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Abstract

We study the global result, boundedness, and periodicity of solutions of the difference equation

xn+1 = a+
bxn−l + cxn−k
dxn−l + exn−k

, n = 0, 1, . . . ,

where the parameters a, b, c, d, and e are positive real numbers and the initial conditions x−t, x−t+1, . . . , x−1
and x0 are positive real numbers where t = max{l, k}, l 6= k. c©2016 All rights reserved.
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1. Introduction

The study of rational difference equations of order greater than one is quite challenging and rewarding
because some prototypes for the development of the basic theory of the global behavior of nonlinear difference
equations of order greater than one come from the results for rational difference equations. However, there
have not been any effective general methods to deal with the global behavior of rational difference equations
of order greater than one so far. Therefore, the study of rational difference equations of order greater than
one is worth further consideration.

Difference equations appear as natural descriptions of observed evolution phenomena because most
measurements of time evolving variables are discrete and as such these equations are in their own right
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important mathematical models. More importantly, difference equations also appear in the study of dis-
cretization methods for differential equations. Several results in the theory of difference equations have been
obtained as more or less natural discrete analogues of corresponding results of differential equations.

Recently there has been a lot of interest in studying the global attractivity, boundedness character,
periodicity and the solution form of nonlinear difference equations. Some results in this area are, for
example: Agarwal et al.[1] studied the global stability, periodicity character and gave a solution form of
some special cases of the recursive sequence

xn+1 = a+
dxn−lxn−k
b− cxn−s

.

Aloqeili [2] obtained a form of the solutions of the difference equation

xn+1 =
xn−1

a− xnxn−1
.

Elabbasy et al.[7] investigated the global stability character, boundedness and the periodicity of solutions
of the difference equation

xn+1 =
αxn + βxn−1 + γxn−2
Axn +Bxn−1 + Cxn−2

.

In [6], Elabbasy et al. got the dynamics such that the global stability, periodicity character and gave a
solution of a special case of the following recursive sequence

xn+1 = axn −
bxn

cxn − dxn−1
.

Elabbasy et al.[8] investigated the behavior of the difference equation, especially global stability, bounded-
ness, periodicity character and gave a solution of some special cases of the difference equation

xn+1 =
αxn−k

β + γ
∏k

i=0 xn−i
.

Saleh et al.[36] and [35] investigated the difference equations

yn+1 = A+
yn
yn−k

with A < 0, xn+1 = A+
xn
xn−k

.

Simsek et al.[37] obtained a solution of the difference equation

xn+1 =
xn−3

1 + xn−1
.

Yalçinkaya et al.[42], [43] considered the dynamics of the difference equations

xn+1 =
axn−k
b+ cxpn

and xn+1 = α+
xn−m
xkn

.

Zayed et al. [44], [45] studied the behavior of the following rational recursive sequences

xn+1 = axn −
bxn

cxn − dxn−k
and xn+1 =

α+ βxn + γxn−1
A+Bxn + Cxn−1

.

Other related results on rational difference equations can be found in [1]–[46].
Our goal in this paper is to investigate the global stability character and the periodicity of solutions of

the recursive sequence

xn+1 = a+
bxn−l + cxn−k
dxn−l + exn−k

, (1.1)

where the parameters a, b, c, d and e are positive real numbers and the initial conditions x−t, x−t+1, . . . , x−1
and x0 are positive real numbers where t = max{l, k}and l 6= k.
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2. Definitions and Some Basic Properties

Here, we recall some basic definitions and some theorems that we need in the sequel; see [32].
Let I be an interval of real numbers and let

F : Ik+1 → I

be a continuously differentiable function. Then for every set of initial conditions x−k, x−k+1, . . . , x0 ∈ I, the
difference equation

xn+1 = F (xn, xn−1, . . . , xn−k), n = 0, 1, . . . , (2.1)

has a unique solution {xn}∞n=−k.

Definition 2.1 (Equilibrium Point). A point x ∈ I is called an equilibrium point of (2.1) if

x = F (x, x, . . . , x).

That is, xn = x for n ≥ 0, is a solution of (2.1), or equivalently, x is a fixed point of F .

Definition 2.2 (Periodicity). A sequence {xn}∞n=−k is said to be periodic with period p if xn+p = xn for
all n ≥ −k.

Definition 2.3 (Stability).

(i) The equilibrium point x of (2.1) is locally stable if for every ε > 0, there exists a δ > 0 such that for
all x−k, x−k+1, . . . , x−1, x0 ∈ I with

|x−k − x|+ |x−k+1 − x|+ · · ·+ |x0 − x| < δ,

we have
|xn − x| < ε for all n ≥ −k.

(ii) The equilibrium point x of (2.1) is locally asymptotically stable if x is locally stable solution of (2.1)
and there exists a γ > 0, such that for all x−k, x−k+1, . . . , x−1, x0 ∈ I with

|x−k − x|+ |x−k+1 − x|+ · · ·+ |x0 − x| < γ,

we have
lim
n→∞

xn = x.

(iii) The equilibrium point x of (2.1) is a global attractor if for all x−k, x−k+1, . . . , x−1, x0 ∈ I, we have

lim
n→∞

xn = x.

(iv) The equilibrium point x of (2.1) is globally asymptotically stable if x is locally stable and x is also a
global attractor of (2.1).

(v) The equilibrium point x of (2.1) is unstable if x is not locally stable.

The linearized equation of (2.1) about the equilibrium x is the linear difference equation

yn+1 =

k∑
i=0

∂F (x, x, . . . , x)

∂xn−i
yn−i. (2.2)



E. M. Elsayed, J. Nonlinear Sci. Appl. 9 (2016), 1463–1474 1466

Theorem 2.4 ([32]). Assume that pi ∈ R, i = 1, 2, . . . and k ∈ {0, 1, 2, . . . }. Then

k∑
i=1

|pi| < 1, (2.3)

is a sufficient condition for the asymptotic stability of the difference equation

yn+k + p1yn+k−1 + · · ·+ pkyn = 0, n = 0, 1, . . . .

Consider the following equation
xn+1 = g(xn, xn−1). (2.4)

The following two theorems will be useful for the proofs of our results.

Theorem 2.5 ([33]). Let [α, β] be an interval of real numbers and assume that

g : [α, β]2 → [α, β],

is a continuous function satisfying the following properties:

(a) g(x, y) is nondecreasing in x in [α, β] for each y ∈ [α, β], and is nonincreasing in y ∈ [α, β] for each x
in [α, β];

(b) If (m,M) ∈ [α, β]× [α, β] is a solution of the system

M = g(M,m) and m = g(m,M),

then
m = M.

Then (2.4) has a unique equilibrium x ∈ [α, β] and every solution of (2.4) converges to x.

Theorem 2.6 ([33]). Let [α, β] be an interval of real numbers and assume that

g : [α, β]2 → [α, β],

is a continuous function satisfying:

(a) g(x, y) is nonincreasing in x in [α, β] for each y ∈ [α, β], and is nondecreasing in y ∈ [α, β] for each x
in [α, β];

(b) If (m,M) ∈ [α, β]× [α, β] is a solution of the system

M = g(m,M) and m = g(M,m),

then
m = M.

Then (2.4) has a unique equilibrium x ∈ [α, β] and every solution of (2.4) converges to x.

The paper proceeds as follows. In Section 3 we show that the equilibrium point of (1.1) is locally
asymptotically stable when 2 |be− dc| < (d + e) (a(d+ e) + b+ c). In Section 4 we prove that the solution
is bounded and persists. In Section 5 we prove that the equilibrium point of (1.1) is a global attractor.
In Section 6 we prove that there exists a periodic solution of prime period two of (1.1). Finally, we give
numerical examples of some special cases of (1.1) and draw it by using Matlab.
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3. Local Stability of the Equilibrium Point of (1.1)

This section deals with study of the local stability character of the equilibrium point of (1.1).

Theorem 3.1. Assume that
2 |be− dc| < (d+ e) (a(d+ e) + b+ c) .

Then the positive equilibrium point of (1.1) is locally asymptotically stable.

Proof. The only positive equilibrium point of (1.1) is given by

x = a+
b+ c

d+ e
.

Let f : (0,∞)2 −→ (0,∞) be a continuous function defined by

f(u, v) = a+
bu+ cv

du+ ev
. (3.1)

We have
∂f(u, v)

∂u
=

(be− dc)v
(du+ ev)2

and
∂f(u, v)

∂v
=

(dc− be)u
(du+ ev)2

.

Then we see that

∂f(x, x)

∂u
=

(be− dc)
(d+ e)2x

=
(be− dc)

(d+ e) (a(d+ e) + b+ c)
= −a1,

∂f(x, x)

∂v
=

(dc− be)
(d+ e) (a(d+ e) + b+ c)

= −a0.

Then the linearized equation of (1.1) about x is

yn+1 + a1yn−l + a0yn−k = 0, (3.2)

whose characteristic equation is
λk+1 + a1λ

k−1 + a0 = 0. (3.3)

It follows by Theorem 2.4 that (3.2) is asymptotically stable if all the roots of (3.3) lie in the open disc
|λ| < 1, that is if

|a1|+ |a0| < 1,∣∣∣∣ (be− dc)
(d+ e) (a(d+ e) + b+ c)

∣∣∣∣+

∣∣∣∣ (dc− be)
(d+ e) (a(d+ e) + b+ c)

∣∣∣∣ < 1,

and so

2

∣∣∣∣ be− dc
(d+ e) (a(d+ e) + b+ c)

∣∣∣∣ < 1,

or
2 |be− dc| < (d+ e) (a(d+ e) + b+ c) .

The proof is complete.

4. Boundedness of Solutions of (1.1)

Here we study the boundedness nature of the solutions of (1.1).
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Theorem 4.1. Every solution of (1.1) is bounded and persists.

Proof. Let {xn}∞n=−t be a solution of (1.1). It follows from (1.1) that

xn+1 = a+
bxn−l + cxn−k
dxn−l + exn−k

≤ a+
max{b, c}
min{d, e}

.

Then

xn+1 ≤ a+
max{b, c}
min{d, e}

= M for all n ≥ 1. (4.1)

Also, we see from (1.1) that

xn+1 = a+
bxn−l + cxn−k
dxn−l + exn−k

≥ a+
min{b, c}
max{d, e}

.

Then

xn+1 ≥ a+
min{b, c}
max{d, e}

= m for all n ≥ 1. (4.2)

Thus we get from (4.1) and (4.2) that

a+
min{b, c}
max{d, e}

≤ xn+1 ≤ a+
max{b, c}
min{d, e}

for all n ≥ 1.

Thus, the solution is bounded and persists.

5. Global Attractivity of the Equilibrium Point of (1.1)

In this section we investigate the global asymptotic stability of (1.1).

Lemma 5.1. For any values of the quotients
b

d
and

c

e
, the function f(u, v), defined by (3.1), behaves

monotonically in both arguments.

Proof. The proof follows from some computations and will be omitted.

Theorem 5.2. The equilibrium point x is a global attractor of (1.1) if one of the following statements holds

(1) be ≥ dc and c ≥ b. (5.1)

(2) be ≤ dc and c ≤ b. (5.2)

Proof. Let α and β be real numbers and assume that g : [α, β]2 −→ [α, β] is a function defined by

g(u, v) = a+
bu+ cv

du+ ev
.

Then
∂g(u, v)

∂u
=

(be− dc)v
(du+ ev)2

and
∂g(u, v)

∂v
=

(dc− be)u
(du+ ev)2

.

We consider two cases:
Case (1). Assume that (5.1) is true. Then we can easily see that the function g(u, v) is increasing in u

and decreasing in v.
Suppose that (m,M) is a solution of the system M = g(M,m) and m = g(m,M). Then from (1.1), we

see that

M = a+
bM + cm

dM + em
and m = a+

bm+ cM

dm+ eM
,
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or
dM2 + emM − adM − aem = bM + cm and dm2 + emM − adm− aeM = bm+ cM.

Then

dM2 + emM − (ad+ b)M − (ae+ c)m = 0 and dm2 + emM − (ad+ b)m− (ae+ c)M = 0.

Subtracting these two equations we obtain

(M −m){d(M +m− a) + ea+ (c− b)} = 0,

under the condition c ≥ b, we see that
M = m.

It follows by Theorem 2.5 that x is a global attractor of (1.1) and then the proof is complete.

Case (2) Assume that (5.2) is true. Let α and β be real numbers and assume that g : [α, β]2 −→ [α, β] is

a function defined by g(u, v) = a+
bu+ cv

du+ ev
. Then we can easily see that the function g(u, v) is decreasing

in u and increasing in v.
Suppose that (m,M) is a solution of the system M = g(m,M) and m = g(M,m). Then from (1.1), we

see that

M = a+
bm+ cM

dm+ eM
and m = a+

bM + cm

dM + em
,

or
eM2 + dmM − adm− aeM = bm+ cM and em2 + dmM − adM − aem = bM + cm.

Subtracting these two equations we obtain

(M −m){e(M +m− a) + da+ (b− c)} = 0.

under the condition c ≤ b, we see that
M = m.

It follows by Theorem 2.6 that x is a global attractor of (1.1) and then the proof is complete.

6. Existence of Periodic Solutions

In this section we study the existence of periodic solutions of (1.1). The following theorem states the
necessary and sufficient conditions that this equation has periodic solutions of prime period two.

Theorem 6.1. Equation (1.1) has a positive periodic solutions of prime period two if and only if

(i) {(ad+ b)− (ae+ c)} (e− d)− 4d(ae+ c)) > 0 and l – odd, k – even;

(ii) {(ae+ c)− (ad+ b)} (d− e)− 4e(ad+ b)) > 0 and k – odd, l – even.

Proof. We prove that when l is odd and k even (the other case is similar and will be omitted.)
First suppose that there exists a periodic solution of prime period two

. . . , p, q, p, q, . . . ,

of (1.1). We will prove that condition (i) holds.
We see from (1.1) when l is odd and k even that

p = a+
bp+ cq

dp+ eq
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and

q = a+
bq + cp

dq + ep
.

Then
dp2 + epq = adp+ aeq + bp+ cq (6.1)

and
dq2 + epq = adq + aep+ bq + cp. (6.2)

Subtracting (6.1) from (6.2) gives

d(p2 − q2) = (ad+ b)(p− q)− (ae+ c)(p− q).

Since p 6= q, it follows that

p+ q =
ad+ b− ae− c

d
=
α− β
d

, α = ad+ b, β = ae+ c. (6.3)

It is known that p, q are positive. Then it should be (ad+ b) > (ae+ c) {i.e., α > β}.
Again, summing (6.1) and (6.2) yields

d(p2 + q2) + 2epq = (p+ q)(α+ β). (6.4)

It follows by (6.3), (6.4) and the relation

p2 + q2 = (p+ q)2 − 2pq for all p, q ∈ R,

that

2(e− d)pq =
2β(α− β)

d
.

Thus

pq =
β(α− β)

d(e− d)
. (6.5)

Again, since p and q are positive and (ad+ b) > (ae+ c), we see that e > d.
Now it is clear from (6.3) and (6.5) that p and q are two distinct roots of the quadratic equation

t2 −
(
α− β
d

)
t+

(
β(α− β)

d(e− d)

)
= 0,

dt2 − (α− β)t+

(
β(α− β)

(e− d)

)
= 0, (6.6)

and so

[α− β]2 − 4

[
dβ(α− β)

(e− d)

]
> 0,

[α− β]

{
(α− β)− 4dβ

(e− d)

}
> 0,

[α− β] {(α− β) (e− d)− 4dβ} > 0,

or
{(ad+ b)− (ae+ c)} (e− d)− 4d(ae+ c)) > 0.

Therefore inequalities (i) holds.
Second, suppose that inequalities (i) are true. We will show that (1.1) has a periodic solution of prime

period two.
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Assume that

p =
(ad+ b− ae− c) + ζ

2d
=
α− β + ζ

2d
and

q =
(ad+ b− ae− c)− ζ

2d
=
α− β − ζ

2d
,

where ζ =

√
[ad+ b− ae− c]2 − 4d(ae+ c)(ad+ b− ae− c)

(e− d)
=

√
[α− β]2 − 4dβ(α− β)

(e− d)
.

We see from inequalities (i) that

{(ad+ b)− (ad+ b)} (e− d)− 4d(ad+ b) > 0,

or
{(α− β) (e− d)− 4dβ} > 0,

which is equivalent to

[α− β]

{
(α− β)− 4dβ

(e− d)

}
> 0,

[α− β]2 >
4dβ (α− β)

(e− d)
.

Therefore p and q are distinct real numbers.
Set

x−l = p, x−k = q, . . . , x−2 = q, x−1 = p and x0 = q.

We wish to show that
x1 = x−1 = p and x2 = x0 = q.

It follows from (1.1) that

x1 = a+
bp+ cq

dp+ eq
= a+

b

(
α− β + ζ

2d

)
+ c

(
α− β − ζ

2d

)
d

(
α− β + ζ

2d

)
+ e

(
α− β − ζ

2d

) .
Dividing the denominator and numerator by 2d gives

x1 = a+
b (α− β + ζ) + c (α− β − ζ)

d (α− β + ζ) + e (α− β − ζ)

= a+
(b+ c)(α− β) + ζ(b− c)
(d+ e) (α− β) + ζ(d− e)

.

Multiplying the denominator and numerator of the right-hand side by (d+ e) (α− β)− ζ(d− e) gives, after
some computation, that

x1 =
α− β + ζ

2d
=

(ad+ b− ae− c) + ζ

2d
= p.

Similarly as before, one can easily show that
x2 = q.

Then it follows by induction that

x2n = q and x2n+1 = p for all n ≥ −1.

Thus, (1.1) has the periodic solution of prime period two

. . . , p, q, p, q, . . . ,

where p and q are the distinct roots of the quadratic equation (6.6) and the proof is complete.
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7. Numerical examples

For confirming our results, we consider numerical examples which represent different types of solutions
to (1.1).

Example 7.1. We assume l = 2, k = 3, x−3 = 2, x−2 = 11, x−1 = 4, x0 = 7, a = 1, b = 5, c = 6, d = 3,
e = 4. See Fig. 1.
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plot of x(n+1)= a+(bx(n−l)+cx(n−k))/(dx(n−l)+ex(n−k))

Fig. 1

Example 7.2. See Fig. 2, since l = 2, k = 1, x−2 = 11, x−1 = 1, x0 = 14, a = 0.4, b = 5, c = 0.6, d = 0.3,
e = 4.
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plot of x(n+1)= a+(bx(n−l)+cx(n−k))/(dx(n−l)+ex(n−k))

Fig. 2

Example 7.3. We consider l = 3, k = 1, x−3 = 4, x−3 = 1, x−2 = 8, x−1 = 17, x0 = 3, a = 0.1, b = 5,
c = 6, d = 3, e = 1. See Fig. 3.
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Fig. 3
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Example 7.4. Fig. 4. shows the solutions when l = 1, k = 2, a = 0.8, b = 0.5, c = 0.2, d = 5, e = 0.6,
x−2 = q, x−1 = p, x0 = q.(

Since p, q =
(ad+ b− ae− c)± ζ

2d
, ζ =

√
[ad+ b− ae− c]2 − 4d(ae+ c)(ad+ b− ae− c)

(e− d)

)
.
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Fig. 4
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