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Abstract

The purpose of this paper is to investigate fixed points of an asymptotically quasi-φ-nonexpansive map-
ping in the intermediate sense and a bifunction equilibrium problem. We obtain a strong convergence
theorem of solutions in the framework of Banach spaces. c©2016 All rights reserved.
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1. Introduction and Preliminaries

Let E be a real Banach space and let C be a convex closed subset of E. Let B : C × C → R, where
R denotes the set of real numbers, be a bifunction. Recall that the following equilibrium problem in the
terminology of Blum and Oettli [4]. Find x̄ ∈ C such that

B(x̄ y) ≥ 0,∀y ∈ C. (1.1)

In this paper, we use Sol(B) to denote the solution set of equilibrium problem (1.1). That is, Sol(B) =
{x ∈ C : B(x, y) ≥ 0, ∀y ∈ C}.

The following restrictions on bifunction B are essential in this paper.

(Q1) B(a, a) ≡ 0,∀a ∈ C;
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(Q2) B(b, a) +B(a, b) ≤ 0,∀a, b ∈ C;

(Q3) B(a, b) ≥ lim supt→0B(tc+ (1− t)a, b), ∀a, b, c ∈ C;

(Q4) b 7→ B(a, b) is weakly lower semi-continuous and convex, ∀a ∈ C.

Equilibrium problem (1.1), which includes complementarity problems, variational inequality problems
and inclusion problems as special cases, provides us a natural and unified framework to study a wide class
of problems arising in physics, economics, finance, transportation, network, elasticity and optimization;
see [3], [8], [10], [12], [14], [23], [28], and the references therein. Recently, equilibrium problem (1.1) has
been extensively investigated based on fixed point algorithms in Banach spaces; see [9], [11], [13], [15]-[18],
[24]-[27], [29]-[32] and the references therein.

Let E∗ be the dual space of E. Let SE be the unit sphere of E. Recall that E is said to be a strictly
convex space iff ‖x+y‖ < 2 for all x, y ∈ SE and x 6= y. Recall that E is said to have a Gâteaux differentiable
norm iff limt→0

1
t (‖x‖ − ‖x + ty‖) exists for each x, y ∈ SE . In this case, we also say that E is smooth. E

is said to have a uniformly Gâteaux differentiable norm if for each y ∈ BE , the limit is attained uniformly
for all x ∈ SE . E is also said to have a uniformly Fréchet differentiable norm iff the above limit is attained
uniformly for x, y ∈ SE . In this case, we say that E is uniformly smooth.

Recall that the normalized duality mapping J from E to 2E
∗

is defined by

Jx = {y ∈ E∗ : ‖x‖2 = 〈x, y〉 = ‖y‖2}.

It is known
if E is uniformly smooth, then J is uniformly norm-to-norm continuous on every bounded subset of E;
if E is a strictly convex Banach space, then J is strictly monotone;
if E is a smooth Banach space, then J is single-valued and demicontinuous, i.e., continuous from the

strong topology of E to the weak star topology of E;
if E is a reflexive and strictly convex Banach space with a strictly convex dual E∗ and J∗ : E∗ → E is

the normalized duality mapping in E∗, then J−1 = J∗;
if E is a smooth, strictly convex and reflexive Banach space, then J is single-valued, one-to-one and

onto.
From now on, we use ⇀ and → to stand for the weak convergence and strong convergence, respectively.

Recall that E is said to have the Kadec-Klee property (KK property) if limn→∞ ‖xn − x‖ = 0 as n → ∞,
for any sequence {xn} ⊂ E, and x ∈ E with xn ⇀ x, and ‖xn‖ → ‖x‖ as n→∞.

Let T be a mapping on C. Recall that a point p is said to be a fixed point of T if and only if p = Tp.
p is said to be an asymptotic fixed point [22] of T if and only if C contains a sequence {xn}, where xn ⇀ p

such that xn−Txn → 0. From now on, we use Fix(T ) to stand for the fixed point set and F̃ ix(T ) to stand
for the asymptotic fixed point set.

Next, we assume that E is a smooth Banach space which means J is single-valued. Study the functional

φ(x, y) := ‖x‖2 + ‖y‖2 − 2〈x, Jy〉, ∀x, y ∈ E.

Let C be a closed convex subset of a real Hilbert space H. For any x ∈ H, there exists a unique nearest
point in C, denoted by PCx, such that ‖x − PCx‖ ≤ ‖x − y‖, for all y ∈ C. The operator PC is called the
metric projection from H onto C. It is known that PC is firmly nonexpansive. In [2], Alber studied a new
mapping ProjC in a Banach space E which is an analogue of PC , the metric projection, in Hilbert spaces.
Recall that the generalized projection ProjC : E → C is a mapping that assigns to an arbitrary point x ∈ E
the minimum point of φ(x, y), which implies from the definition of φ that

(‖y‖+ ‖x‖)2 ≥ φ(x, y) ≥ (‖x‖ − ‖y‖)2, ∀x, y ∈ E.

Recall that T is said to be relatively nonexpansive [6], [7] iff

Fix(T ) = F̃ ix(T ) 6= ∅, φ(p, Tx) ≤ φ(p, x), ∀x ∈ C,∀p ∈ Fix(T ).



P. Cheng, Z. Min, J. Nonlinear Sci. Appl. 9 (2016), 1541–1548 1543

T is said to be relatively asymptotically nonexpansive [1] iff

Fix(T ) = F̃ ix(T ) 6= ∅, φ(p, Tnx) ≤ (µn + 1)φ(p, x), ∀x ∈ C,∀p ∈ Fix(T ),∀n ≥ 1,

where {µn} ⊂ [0,∞) is a sequence such that µn → 0 as n→∞.

T is said to be relatively asymptotically nonexpansive in the intermediate sense iff Fix(T ) = F̃ ix(T ) 6= ∅
and

lim sup
n→∞

sup
p∈Fix(T ),x∈C

(
φ(p, Tnx)− φ(p, x)

)
≤ 0.

Putting ξn = max{0, supp∈Fix(T ),x∈C
(
φ(p, Tnx)− φ(p, x)

)
}, we see ξn → 0 as n→∞.

T is said to be quasi-φ-nonexpansive [19] iff

Fix(T ) 6= ∅, φ(p, Tx) ≤ φ(p, x), ∀x ∈ C,∀p ∈ Fix(T ).

T is said to be asymptotically quasi-φ-nonexpansive [20] iff there exists a sequence {µn} ⊂ [0,∞) with
µn → 0 as n→∞ such that

Fix(T ) 6= ∅, φ(p, Tnx) ≤ (µn + 1)φ(p, x), ∀x ∈ C,∀p ∈ Fix(T ),∀n ≥ 1.

T is said to be asymptotically quasi-φ-nonexpansive in the intermediate sense [21] iff Fix(T ) 6= ∅ and

lim sup
n→∞

sup
p∈Fix(T ),x∈C

(
φ(p, Tnx)− φ(p, x)

)
≤ 0.

Putting ξn = max{0, supp∈Fix(T ),x∈C
(
φ(p, Tnx)− φ(p, x)

)
}, we see ξn → 0 as n→∞.

Remark 1.1. The class of relatively asymptotically nonexpansive mappings covers the class of relatively
nonexpansive mappings. The class of (asymptotically) quasi-φ-nonexpansive mappings (in the intermedi-
ate sense) is more desirable than the class of relatively (asymptotically) nonexpansive mappings (in the

intermediate sense) because of restriction Fix(T ) = F̃ ix(T ).

Remark 1.2. The class of asymptotically quasi-φ-nonexpansive mappings in the intermediate sense is reduced
to the class of asymptotically quasi-nonexpansive mappings in the intermediate sense, which was considered
in [5] as a non-Lipschitz continuous mappings, in the framework of Hilbert spaces.

Lemma 1.3 ([2]). Let E be a strictly convex, reflexive, and smooth Banach space and let C be a closed and
convex subset of E. Let x ∈ E. Then

φ(y, x)− φ(ΠCx, x) ≥ φ(y,ΠCx), ∀y ∈ C,

〈y − x0, Jx− Jx0〉 ≤ 0, ∀y ∈ C if and only if x0 = ΠCx.

Lemma 1.4 ([24]). Let E be a strictly convex, smooth, and reflexive Banach space and let C be a closed
convex subset of E. Let B be a function with restrictions (Q1), (Q2), (Q3) and (Q4). Let x ∈ E and let
r > 0. Then there exists z ∈ C such that rB(z, y) + 〈z− y, Jz−Jx〉 ≤ 0, ∀y ∈ C Define a mapping WB,r by

WB,rx = {z ∈ C : rB(z, y) + 〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C}.

The following conclusions hold:

(1) WB,r is single-valued quasi-φ-nonexpansive.

(2) Sol(B) = Fix(WB,r) is closed and convex.

Lemma 1.5 ([21]). Let E be a strictly convex, smooth and reflexive Banach space such that both E∗ and
E have the KK property. Let C be a convex and closed subset of E and let T be an asymptotically quasi-φ-
nonexpansive mapping in the intermediate sense on C. Then Fix(T ) is convex.
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2. Main results

Theorem 2.1. Let E be a smooth, strictly convex, and reflexive Banach space such that both E and E∗ have
the KK property and let C be a convex and closed subset of E. Let B be a bifunction satisfying (Q1), (Q2),
(Q3) and (Q4) and let T be an asymptotically quasi-φ-nonexpansive mapping in the intermediate sense on
C. Assume that T is uniformly asymptotically regular and closed and Fix(T ) ∩ Sol(B) 6= ∅. Let {xn} be a
sequence generated by 

x0 ∈ E chosen arbitrarily,

C1 = C, x1 = ProjC1x0,

rnB(un, µ) ≥ 〈un − µ, Jun − Jxn〉, µ ∈ C,
Jyn = αnJT

nun + (1− αn)Jxn,

Cn+1 = {z ∈ Cn : φ(z, xn) + ξn ≥ φ(z, yn)},
xn+1 = ProjCn+1x1,

where ξn = max{supp∈Fix(T ),x∈C
(
φ(p, Tnx)− φ(p, x)

)
, 0}, {αn} is a real sequence in [a, 1], where a ∈ (0, 1]

is a real number, and {rn} ⊂ [r,∞) is a real sequence, where r is some positive real number. Then {xn}
converges strongly to ProjFix(T )∩Sol(B)x1.

Proof. The proof is split into seven steps.
Step 1. Prove Sol(B) ∩ Fix(T ) is convex and closed.
Using Lemma 1.4 and Lemma 1.5, we find that Sol(B) is convex and closed and Fix(T ) is convex. Since

T is closed, one has Fix(T ) is also closed. So, Sol(B) ∩ Fix(T ) is convex and closed. ProjSol(B)∩Fix(T )x is
well defined, for any element x in E.

Step 2. Prove Cn is convex and closed.
It is obvious that C1 = C is convex and closed. Assume that Cm is convex and closed for some

m ≥ 1. Let p1, p2 ∈ Cm+1. It follows that p = sp1 + (1 − s)p2 ∈ Cm, where s ∈ (0, 1). Notice that
φ(p1, ym)− φ(p1, xm) ≤ ξm, and φ(p2, ym)− φ(p2, xm) ≤ ξm. Hence, one has

ξm + ‖xm‖2 − ‖ym‖2 ≥ 2〈p1, Jxm − Jym〉,

and
ξm + ‖xm‖2 − ‖ym‖2 ≥ 2〈p2, Jxm − Jym〉.

Using the above two inequalities, one has φ(p, xm) + ξm ≥ φ(z, ym). This shows that Cm+1 is closed and
convex. Hence, Cn is a convex and closed set. This proves that ProjCn+1x1 is well defined.

Step 3. Prove Sol(B) ∩ Fix(T ) ⊂ Cn.
Note that Sol(B) ∩ Fix(T ) ⊂ C1 = C is clear. Suppose that Sol(B) ∩ Fix(T ) ⊂ Cm for some positive

integer m. For any w ∈ Sol(B) ∩ Fix(T ) ⊂ Cm, we see that

φ(w, ym) = ‖(1− αm)Jxm + αmJT
mum‖2 + ‖w‖2

− 2〈w, (1− αm)Jxm + αmJT
mum〉

≤ ‖w‖2 − 2αm〈w, JTmum〉 − 2(1− αm)〈w, Jxm〉
+ αm‖Tmum‖2 + (1− αm)‖xm‖2

≤ αmφ(w, um) + αmξm + (1− αm)φ(w, xm)

≤ φ(w, xm) + ξm,

where ξm = max{supp∈Fix(T ),x∈C
(
φ(p, Tmx) − φ(p, x)

)
, 0}. This shows that w ∈ Cm+1. This implies that

Sol(B) ∩ Fix(T ) ⊂ Cn.
Step 4. Prove {xn} is bounded.
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Using Lemma 1.3, one has 〈z − xn, Jx1 − Jxn〉 ≤ 0, for any z ∈ Cn. It follows that

0 ≥ 〈w − xn, Jx1 − Jxn〉, ∀w ∈ Sol(B) ∩ Fix(T ) ⊂ Cn.

Using Lemma 1.3 yields that
φ(ΠFix(T )∩Sol(B)x1, x1) ≥ φ(xn, x1) ≥ 0,

which implies that {φ(xn, x1)}. Hence {xn} is also a bounded sequence. Without loss of generality, we may
assume xn ⇀ x̄. Since Cn is convex and closed, we see x̄ ∈ Cn.

Step 5. Prove x̄ ∈ Fix(T ).
Using the fact φ(xn, x1) ≤ φ(x̄, x1), one has

φ(x̄, x1) ≥ lim sup
n→∞

φ(xn, x1) ≥ lim inf
n→∞

φ(xn, x1) = lim inf
n→∞

(‖xn‖2 + ‖x1‖2 − 2〈xn, Jx1〉) ≥ φ(x̄, x1).

It follows that limn→∞ φ(xn, x1) = φ(x̄, x1). Hence, we have

φ(xn+1, x1)− φ(xn, x1) ≥ φ(xn+1, xn) ≥ 0.

Therefore, we have limn→∞ φ(xn+1, xn) = 0. Since xn+1 ∈ Cn+1, one sees that

φ(xn+1, xn) + ξn ≥ φ(xn+1, yn) ≥ 0.

It follows that limn→∞ φ(xn+1, yn) = 0. Hence, one has limn→∞(‖yn‖ − ‖xn+1‖) = 0. This implies that

‖x̄‖ = ‖Jx̄‖ = lim
n→∞

‖Jyn‖ = lim
n→∞

‖yn‖.

This implies that {Jyn} is bounded. Assume that {Jyn} converges weakly to y∗ ∈ E∗. In view of the
reflexivity of E, we see that J(E) = E∗. This shows that there exists an element u ∈ E such that Jy = y∗.
It follows that φ(xn+1, yn) + 2〈xn+1, Jyn〉 = ‖xn+1‖2 + ‖Jyn‖2. Taking lim infn→∞, one has 0 ≥ ‖x̄‖2 −
2〈x̄, y∗〉 + ‖y∗‖2 = ‖x̄‖2 + ‖Jy‖2 − 2〈x̄, Jy〉 = φ(x̄, y) ≥ 0. That is, x̄ = y, which in turn implies that
Jx̄ = y∗. Hence, Jyn ⇀ Jx̄ ∈ E∗. Using the KK property, we obtain limn→∞ Jyn = Jx̄. Since J−1 is demi-
continuous and E has the KK property, one gets yn → x̄, as n→∞. Using the restriction on {αn}, one has
limn→∞ ‖Jxn − JTnun‖ = 0. This implies that limn→∞ ‖JTnun − Jx̄‖ = 0. Since J−1 is demicontinuous,
one has Tnun ⇀ x̄. Since

|‖Tnun‖ − ‖x̄‖| ≤ ‖J(Tnun)− Jx̄‖,

one has ‖Tnun‖ → ‖x̄‖, as n → ∞. Since E has the KK property, we obtain limn→∞ ‖x̄ − Tnun‖ = 0.
Since T is also uniformly asymptotically regular, one has limn→∞ ‖x̄−Tn+1un‖ = 0. That is, T (Tnun)→ x̄.
Using the closedness of T , we find T x̄ = x̄. This proves x̄ ∈ Fix(T ).

Step 6. Prove x̄ ∈ Sol(B).
Since αnφ(xn+1, un) ≤ φ(xn+1, xn)+ξn, one has limn→∞ φ(xn+1, un) = 0. Hence, one has limn→∞(‖un‖−

‖xn+1‖) = 0. This implies that

‖x̄‖ = ‖Jx̄‖ = lim
n→∞

‖Jun‖ = lim
n→∞

‖un‖.

This implies that {Jun} is bounded. Assume that {Jun} converges weakly to y∗ ∈ E∗. In view of the
reflexivity of E, we see that J(E) = E∗. This shows that there exists an element u ∈ E such that Ju = u∗.
It follows that

φ(xn+1, un) + 2〈xn+1, Jun〉 = ‖xn+1‖2 + ‖Jun‖2.

Taking lim infn→∞, one has

0 ≥ ‖x̄‖2 − 2〈x̄, u∗〉+ ‖u∗‖2 = ‖x̄‖2 + ‖Ju‖2 − 2〈x̄, Ju〉 = φ(x̄, u) ≥ 0.



P. Cheng, Z. Min, J. Nonlinear Sci. Appl. 9 (2016), 1541–1548 1546

That is, x̄ = u, which in turn implies that u∗ = Jx̄. Hence, Jun ⇀ Jx̄ ∈ E∗. Using the KK property, we
obtain limn→∞ Jun = Jx̄. Since J−1 is demi-continuous and E has the KK property, one gets un → x̄, as
n→∞. Since

rnB(y, un) + 〈un − y, Jun − Jyn〉 ≥ 0,∀y ∈ Cn,

we see that B(y, x̄) ≤ 0. Let 0 < t < 1 and define yt = ty + (1 − t)x̄. It follows that yt ∈ C, which yields
that B(yt, x̄) ≤ 0. It follows from the (Q1) and (Q4) that

0 = B(yt, yt) ≤ tB(yt, y) + (1− t)B(yt, x̄) ≤ tB(yt, y).

That is, B(yt, y) ≥ 0. It follows from (Q3) that B(x̄, y) ≥ 0, ∀y ∈ C. This implies that x̄ ∈ Sol(B). This
completes the proof that x̄ ∈ Sol(B) ∩ Fix(T ).

Step 7. Prove x̄ = ProjSol(B)∩Fix(T )x1.
Note the fact 〈w − xn, Jx1 − Jxn〉 ≤ 0, ∀w ∈ Sol(B) ∩ Fix(T ). It follows that

〈x̄− w, Jx1 − Jx̄〉 ≥ 0, ∀w ∈ Fix(T ) ∩ Sol(B).

Using Lemma 1.3, we find that that x̄ = ProjFix(T )∩Sol(B)x1. This completes the proof.

From Theorem 2.1, the following results are not hard to derive.

Corollary 2.2. Let E be a smooth, strictly convex, and reflexive Banach space such that both E and E∗

have the KK property and let C be a convex and closed subset of E. Let B be a bifunction satisfying (Q1),
(Q2), (Q3) and (Q4). Assume that Sol(B) 6= ∅. Let {xn} be a sequence generated by

x0 ∈ E chosen arbitrarily,

C1 = C, x1 = ProjC1x0,

rnB(un, µ) ≥ 〈un − µ, Jun − Jxn〉, µ ∈ C,
Jyn = αnJun + (1− αn)Jxn,

Cn+1 = {z ∈ Cn : φ(z, xn) ≥ φ(z, yn)},
xn+1 = ProjCn+1x1,

where {αn} is a real sequence in [a, 1], a ∈ (0, 1] is a real number and {rn} ⊂ [r,∞) is a real sequence, where
r is some positive real number. Then {xn} converges strongly to ProjSol(B)x1.

Corollary 2.3. Let E be a Hilbert space and let C be a convex and closed subset of E. Let B be a bifunction
satisfying (Q1), (Q2), (Q3) and (Q4) and let T be an asymptotically quasi-nonexpansive mapping in the
intermediate sense on C. Assume that T is uniformly asymptotically regular and closed and Fix(T ) ∩
Sol(B) 6= ∅. Let {xn} be a sequence generated by

x0 ∈ E chosen arbitrarily,

C1 = C, x1 = PC1x0,

rnB(un, µ) ≥ 〈un − µ, un − xn〉, µ ∈ C,
yn = αnT

nun + (1− αn)xn,

Cn+1 = {z ∈ Cn : ‖z − xn‖2 + ξn ≥ ‖z − yn‖2},
xn+1 = PCn+1x1,

where ξn = max{supp∈Fix(T ),x∈C
(
‖p−Tnx‖2−‖p−x‖2

)
, 0}, {αn} is a real sequence in [a, 1], where a ∈ (0, 1]

is a real number, and {rn} ⊂ [r,∞) is a real sequence, where r is some positive real number. Then {xn}
converges strongly to PFix(T )∩Sol(B)x1.
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