for permutation matrix (5.1)
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• Polynomiographs for equation (5.2):

Figure 10. Polynomiograph for permutation matrix (5.2)

5.10. Polynomiograph for doubly stochastic matrix

An n × n matrix is doubly stochastic matrix if all elements are non negative reals and the sum of the
entries in each row and each column equals 1. We will associate a corresponding polynomial with each
doubly stochastic matrix. According to Birkhoff-von Neumann theorem [12] any double stochastic matrix
A can be represented as a convex combination of permutation matrices

A =

k∑
i=1

αiΠi,

where
∑k

i=1 αi = 1 and αi ≥ 0 for i = 1, 2, 3, ..., k. The corresponding complex polynomial pA to a doubly
stochastic matrix A = (aij) is defined as follows:

pA(z) =
∏
aij>0

(z − aijθij),

where θij be as defined previously and A to A is constructed as matrix Π to Π. As an example, for n = 2
take the following doubly stochastic matrix A :

A =

[
1
2

1
2

1
2

1
2

]
=

1

2

[
1 0
0 1

]
+

1

2

[
0 1
1 0

]
.

The corresponding complex polynomial pA to the matrix A has the following form:

pA(z) =

(
z − 1 + i

2

)(
z − 1 + 2i

2

)(
z − 2 + i

2

)(
z − 2 + 2i

2

)
. (5.3)

Polynomiograph for a doubly stochastic matrix A are presented in following figure.

Figure 11. Polynomiograph for doubly stochastic matrix
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5.11. Polynomiograph for z19 − 1 = 0

The polynomiograph is presented in the following figure with nineteen distinct basins of attraction to
the nineteen roots of the polynomial z19 − 1 = 0.

Figure 12. Polynomiograph for z19 − 1 = 0 (Carpet)

5.12. Polynomiograph for [(2z)10 − 1](z20 − 1) = 0

The polynomiograph is presented in the following figure for the polynomial [(2z)10 − 1](z20 − 1) = 0.

Figure 13. Polynomiograph for [(2z)10 − 1]× (z20 − 1) = 0 (Flower)

5.13. Polynomiograph for a Polynomial in Physics

The next set of image come from a polynomial z21 + 5z14 − 22
15z

7 − 11
675 = 0 arising in physics. Nature

has its own beautiful polynomials.

Figure 14. Polynomiography for a polynomial in Physics (Flower)

6. Conclusions

In this paper we presented some artwork produced via polynomiography of a few complex polynomi-
als and a few special polynomials arising in science as well as a few considered to arrive at beautiful but
anticipated designs obtained by using an iterative method corresponding to Simpson’s 1

3 rule instead of
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Newton’s method. By using an iterative method corresponding to Simpson’s 1
3 rule, we created the images

of different flowers, carpets, sparrow and butterflies. Polynomiographs obtained for different complex poly-
nomial equations, permutation matrices, doubly stochastic matrices and some special polynomials are quite
new and different in comparison to Newton’s method. We think that the results of this paper can inspire
those who are interested in creating automatically aesthetic patterns. We believe that polynomiography
can be used to teach about polynomials and polynomial roots finding, also the functionality of the existing
polynomiography software can be increased using an iterative method corresponding to Simpson’s 1

3 rule.
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