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Abstract

The purpose of this paper is to introduce and study the bi-level split fixed point problems in the setting
of infinite-dimensional Hilbert spaces. For solving this kind problems, some new simultaneous iterative
algorithms are proposed. Under suitable conditions, some strong convergence theorems for the sequences
generated by the proposed algorithm are proved. As applications, we shall utilize the results presented in
the paper to study bi-level split equilibrium problem, bi-level split optimization problems and the bi-level
split variational inequality problems. The results presented in the paper are new which also extend and
improve many recent results. c©2016 All rights reserved.
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1. Introduction

Let C and Q be a nonempty closed and convex subset of real Hilbert spaces H1 and H2, respectively.
The split feasibility problem (SFP ) is formulated as:

to find x∗ ∈ C and Ax∗ ∈ Q, (1.1)
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where A : H1 → H2 is a bounded linear operator. In 1994, Censor and Elfving [5] first introduced the
(SFP) in finite-dimensional Hilbert spaces for modeling inverse problems which arise from phase retrievals
and in medical image reconstruction [3]. It has been found that the (SFP) can also be used in various
disciplines such as image restoration, computer tomograph and radiation therapy treatment planning [4, 6, 7].
The (SFP) in an infinite dimensional real Hilbert space can be found in [3, 6, 11, 15, 27, 28, 29].

Recently, Moudafi [23, 24, 25] introduced the following split equality feasibility problem (SEFP):

to find x ∈ C, y ∈ Q such that Ax = By, (1.2)

where A : H1 → H3 and B : H2 → H3 are two bounded linear operators. Obviously, if B = I (identity
mapping on H2) and H3 = H2, then (1.2) reduces to (1.1). The kind of split equality feasibility problems
(1.2) allows asymmetric and partial relations between the variables x and y. The interest is to cover many
situations, such as decomposition methods for PDEs, applications in game theory and intensity-modulated
radiation therapy.

In order to solve split equality feasibility problem (1.2), Moudafi [24] introduced the following simulta-
neous iterative method: {

xk+1 = PC(xk − γA∗(Axk −Byk)),
yk+1 = PQ(yk + βB∗(Axk+1 −Byk)),

(1.3)

and under suitable conditions he proved the weak convergence of the sequence {(xn, yn)} to a solution of
(1.2) in Hilbert spaces.

Very recently, Eslamian et al. [19], Chen et al. [17], Chuang [18] and Chang et al. [10, 13, 14] introduced
and studied some kinds of general split feasibility problem, general split equality problem, general split equality
variational inclusion problems and general split equality optimization problems in real Hilbert spaces. Under
suitable conditions some strong convergence theorems are proved.

Motivated by the above works and related literatures, the purpose of this paper is to introduce and study
the following bi-level split fixed point problems in the setting of infinite-dimensional real Hilbert space:

Let H1, H2 and H3 be three real Hilbert spaces. In the sequel we always denote by F (K) the fixed
point set of a mapping K. Let T : H1 → H1, S : H2 → H2 and U : H3 → H3 be three nonlinear operators
with nonempty fixed point sets F (T ), F (S) and F (U), respectively. Let A : H1 → H3, B : H2 → H3 be
two bounded linear operators. The “so-called” bi-lever split fixed point problem (BLSFPP) is to find:

p ∈ F (T ), q ∈ F (S) such that Ap = Bq and u := Ap = Bq ∈ F (U). (1.4)

It is easy to know that the (BLSFPP) can be regarded as a new development of the split fixed point theory
and it contains several important problems, for example, bi-lever split equilibrium problem, split equality
equilibrium problem, bi-lever split optimization problems, bi-lever split variational inequalities problems and
etc. as its special cases.

Example 1.1 (Bi-lever split equilibrium problems). Let D be a nonempty closed and convex subset
of a real Hilbert space H. A bifunction g : D ×D → (−∞,+∞) is said to be a equilibrium function, if it
satisfies the following conditions:

(A1) g(x, x) = 0 for all x ∈ D;

(A2) g is monotone, i.e., g(x, y) + g(y, x) ≤ 0 for all x, y ∈ D;

(A3) lim supt↓0 g(tz + (1− t)x, y) ≤ g(x, y) for all x, y, z ∈ D;

(A4) for each x ∈ D, y 7→ g(x, y) is convex and lower semi-continuous.

The “so-called” equilibrium problem with respective to the equilibrium function g is:

to find x∗ ∈ D such that g(x∗, y) ≥ 0 ∀y ∈ D. (1.5)

Its solution set is denoted by EP (g). For given λ > 0 and x ∈ H, the resolvent of the equilibrium function
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g is the operator Rλ,g : H → D defined by

Rλ,g(x) := {z ∈ D : g(z, y) +
1

λ
〈y − z, z − x〉 ≥ 0 ∀y ∈ D}, x ∈ H. (1.6)

Proposition 1.2 ([2]). The resolvent operator Rλ,g of the equilibrium function g has the following properties:
(1) Rλ,g is single-valued;
(2) F (Rλ,g) = EP (g) and EP (g) is a nonempty closed and convex subset of D;
(3) Rλ,g is a firmly nonexpansive mapping.

Let H1, H2 and H3 be three real Hilbert spaces. Let C be a nonempty closed convex subset of H1, Q be a
nonempty closed convex subset of H2 and K be a nonempty closed convex subset of H3. Let h : C×C → R,
g : Q × Q → R and j : K ×K → R be three equilibrium functions. Let A : H1 → H3 and B : H2 → H3

be two bounded linear operators with adjoint operator A∗ and B∗, respectively. For given λ > 0, let Rλ,h,
Rλ,g and Rλ,j be the resolvent of h, g and j (defined by (1.6)), respectively.

The ”so-called” bi-level split equilibrium problem with respective to h, g, j (BLSEP(h, g, j)) is to find
x∗ ∈ C, y∗ ∈ Q such that 

(i) h(x∗, x) ≥ 0 ∀x ∈ C and g(y∗, y) ≥ 0 ∀y ∈ Q;

(ii) Ax∗ = By∗ := u;

(iii) j(u, z) ≥ 0 ∀ z ∈ K.
(1.7)

Especially, the ”so-called” split equality equilibrium problem with respective to h, g (SEEP (h, g)) is to
find x∗ ∈ C, y∗ ∈ Q such that{

(i) h(x∗, x) ≥ 0 ∀x ∈ C and g(y∗, y) ≥ 0 ∀ y ∈ Q;

(ii) Ap = Bq.
(1.8)

This problem was first introduced and studied by Moudafi [12].
By Proposition 1.2, the (BLSEP(h, g, j)) (1.7) is equivalent to find

x∗ ∈ EP (h,C), y∗ ∈ EP (g,Q) such that Ax∗ = By∗ and Ap = Bq := u ∈ EP (j,K)

⇔ x∗ ∈ F (Rλh), y∗ ∈ F (Rλg) such that Ax∗ = By∗

and Ax∗ = By∗ := u∗ ∈ F (Rλj) for each λ > 0.

(1.9)

Especially, the (SEEP(h, g)) (1.8) is equivalent to find

x∗ ∈ EP (h,C), y∗ ∈ EP (g,Q) such that Ax∗ = By∗. (1.10)

Example 1.3 (Bi-level split convex optimization problems). Let H1, H2 and H3 be three real Hilbert
spaces, C ⊂ H1, Q ⊂ H2 and K ⊂ H3 be three nonempty closed and convex subsets and let A : H1 → H3

and B : H2 → H3 be two bounded linear operators. Let h : C → R, g : Q → R and j : K → R be three
proper convex and lower semi-continuous functions. Then the “so-called” bi-level split convex optimization
problem (BLSCOP) is to find p ∈ C, q ∈ Q, Ap = Bq := u such that

h(p) = min
x∈C

h(x), g(q) = min
z∈Q

g(z), j(u) = min
s∈K

j(s). (1.11)

Denote by U = ∂h, V = ∂g and M = ∂j, then the mappings U, V and M all are maximal monotone. For
any given γ > 0, let JUγ := (I + γU)−1, JVγ := (I + γV )−1 and JMγ := (I + γM)−1 be the resolvent of U, V
and M , respectively. Therefore we have

U−1(0) = F (JUγ ), V −1(0) = F (JVγ ), M−1(0) = F (JMγ ), (1.12)

where U−1(0), V −1(0) and M−1(0) are the null point set of the mapping U, V, and M , respectively. Then
the (BLSCOP) (1.11) is equivalent to find p ∈ C, q ∈ Q and Ap = Bq := u such that
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p ∈ U−1(0), q ∈ V −1(0) and u ∈M−1(0)

⇔ p ∈ F (JUγ ), q ∈ F (JVγ ) and u ∈ F (JMγ ).
(1.13)

Example 1.4 (Bi-level split variational inequality problems). Let H1, H2, H3, C, Q, K, A and B
be the same as in (II). Let T : C → H1, S : Q → H2 and U : K → H3 be three nonlinear operators. The
“so-called” Bi-level split variational inequality problem (BLSVIP) is to find p ∈ C, q ∈ Q and Ap = Bq := u
such that

〈Tp, x− p〉 ≥ 0 ∀x ∈ C, 〈Sq,−q〉 ≥ 0 ∀y ∈ Q and 〈Us, v − s〉 ≥ 0 ∀v ∈ K. (1.14)

It is well known that p ∈ C is a solution of the variational inequality 〈Tp, x− p〉 ≥ 0 ∀x ∈ C if and only for
any γ > 0, p = PC(I − γT )p, i.e., p ∈ F (PC(I − γT )). This implies that (BLSVIP) (1.14) is equivalent to
find p ∈ C, q ∈ Q and Ap = Bq := u such that

p ∈ F (PC(I − γT )), q ∈ F (PC(I − γS)) and u ∈ F (PC(I − γU)). (1.15)

For solving (BLSFPP)(1.4), in Section 3, we propose a new simultaneous type iterative algorithm.
Under suitable conditions some strong convergence theorems for the sequences generated by the algorithm
are proved in the setting of infinite-dimensional Hilbert spaces. As special cases, we shall utilize our results
to study the Bi-lever split equilibrium problems, Bi-level split convex optimization problems and Bi-level split
variational inequality problems. The results presented in the paper extend and improve the corresponding
results announced by Censor et al. [4, 5, 6, 7, 8], Moudafi et al. [23, 24, 25], Eslamian and Latif [19], Chen
et al. [17], Chuang [18], Chang and wang [13], Chang and Agarwal [10] and Chang et al. [14], Naraghirad
[26], He and Du [21], Ansari and Rehan [1].

2. Preliminaries

First we recall some definitions, notations and conclusions. Throughout this section, we assume that H
is a real Hilbert space, C is a nonempty closed and convex subset of H. Denote by xn → x∗ and xn ⇀ x∗,
the strong convergence and weak convergence of a sequence {xn} to a point x∗, respectively.

For a closed convex subset C of H and for each x ∈ H, the (metric) projection PC : H → C is defined
as the unique element PCx ∈ C such that

||x− PCx|| = infy∈C ||x− y||.

For given x ∈ H, y = PC(x) if and only if

〈y − z, x− y〉 ≥ 0 ∀x ∈ H, z ∈ C. (2.1)

Recall that a mapping T : H → H is said to be nonexpansive, if ||Tx− Ty|| ≤ ||x− y|| ∀x, y ∈ H.

A mapping T : H → H is said to be quasi nonexpansive, if F (T ) 6= ∅ and

||Tx− p|| ≤ ||x− p|| for each x ∈ H and p ∈ F (T ).

It is easy to see that if T is a quasi nonexpansive mapping, then F (T ) is a nonexpansive closed and
convex subset. T is said to be a firmly nonexpansive mapping, if

||Tx− Ty||2 ≤ 〈x− y, Tx− Ty〉 ∀x, y ∈ C;

⇔ ||Tx− Ty||2 ≤ ||x− y||2 − ||(I − T )x− (I − T )y||2 ∀x, y ∈ C.
(2.2)

A typical example of firmly nonexpansive mappings is the metric projection PC from H onto C.
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Lemma 2.1 ([12]). Let H be a real Hilbert space and {xn} be a sequence in H. Then, for any given sequence
{λn} of positive numbers with

∑∞
i=1 λn = 1 such that for any positive integers i, j with i < j the following

holds

||
∞∑
i=1

λnxn||2 ≤
∞∑
i=1

λn||xn||2 − λiλj ||xi − xj ||2.

Lemma 2.2 ([9]). Let H be a real Hilbert space. For any x, y ∈ H, the following inequality holds

||x+ y||2 ≤ ||x||2 + 2〈y, x+ y〉.

Lemma 2.3 ([20]). If T : C → C is a nonexpansive mapping with F (T ) 6= ∅, then I − T is demi-closed at
zero, i.e., for any sequence {xn} ⊂ C with xn ⇀ x and ||xn − Txn|| → 0, then x = Tx.

Lemma 2.4 ([21]). Let {an}, {bn} and {cn} be sequences of positive real numbers satisfying an+1 ≤ (1 −
bn)an + cn for all n ≥ 1. If the following conditions are satisfied:

(1) bn ∈ (0, 1) and
∑∞

n=1 bn =∞,

(2)
∑∞

n=1 cn <∞, or lim supn→∞
cn
bn
≤ 0,

then limn→∞ an = 0.

Lemma 2.5 ([22]). Let {tn} be a sequence of real numbers. If there exists a subsequence {ni} of {n} such
that tni < tni+1 for all i ≥ 1, then there exists a nondecreasing sequence {τ(n)} with τ(n) → ∞ such that
for all (sufficiently large) positive integer number n, the following holds:

tτ(n) ≤ tτ(n)+1 and tn ≤ tτ(n)+1.

In fact,
τ(n) = max{k ≤ n : tk ≤ tk+1}.

3. Bi-level split fixed point problems and some strong convergence theorems

Throughout this section we assume that H1, H2 and H3 are three real Hilbert spaces, T : H1 →
H1, S : H2 → H2 and U : H3 → H3 are three quasi nonexpensive mappings (therefore their fixed point sets
F (T ), F (S) and F (U) all are nonempty closed and convex) and A : H1 → H3 and B : H2 → H3 are two
bounded linear operators with adjoint operators A∗ and B∗, respectively.

Denote by
H1 := H1 ×H2, H2 := H3 ×H3,

C := {(p, q) ∈ F (T )× F (S) and A(p) = B(q)} ⊂ H1,

Q := F (U)× F (U) ⊂ H2,

PC(x, y) = (PF (T )x, PF (S)y) ∀(x, y) ∈ H1,

PQ(z, w) = (PF (U)(z), PF (U)(w)) ∀(z, w) ∈ H2.

Define a linear bounded operator A : H1 → H2 and its adjoint operator A∗ : H2 → H1 by

A(x, y) = (Ax,By) ∀(x, y) ∈ H1, A∗(z, w) = (A∗(z), B∗(w)) ∀(z, w) ∈ H2.

Now we consider the bi-lever split fixed point problem (1.4). We have the following Lemma.

Lemma 3.1. If the solution set of the bi-lever split fixed point problem (1.4):

Γ := {(p, q) ∈ F (T )× F (S) such that A(p) = B(q) and u =: A(p) = B(q) ∈ F (U)} (3.1)

is nonempty, then w = (p, q) ∈ H1 is a solution of (BLSFPP) (1.4) if and only if w is a solution of the
following equation

w = PC(I − γA∗(I − PQ)A)(w) for any γ > 0. (3.2)
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Proof. Indeed, if w := (p, q) ∈ H1 is a solution of (BLSFPP) (1.4), then p ∈ F (T ), q ∈ F (S) and
Ap = Bq such that u := Ap = Bq ∈ F (U). Hence we have

A∗(I − PQ)A(p, q) = A∗(A(p, q)− PQA(p, q))

= A∗((Ap,Bq)− PQ((Ap,Bq)))

= A∗((Ap,Bq)− (PF (U)(Ap), PF (U)(Bq)))

= A∗((Ap,Bq)− (Ap,Bq)) = 0.

Therefore we have
PC(I − γA∗(I − PQ)A)(p, q) = PC(p, q)

= (PF (T )p, PF (S)q) = (p, q).

Conversely, if w = (p, q) ∈ H1 is a solution of equation (3.2), then w ∈ C. This implies that p ∈ F (T ),
q ∈ F (S), Ap = Bq and {

p = PF (T )[I − γA∗(I − PF (U))A](p),

q = PF (S)[I − γB∗(I − PF (U))B](q).
(3.3)

It follows from (2.1) and (3.3) that

〈p− (p− γA∗((I − PF (U))A(p))), x− p〉 ≥ 0 ∀x ∈ F (T ).

Simplifying, we have
〈Ap− PF (U)A(p), Ax−Ap〉 ≥ 0 ∀x ∈ F (T ). (3.4)

Similarly, from (2.1) and (3.3) we also have

〈Bq − PF (U)B(q), By −Bq〉 ≥ 0 ∀y ∈ F (S). (3.5)

By the assumption that the solution set Γ of (BLSFPP) (1.4) is nonempty. Taking (p∗, q∗) ∈ Γ, hence
Ap∗ = Bq∗ and (Ap∗, Bq∗) ∈ F (U)× F (U). In (3.4) taking x = p∗, we have

〈Ap− PF (U)A(p), PF (U)A(p)− PF (U)A(p) +Ap∗ −Ap〉 ≥ 0. (3.6)

Since Ap∗ ∈ F (U), it follows from (3.6) and (2.1) that

||Ap− PF (U)A(p)||2 ≤ 〈Ap− PF (U)A(p), Ap∗ − PF (U)A(p)〉 ≤ 0.

This implies that Ap ∈ F (U). Similarly, we can also prove that Bq ∈ F (U).
This completes the proof of Lemma 3.1.

Lemma 3.2. If γ ∈ (0, 2
L), where L = ||A||2, then (I−γA∗(I−PQ)A) : H1×H2 → H1×H2 is a nonexpansive

mapping.

Proof. In fact, since PQ is a firmly nonexpansive mapping, I − PQ is also a firmly nonexpansive mapping.
Again since γ ∈ (0, 2

L), for any w, u ∈ H1 ×H2, we have

||(I − γA∗(I − PQ)A)(u)− (I − γA∗(I − PQ)A)(w)||2

= ||(u− w)− γA∗{(I − PQ)A(u)− (I − PQ)A(w)}||2

= ||u− w||2 + γ2||A∗{(I − PQ)A(u)− (I − PQ)A(w)}||2

− 2γ〈u− w, A∗{(I − PQ)A(u)− (I − PQ)A(w)}〉
≤ ||u− w||2 + γ2L||(I − PQ)A(u)− (I − PQ)A(w)||2

− 2γ〈A(u)− A(w), (I − PQ)A(u)− (I − PQ)A(w)〉
≤ ||u− w||2 − γ(2− Lγ)||(I − PQ)A(u)− (I − PQ)A(w)||2

≤ ||u− w||2.
This completes the proof.

We are now in a position to give the following main result.
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Theorem 3.3. Let H1, H2, H3, T, S, U , A, B, A∗, B∗, H1, H2, C, Q, A and A∗ be the same as above.
For any given w0 ∈ H1 ×H2, let the simultaneous iterative sequence {wn} ⊂ H1 ×H2 be generated by

wn+1 = αnwn + βnf(wn) + λn(PC(I − γnA∗(I − PQ)A)(wn)), n ≥ 0, (3.7)

where f(x, y) := (f1(x), f2(y)) : H1 ×H2 → H1 ×H2 and fi : Hi → Hi, i = 1, 2 is a contractive mapping
with a contractive constant k ∈ (0, 1). If the solution set Γ of (BLSFPP) (1.4) defined by (3.1) is nonempty
and the following conditions are satisfied

(i) αn + βn + λn = 1 for each n ≥ 0;

(ii) limn→∞ βn = 0 and
∑∞

n=0 βn =∞;

(iii) lim infn→∞ αnλn > 0;

(iv) {γn} ⊂ (0, 2
L), where L = ||A||2,

then the sequence {wn} converges strongly to w∗ = PΓf(w∗) which is a solution of (BLSFPP) (1.4).

Proof. (I) First we prove that the sequence {wn} is bounded.

In fact, for any given w ∈ Γ, by Lemma 3.1 and Lemma 3.2, we know that

w = PC(I − γA∗(I − PQ)A)(w)

and (I − γA∗(I − PQ)A) : H1 ×H2 → H1 ×H2 is a nonexpensive mapping. Hence from condition (iv) we
have

||wn+1 − w|| = ||(αnwn + βnf(wn) + λn(PC(I − γnA∗(I − PQ)A)(wn))− w||
≤ αn||wn − w||+ βn||f(wn)− w||+ λn||PC(I − γnA∗(I − PQ)A)(wn)− w||
≤ αn||wn − w||+ βn||f(wn)− w||+ λn||wn − w||
= (1− βn)||wn − w||+ βn||f(wn)− w||
≤ (1− βn)||wn − w||+ βn||f(wn)− f(w)||+ βn||f(w)− w||
≤ (1− βn)||wn − w||+ kβn||wn − w||+ βn||f(w)− w||

= (1− (1− k)βn)||wn − w||+ (1− k)βn
1

1− k
||f(w)− w||

≤ max{||wn − w||,
1

1− k
||f(w)− w||}.

By induction, we can prove that

||wn − w|| ≤ max{||w0 − w||,
1

1− k
||f(w)− w||} ∀n ≥ 0. (3.8)

This shows that {wn} is bounded, so is {f(wn)}.
(II) Now we prove that the following inequality holds.

αnλn||wn − PC(I − γnA∗(I − PQ)A)(wn)||2 ≤ ||wn − w||2 − ||wn+1 − w||2 + βn||f(wn)− w||2. (3.9)

Indeed, it follows from (3.7) and Lemma 2.1 that for each i ≥ 1

||wn+1 − w||2 = ||αn(wn − w) + βn(f(wn)− w)

+ λn(PC(I − γnA∗(I − PQ)A)(wn))− w)||2

≤ αn||wn − w||2 + βn||f(wn)− w||2

+ λn||PC(I − γnA∗(I − PQ)A)(wn)− w||2

− αnλn||wn − PC(I − γnA∗(I − PQ)A)(wn)||2

≤ αn||wn − w||2 + βn||f(wn)− w||2 + λn||wn − w||2

− αnλn||wn − PC(I − γnA∗(I − PQ)A)(wn)||2

= (1− βn)||wn − w||2 + βn||f(wn)− w||2

− αnλn||wn − PC(I − γnA∗(I − PQ)A)(wn)||2.
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This implies that

αnλn||wn − PC(I − γnA∗(I − PQ)A)(wn)||2 ≤ ||wn − w||2 − ||wn+1 − w||2 + βn||f(wn)− w||2. (3.10)

The conclusion is proved.
It is easy to see that the solution set Γ of (BLSFPP) (1.4) is a closed and convex subset in H1×H2. By

the assumption that Γ is nonempty, so it is a nonempty closed and convex subset in H1 ×H2. Hence the
metric projection PΓ is well defined. Again since PΓf : H1 ×H2 → Γ is a contractive mapping, there exists
a unique w∗ ∈ Γ such that

w∗ = PΓf(w∗). (3.11)

(III) Now we prove that {wn} converges strongly to w∗. For the purpose, we consider two cases.
Case I: Suppose that the sequence {||wn−w∗||} is monotone. Since {||wn−w∗||} is bounded, {||wn−w∗||}

is convergent. Since w∗ ∈ Γ, taking w = w∗ in (3.9), it follows from conditions (ii) and (iii) that

limn→∞||wn − PC(I − γnA∗(I − PQ)A)(wn)||2 = 0. (3.12)

On the other hand, by Lemma 2.2 and (3.7), we have

||wn+1 − w∗||2 = ||αnwn + βnf(wn) + λn(PC(I − γnA∗(I − PQ)A)(wn))− w∗||2

= ||αn(wn − w∗) + βn(f(wn)− w∗)
+ λn(PC(I − γnA∗(I − PQ)A)(wn))− w∗)||2

≤ ||αn(wn − w∗) + λn(PC(I − γnA∗(I − PQ)A(wn)− w∗)||2

+ 2βn〈f(wn)− w∗, wn+1 − w∗〉 (by Lemma 2.2)

≤ {αn||wn − w∗||+ λn||wn − w∗||}2

+ 2βn〈f(wn)− f(w∗), wn+1 − w∗〉+ 2βn〈f(w∗)− w∗, wn+1 − w∗〉
= (1− βn)2||wn − w∗||2 + 2βnk||wn − w∗||||wn+1 − w∗||

+ 2βn〈f(w∗)− w∗, wn+1 − w∗〉
≤ (1− βn)2||wn − w∗||2 + βnk{||wn − w∗||2 + ||wn+1 − w∗||2}

+ 2βn〈f(w∗)− w∗, wn+1 − w∗〉.

Simplifying it we have

||wn+1 − w∗||2 ≤
(1− βn)2 + βnk

1− βnk
||wn − w∗||2 +

2βn
1− βnk

〈f(w∗)− w∗, wn+1 − w∗〉

=
1− 2βn + βnk

1− βnk
||wn − w∗||2 +

β2
n

1− βnk
||wn − w∗||2

+
2βn

1− βnk
〈f(w∗)− w∗, wn+1 − w∗〉

= (1− 2(1− k)βn
1− βnk

)||wn − w∗||2

+
2(1− k)βn

1− βnk
{ βnM

2(1− k)
+

1

1− k
〈f(w∗)− w∗, wn+1 − w∗〉}

= (1− ηn)||wn − w∗||2 + ηnδn,

(3.13)

where

ηn =
2(1− k)βn

1− βnk
, δn =

βnM

2(1− k)
+

1

1− k
〈f(w∗)− w∗, wn+1 − w∗〉 and M = sup

n≥0
||wn − w∗||2.
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By condition (ii), limn→∞ βn = 0 and
∑∞

n=1 βn =∞, so is
∑∞

n=1 ηn =∞.
Next we prove that

lim sup
n→∞

δn ≤ 0. (3.14)

In fact, since {wn} is bounded in H1 × H2, there exists a subsequence {wnk
} ⊂ {wn} with wnk

⇀ v∗

(some point in H1 ×H2) and λnk,i → λi ∈ (0, 2
L) such that

lim
n→∞

〈f(w∗)− w∗, wnk
− w∗〉 = lim sup

n→∞
〈f(w∗)− w∗, wn − w∗〉.

Since PC(I − γA∗(I − PQ)A) is a nonexpansive mapping and from (3.12)

||wnk
− PC(I − γnA∗(I − PQ)A)(wnk

)|| → 0.

It follows from Lemma 2.3 that
v∗ = PC(I − γnA∗(I − PQ)A)(v∗). (3.15)

By Lemma 3.1, this implies that v∗ ∈ Γ. Since w∗ = PΩf(w∗), we have

lim sup
n→∞

〈f(w∗)− w∗, wn − w∗〉 = lim
n→∞

〈f(w∗)− w∗, wnk
− w∗〉

= 〈f(w∗)− w∗, v∗ − w∗〉 ≤ 0.

This shows that (3.14) is true. Taking an = ||wn − w∗||2, bn = ηn and cn = δnηn in Lemma 2.4 , all
conditions in Lemma 2.4 are satisfied. Hence wn → w∗.

Case II: If the sequence {||wn−w∗||} is not monotone, by Lemma 2.5, there exists a sequence of positive
integers: {τ(n)}, n ≥ n0 (where n0 large enough) such that

τ(n) = max{k ≤ n : ||wk − w∗|| ≤ ||wk+1 − w∗||}. (3.16)

Clearly {τ(n)} is a nondecreasing, τ(n)→∞ as n→∞ and for all n ≥ n0

||wτ(n) − w∗|| ≤ ||wτ(n)+1 − w∗|| and ||wn − w∗|| ≤ ||wτ(n)+1 − w∗||. (3.17)

Therefore {||wτ(n)−w∗||} is a nondecreasing sequence. According to the Case (I), limn→∞ ||wτ(n)−w∗|| = 0
and limn→∞ ||wτ(n)+1 − w∗|| = 0. Hence we have

0 ≤ ||wn − w∗|| ≤ max{||wn − w∗||, ||wτ(n) − w∗||} ≤ ||wτ(n)+1 − w∗|| → 0, as n→∞.

This implies that wn → w∗ and w∗ = PΩf(w∗) is a solution of (GSEVIP) (1.5).
This completes the proof of Theorem 3.3.

Remark 3.4. Theorem 3.3 extend and improve the main results in Moudafi et al. [23, 24, 25], Eslamian and
Latif [19], Chen et al. [17], Chuang [18], Chang et al. [10, 13, 14, 16], Naraghirad [26] and He and Du [21].

4. Strong convergence theorems for some other bi-level split problems

In this section we shall utilize the results presented in Theorem 3.3 to study some other bi-lever split
problems in Hilbert spaces

4.1. Bi-lever split equilibrium problems

Let H1, H2 and H3 be three real Hilbert spaces, C ⊂ H1, Q ⊂ H2 and K ⊂ H3 be three nonempty
closed and convex subsets. Let h : C × C → R, g : Q × Q → R and j : K ×K → R be three equilibrium
functions. Let A : H1 → H3 and B : H2 → H3 be two bounded linear operators with adjoint operator A∗
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and B∗, respectively. For given λ > 0, let Rλ,h, Rλ,g and Rλ,j be the resolvents of h, g and j (defined by
(1.6)), respectively.

As pointed out in Example 1.1 (see Section 1) that the bi-level split equilibrium problem with respective
to h, g, j, i.e., to find x∗ ∈ C and y∗ ∈ Q such that

(i) h(x∗, x) ≥ 0 ∀x ∈ C and g(y∗, y) ≥ 0 ∀y ∈ Q;

(ii) Ax∗ = By∗ := u;

(iii) j(u, z) ≥ 0 ∀ z ∈ K,
(4.1)

is equivalent to the following bi-level split fixed point problem:

to find x∗ ∈ F (Rλh), y∗ ∈ F (Rλg) such that Ax∗ = By∗ and

Ax∗ = By∗ := u∗ ∈ F (Rλj) for each λ > 0,
(4.2)

where Rλh, Rλg and Rλj are the resolvent operators of h, g and j defined by (1.6), respectively. Take
T = Rλh, S = Rλg and U = Rλj in Theorem 3.3. Then all T, S and U are firmly nonexpansive mappings
with nonempty closed and convex fixed point sets. Therefore all conditions in Theorem 3.3 are satisfied.
Hence the following result can be obtained from Theorem 3.3 immediately.

Theorem 4.1. Let H1, H2, H3, C, Q, K, h, g, j, A, B, A∗, B∗, T, S and U be the same as above.
Denote by H1 := C ×Q and H2 := K ×K. Let C, Q, A and A∗ be the same as in Theorem 3.3. For given
w0 ∈ C ×Q, let {wn} be the sequence generated by

wn+1 = αnwn + βnf(wn) + λn(PC(I − γnA∗(I − PQ)A)(wn)), n ≥ 0, (4.3)

where f(x, y) := (f1(x), f2(y)) and f1 : C → C, f2 : Q→ Q both are contractive mapping with a contractive
constant k ∈ (0, 1). If the solution set Γ1 of (BLSEP) (4.1) is nonempty and the following conditions are
satisfied

(i) αn + βn + λn = 1 for each n ≥ 0;

(ii) limn→∞ βn = 0 and
∑∞

n=0 βn =∞;

(iii) lim infn→∞ αnλn > 0;

(iv) {γn} ⊂ (0, 2
L), where L = ||A||2,

then the sequence {wn} converges strongly to w∗ = PΓ1f(w∗) which is a solution of (BLSFPP) (4.1).

Remark 4.2. Theorem 4.1 is a generalization and improvement of Theorem 4.1 in He and Du [21].

4.2. Bi-level split convex optimization problems

Let H1, H2, H3, C, Q, K, A and B be the same as in Section 4.1. Let h : C → R, g : Q → R and
j : K → R be three proper convex and lower semi-continuous functions. Denote by U = ∂h, V = ∂g and
M = ∂j. It is well-known that U, V and M all are maximal monotone mappings. For any given γ > 0,
denote by JUγ := (I + γU)−1, JVγ := (I + γV )−1 and JMγ := (I + γM)−1 the resolvent of U, V and M ,
respectively.

As pointed out in Example 1.4 (see Section 1) that the Bi-level split convex optimization problems, i.e.,
to find p ∈ C, q ∈ Q and Ap = Bq := u such that

h(p) = min
x∈C

h(x), g(q) = min
z∈Q

g(z) and j(u) = min
s∈K

j(s) (4.4)

is equivalent to the following bi-level split fixed point problem: to find p ∈ C, q ∈ Q and Ap = Bq := u such
that

p ∈ F (JUγ ), q ∈ F (JVγ ) and u ∈ F (JMγ ). (4.5)

Letting T = JUγ , S = JVγ and U = JMγ , then T, S and U all are quasi nonexpansive mappings with a
nonempty closed and convex fixed point set. Therefore all conditions in Theorem 4.1 are satisfied. From
Theorem 4.1 we have the following
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Theorem 4.3. Let H1, H2, H3, C, Q, K, h, g, j, A, B, A∗, B∗, T, S and U be the same as above.
Denote by H1 := C × Q and H2 := K ×K. Let C, Q, A, A∗ and f be the same as in Theorem 4.1. For
given w0 ∈ C ×Q, let {wn} be the sequence generated by

wn+1 = αnwn + βnf(wn) + λn(PC(I − γnA∗(I − PQ)A)(wn)), n ≥ 0. (4.6)

If the solution set Γ2 of (BLSCOP) (4.4) is nonempty and the conditions (i)-(iv) in Theorem 4.1 are satisfied,
then the sequence {wn} converges strongly to w∗ = PΓ2f(w∗) which is a solution of (BLSCOP) (4.4).

4.3. Bi-level split variational inequality problems

Let H1, H2, H3, C, Q, K, A and B be the same as in (II). Let T ∗ : C → H1, S
∗ : Q → H2 and

U∗ : K → H3 be three nonlinear operators. As point out in 1.4 (see Section 1), the bi-level split variational
inequality problem (BLSVIP), i.e., to find p ∈ C, q ∈ Q and Ap = Bq := u such that

〈T ∗p, x− p〉 ≥ 0 ∀x ∈ C, 〈S∗q,−q〉 ≥ 0 ∀y ∈ Q and 〈U∗s, v − s〉 ≥ 0 ∀v ∈ K (4.7)

is equivalent to the following bi-level split fixed point problem: i.e., to find p ∈ C, q ∈ Q and Ap = Bq := u
such that

p ∈ F (PC(I − γT ∗)), q ∈ F (PC(I − γS∗)) and u ∈ F (PC(I − γU∗)). (4.8)

Denote by T := PC(I − γT ∗), S := PC(I − γS∗) and U := PC(I − γU∗), then T, S and U all are quasi
nonexpansive mappings. Therefore all conditions in Theorem 4.3 are satisfied. hence the following theorem
can be obtained from Theorem 4.3 immediately.

Theorem 4.4. Let H1, H2, H3, C, Q, K, A, B, A∗, B∗, T ∗, S∗ and U∗ be the same as above. Denote
by H1 := C × Q and H2 := K × K. Let C, Q, A, A∗ and f be the same as in Theorem 4.1. For given
w0 ∈ C ×Q, let {wn} be the sequence generated by

wn+1 = αnwn + βnf(wn) + λn(PC(I − γnA∗(I − PQ)A)(wn)), n ≥ 0. (4.9)

If the solution set Γ3 of bi-level split variational inequality problem (4.7) is nonempty and the conditions
(i)-(iv) in Theorem 4.1 are satisfied, then the sequence {wn} converges strongly to w∗ = PΓ3f(w∗) which is
a solution of (BLSVIP) (4.7).

5. A concrete application

In this section, we shall give a concrete application of Theorem 3.3 and Theorem 4.1.
Let H1 = R2, H2 = R3 and H3 = R4 with standard norm and inner product. For each α = (α1, α2) ∈ R2

and z = (z1, z2, z3, z4) ∈ R4 define operators A and A∗ by

A(α) = (α1, α2, α1 + α2, α1 − α2) (5.1)

and
A∗(z) = (z1 + z3 + z4, z2 + z3 − z4).

Then A is a bounded linear operator from R2 into R4 and A∗ : R4 → R2 is the adjoint operator of A. The
norm of A is

||A|| = sup
||α||R2≤1

||Aα||R4

= sup
||α||R2≤1

||(α1, α2, α1 + α2, α1 − α2)||R4

=
√
α2

1 + α2
2 + (α1 + α2)2 + (α1 − α2)2

=
√

3.
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Hence also ||A∗|| =
√

3. For each β = (β1, β2, β3) ∈ R3 and z = (z1, z2, z3, z4) ∈ R4, define operators B
and B∗ by

B(β) = (β1, β2, β3, β1 − β2) (5.2)

and
B∗(z) = (z1 + z4, z2 − z4, z3).

Then B is a bounded linear operator from R3 into R4. We can also prove that ||B|| =
√

3 and B∗ : R4 → R3

is the adjoint operator of B with ||B∗|| =
√

3. Put
C : = {α = (α1, α2) ∈ [−1, 2]× [2, 4]} ⊂ R2,

Q : = {β = (β1, β2, β3) ∈ [−1, 1]× [3, 4]× [3, 5]} ⊂ R3,

K : = {z = (z1, z2, z3, z4) ∈ [0, 1]× [3, 6]× [3, 5]× [−5, −3]} ⊂ R4.

(5.3)

For each α = (α1, α2) ∈ C, β = (β1, β2, β3) ∈ Q and z = (z1, z2, z3, z4) ∈ K, define functions:

h∗(α) = α2
1 + α2

2, g∗(β) = β2
1 + β2

2 + β2
3 , j∗(z) = z2

1 + z2
2 + z2

3 + z2
4 .

Let 
h(α, x) = h∗(x)− h∗(α) for each α, x ∈ C;

g(β, y) = g∗(y)− g∗(β) for each β, y ∈ Q;

j(η, z) = j∗(z)− j∗(η) for each η, z ∈ K.
(5.4)

It is easy to know that h : C ×C → R, g : Q×Q→ R and j : K ×K → R all are the equilibrium functions
satisfying conditions (A1)-(A4). Let EP (h) (resp. EP (g) and EP (j)) be the set of solutions of equilibrium
problem with respective to h (resp. g and j ). It is not hard to verify that

EP (h) = {x∗ = (0, 3)},
EP (g) = {y∗ = (0, 3, 3)},
Ax∗ = By∗ = {(0, 3, 3,−3)} := u∗,

EP (j) = {u∗ = (0, 3, 3,−3)}.

(5.5)

This implies that (x∗, y∗) = ((0, 3), (0, 3, 3)) ∈ C × Q is the unique solution of the following bi-level split
equilibrium problem with respective to h, g and j

(i) h(x∗, x) ≥ 0 ∀x ∈ C and g(y∗, y) ≥ 0 ∀y ∈ Q;

(ii) Ax∗ = By∗ := u∗;

(iii) j(u∗, z) ≥ 0 ∀ z ∈ K.
(5.6)

Denote by Ω the set of solutions of the bi-level split equilibrium problem (5.6). Hence we have

Ω = {(p, q) ∈ EP (h)× EP (g) : Ap = Bq ∈ EP (j)} = {((0, 3), (0, 3, 3))}.

For given λ > 0, let Rλ,h, Rλ,g and Rλ,j be the resolvent of h, g and j (defined by (1.6)), respectively. Let
T = Rλ,h , S = Rλ,g and U = Rλ,j , therefore we have F (T ) = EP (h), F (S) = EP (g) and F (U) = EP (j).
Denote by 

H1 := R2 × R3, H2 := R4 × R4,

C := {(p, q) ∈ F (T )× F (S) and A(p) = B(q)} ⊂ H1,

Q := F (U)× F (U) ⊂ H2,

PC(x, y) = (PF (T )x, PF (S)y) ∀(x, y) ∈ H1,

PQ(z, w) = (PF (U)(z), PF (U)(w)) ∀(z, w) ∈ H2.

(5.7)
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From Theorem 3.3 we can obtain the following
Theorem 5.1 Let R2, R3, R4, T, S, U , A, B, A∗, B∗ and H1, H2, C, Q, A, A∗, PC, PQ be the

same as above. For any given w0 ∈ R2 × R3, let the simultaneous iterative sequence {wn} ⊂ R2 × R3 be
generated by

wn+1 = αnwn + βnf(wn) + λn(PC(I − γnA∗(I − PQ)A)(wn)), n ≥ 0, (5.8)

where f(x, y) := (f1(x), f2(y)) : R2 × R3 → R2 × R3, f1 : R2 → R2 and f2 : R3 → R3 are contractive
mappings with a contractive constant k ∈ (0, 1). If the following conditions are satisfied

(i) αn + βn + λn = 1 for each n ≥ 0;
(ii) limn→∞ βn = 0 and

∑∞
n=0 βn =∞;

(iii) lim infn→∞ αnλn > 0;
(iv) {γn} ⊂ (0, 2

3), where 3 = ||A||2,
then the sequence {wn} converges strongly to (x∗, y∗) = ((0, 3), (0, 3, 3)) which is a solution of the bi-level

split equilibrium problem (5.6).
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