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Abstract

The purpose of this paper is to discuss the existence of fixed points for new classes of mappings defined
on an ordered metric space. The obtained results generalize and improve some fixed point results in the
literature. Some examples show the usefulness of our results. c©2016 All rights reserved.
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1. Introduction and preliminries

In 1922, Banach proposed the well known Banach’s contraction principle in [10]. From then on, many
researchers focused on the fixed point theory and made much contribution to nonlinear analysis. It plays an
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important role in mathematics and has various applications, such as integro-differential equation, economic
equilibrium theory, etc. Later on, in the past half century, it has been extensively studied and generalized to
many settings; see [2, 3, 5, 6, 7, 11, 12, 14, 15, 18, 20, 21, 24, 25, 26, 27, 28, 29, 34, 35, 36, 37, 39, 41, 42, 44, 45].

We recall some definitions in the following:

Definition 1.1. The function ψ : [0,+∞)→ [0,+∞) is called an altering distance function if the following
properties are satisfied:

i) ψ is continuous and non-decreasing,

ii) ψ(t) = 0 if and only if t = 0.

Definition 1.2. Let (X, d) be a metric space. A mapping f : X → X is said to be weakly contractive if

d(fx, fy) ≤ d(x, y)− ϕ(d(x, y)) ∀ x, y ∈ X,

where ϕ : [0,+∞)→ [0,+∞) is an altering distance function.

In 2008, the weak contractive mapping was generalized by Dutta and Choudhury [17] and they proved
the following theorem.

Theorem 1.3 ([17]). Let (X, d) be a complete metric space and f : X → X satisfy

ψ(d(fx, fy)) ≤ ψ(d(x, y))− ϕ(d(x, y)) ∀ x, y ∈ X,

where ψ,ϕ : [0,+∞)→: [0,+∞) are altering distance functions. Then f has a unique fixed point in X.

It is obvious that if ψ(t) = t, then the contraction in Theorem 1.3 reduces to a weakly contraction.
Thus, Theorem 1.3 holds if ψ(t) = t and ϕ is weakly contractive. Namely, the case that ψ(t) = t and ϕ
is weakly contractive, is taken as a particular case of Theorem 1.3. Furthermore, Theorem 1.3 holds when
φ is lower semi-continuous and φ(t) = 0 if and only if t = 0 (see [1, 16]). Subsequently, the concept of
(ψ, α, β)-weak contraction was introduced by Eslamian and Abkar [18]. They improved Theorem 1.3 by a
more weak contraction.

Theorem 1.4. Let (X, d) be a complete metric space and f : X → X satisfies

ψ(d(fx, fy)) ≤ α (d(x, y))− β(d(x, y))

for all x, y ∈ X, where ψ, α, β : [0,+∞) → [0,+∞) are such that ψ is an altering distance function, α is
continuous, β is lower semi-continuous and

ψ(t)− α(t) + β(t) > 0 ∀ t > 0

and α(0) = β(0) = 0. Then f has a unique fixed point.

In 2012, Aydi et al. [8] defined ϕ : [0,+∞) → [0,+∞) by ϕ(t) = ψ(t) − α(t) + β(t) for all t ≥ 0 and
proved that actually Theorem 1.3 implied Theorem 1.4.

Simultaneously, firstly in 2004, Ran and Reurings [38] introduced a partial order relation in the metric
spaces. Then the researchers turned from metric space into partially ordered metric space. Therefore, the
scope of space is expanded. In 2010, Harjani and Sadarangani [22] extended Theorem 1.3 in the setting of
partially ordered metric spaces.

Theorem 1.5. Let (X, d �) be a partially ordered complete metric space and f : X → X be continuous
non-decreasing such that

ψ(d(fx, fy)) ≤ ψ(d(x, y))− ϕ(d(x, y)) ∀x, y (x � y),

where ψ,ϕ : [0,+∞)→: [0,+∞) are altering distance functions. If there exists x0 ∈ X such that x0 � fx0,
then f has a fixed point x∗ ∈ X.

Choudhury and Kundu [13] generalized Theorems 1.4 and 1.5 as follows.

Theorem 1.6. Let (X, d,�) be a partially ordered complete metric space. Let f : X → X be a non-
decreasing mapping such that
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ψ(d(fx, fy)) ≤ α (d(x, y))− β(d(x, y)) ∀ x � y,

where ψ, α, β : [0,+∞)→ [0,+∞) are functions such that ψ is an altering distance function, α is continuous,
β is lower semi-continuous,

ψ(t)− α(t) + β(t) > 0 ∀ t > 0

and α(0) = β(0) = 0. If there exists x0 ∈ X such that x0 � fx0, then f has a unique fixed point x∗ ∈ X.

Aydi et al. [8] proved that Theorem 1.5 deduced Theorem 1.6. Karapinar and Salimi ([31]) proved the
following theorem which shows that Theorems 1.4 and 1.5 can be generalized and the methods of Aydi et
al. [8] cannot be used for the proof.

Theorem 1.7. Let (X, d,�) be an ordered metric space such that (X, d) is complete and let f : X → X be
a non-decreasing self mapping. Assume that there exist ψ ∈ Ψ, α ∈ Φα and β ∈ Φβ such that

ψ(t)− α(s) + β(s) > 0 for all t > 0 and s = t or s = 0

and
ψ(d(fx, fy)) ≤ α (d(x, y))− β(d(x, y)) for all comparable x, y ∈ X,

where Ψ = {ψ : [0,∞)→ [0,∞) | ψ is non-decreasing and lower semicontinuous}, Φα = {α : [0,∞)→ [0,∞)|
α is upper semicontinuous} and Φβ = {β : [0,∞)→ [0,∞) | β is lower semicontinuous}.

Suppose that either
(a) f is continuous, or
(b) if a non-decreasing sequence {xn} is such that xn → x, then xn � x for all n ∈ N.
Then f has a fixed point.

We list some basic definitions in the following.

Definition 1.8 ([43]). Let T : X → X, α : X ×X → R+. We say that T is an α−admissible mapping if
α(x, y) ≥ 1 implies α(Tx, Ty) ≥ 1, x, y ∈ X.

Definition 1.9 ([40]). Let T : X → X , η : X ×X → R+. We say that T is an η−subadmissible mapping
if η(x, y) ≤ 1 implies η(Tx, Ty) ≤ 1, x, y ∈ X.

We recollect the following auxiliary result which will be used efficiently in the proofs of main results.

Definition 1.10 ([30]). An α-admissible mapping T : X → X is called triangular α-admissible if α(x, z) ≥ 1
and α(z, y) ≥ 1 imply α(x, y) ≥ 1.

Lemma 1.11 ([30]). Let T : X → X be a triangular α-admissible mapping. Assume that there exists
x1 ∈ X such that α(x1, Tx1) ≥ 1. Define a sequence {xn} by xn+1 = Txn. Then we have α(xn, xm) ≥ 1 for
all m,n ∈ N with n < m.

Definition 1.12 ([30]). An η-subadmissible mapping T : X → X is called triangular η-subadmissible if
η(x, z) ≤ 1 and η(z, y) ≤ 1 imply η(x, y) ≤ 1.

Lemma 1.13 ([30]). Let T : X → X be a triangular η-subadmissible map. Assume that there exists x1 ∈ X
such that η(x1, Tx1) ≤ 1. Define a sequence {xn} by xn+1 = Txn. Then we have η(xn, xm) ≤ 1 for all
m,n ∈ N with n < m.

In [33], Long et al. considered the family of non-decreasing functions ψ : [0,∞) → [0,∞) such that
∞∑
n=1

ψn(t) <∞ for each t > 0, where ψn is the n-th iterate of ψ and proved the following theorem.

Theorem 1.14. Let (X, d) be a complete metric space and T be an α-admissible mapping. Assume that

α(x, y)d(Tx, Ty) ≤ ψ(d(x, y) ∀ x, y ∈ X,

where ψ ∈ Ψ. Also, suppose that the following assertions hold
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(i) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1,

(ii) either T is continuous or for any sequence {xn} in X with α(xn, xn+1) ≥ 1 for all n ∈ N ∪ {0} and
xn → x as n→ +∞, we have α(xn, x) ≥ 1 for all n ∈ N ∪ {0}.

Then T has a fixed point.

Definition 1.15 ([3]). A function ϕ : [0,∞) → [0,∞) is called an ultra-altering distance function if the
following conditions hold:

1. ϕ is continuous,
2. ϕ(0) ≥ 0 and ϕ(t) 6= 0, t 6= 0.

Lemma 1.16 ([9]). Suppose that (X, d) is a metric space. Let {xn} be a sequence in X such that d(xn, xn+1)→
0 as n→∞. If {xn} is not a Cauchy sequence, then there exist an ε > 0 and sequences of positive integers
{m(k)} and {n(k)} with m(k) > n(k) > k such that d(xm(k), xn(k)) ≥ ε, d(xm(k)−1, xn(k)) ≤ ε and
(i) limk→∞ d(xm(k)−1, xn(k)+1) = ε;
(ii) limk→∞ d(xm(k), xn(k)) = ε;
(iii) limk→∞ d(xm(k)−1, xn(k)) = ε.

Remark 1.17. We can get limk→∞ d(xn(k)+1, xm(k)+1) = ε.

2. Main results

The concept of C-class functions (see Definition 2.1) was introduced by Ansari [3]. See Example 2.2 and
[5, 19, 23, 32].

Definition 2.1 ([3]). A function f : [0,∞)2 → R is called a C-class function if it is continuous and satisfies
the following axioms:

(1) f(s, t) ≤ s;
(2) f(s, t) = s implies that either s = 0 or t = 0 for all s, t ∈ [0,∞).

Note that we have f(0, 0) = 0.
We denote C-class functions as C.

Example 2.2 ([3]). The following functions f : [0,∞)2 → R are elements of C, for all s, t ∈ [0,∞):

(1) f(s, t) = s− t, f(s, t) = s⇒ t = 0.

(2) f(s, t) = ms, 0<m<1, f(s, t) = s⇒ s = 0.

(3) f(s, t) = s
(1+t)r ; r ∈ (0,∞), f(s, t) = s ⇒ s = 0 or t = 0.

(4) f(s, t) = log(t+ as)/(1 + t), a > 1, f(s, t) = s ⇒ s = 0 or t = 0.

(5) f(s, t) = ln(1 + as)/2, a > e, f(s, t) = s ⇒ s = 0.

(6) f(s, t) = (s+ l)(1/(1+t)
r) − l, l > 1, r ∈ (0,∞), f(s, t) = s ⇒ t = 0.

(7) f(s, t) = s logt+a a, a > 1, f(s, t) = s⇒ s = 0 or t = 0.

(8) f(s, t) = s− (1+s2+s)(
t

1+t), f(s, t) = s⇒ t = 0.

(9) f(s, t) = sβ(s), β : [0,∞)→ [0, 1) and is continuous, f(s, t) = s⇒ s = 0.

(10) f(s, t) = s− t
k+t , where k > 0, f(s, t) = s⇒ t = 0.

(11) f(s, t) = s − ϕ(s), f(s, t) = s ⇒ s = 0, where ϕ : [0,∞) → [0,∞) is a continuous function such that
ϕ(t) = 0⇔ t = 0.

(12) f(s, t) = sh(s, t), f(s, t) = s⇒ s = 0, where h : [0,∞)× [0,∞)→ [0,∞) is a continuous function such
that h(t, s) < 1 for all t, s > 0.
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(13) f(s, t) = s− (2+t1+t)t, f(s, t) = s⇒ t = 0.

(14) f(s, t) = n
√

ln(1 + sn), f(s, t) = s⇒ s = 0.

(15) f(s, t) = φ(s), F (s, t) = s ⇒ s = 0, where φ : [0,∞) → [0,∞) is a continuous function such that
φ(0) = 0 and φ(t) < t for t > 0.

(16) f(s, t) = s
(1+s)r ; r ∈ (0,∞), f(s, t) = s ⇒ s = 0.

Remark 2.3. We assume that F is increasing with respect to the first variable and decreasing with respect
the second variable.

The concept of a upper class (F, h) was introduced by Ansari [4, 6].

Definition 2.4 ([4, 6]). We say that h : R+×R+×R+ → R is a function of subclass of type II if it satisfies

x, y ≥ 1 =⇒ h(1, 1, z) ≤ h(x, y, z) ∀x, y, z ∈ R+.

Example 2.5.
(1) h(x, y, z) = (z + l)xy, l > 1.
(2) h(x, y, z) = (xy + l)z, l > 0.
(3) h(x, y, z) = xyz.
(4) h(x, y, z) = xz.
(5) h(x, y, z) = z.
(6) h(x, y, z) = (x+y2 )z.
(7) h(x, y, z) = x+xy+y

3 z.

(8) h(x, y, z) = (

n∑
i=0

xn−iyi

n+1 )z.

(9) h(x, y, z) = (

n∑
i=0

xn−iyi

n+1 + l)z, l > 1.
(10) h(x, y, z) = xmynzp,m, n, p ∈ N.
(11) h(x, y, z) = xm+xnyp+yq

3 zk,m, n, p, q, k ∈ N.

Note that z ≤ h(1, 1, z).

Definition 2.6 ([4, 6]). Let h : R+ × R+ × R+ → R and F : R+ × R+ → R. We say the pair (F, h) is a
upper class of type II if F is a function, h is a subclass of type II and

0 ≤ s ≤ 1 =⇒ F (s, t) ≤ F (1, t),

h(1, 1, z) ≤ F (s, t) =⇒ z ≤ st ∀z, s, t ∈ R+.

Example 2.7.
(1) h(x, y, z) = (z + l)xy, l > 1, F (s, t) = st+ l.
(2) h(x, y, z) = (xy + l)z, l > 0, F (s, t) = (1 + l)st.
(3) h(x, y, z) = xyz, F (s, t) = st.
(4) h(x, y, z) = xz, F (s, t) = st.
(5) h(x, y, z) = z, F (s, t) = st.
(6) h(x, y, z) = x+xy+y

3 z, F (s, t) = st.
(7) h(x, y, z) = (x+y2 )z, F (s, t) = st.

(8) h(x, y, z) = (

n∑
i=0

xn−iyi

n+1 )z, F (s, t) = st.

(9) h(x, y, z) = (

n∑
i=0

xn−iyi

n+1 + l)z, l > 1, F (s, t) = (1 + l)st.
(10) h(x, y, z) = xmynzp,m, n, p ∈ N, F (s, t) = sptp.
(11) h(x, y, z) = xm+xnyp+yq

3 zk,m, n, p, q, k ∈ N, F (s, t) = (st)k.

(12) h(x, y, z) = (z + l)xy, l > 1, F (s, t) = st+ l
k , k ≥ 1.
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Definition 2.8. Let F : R+ ×R+ → R. We say the pair (F, h) is a special upper class of type II if F is a
function, h is a subclass of type II and

0 ≤ s ≤ 1 =⇒ F (s, t) ≤ F (1, t),

h(1, 1, z) ≤ F (1, t) =⇒ z ≤ t ∀x, y, z, s, t ∈ R+.

Example 2.9.
(1) h(x, y, z) = (zk + l)xy, F (s, t) = stk + l, l > 1, k > 0.
(2) h(x, y, z) = (xy + l)z, F (s, t) = (1 + l)st, l, k > 0.
(3) h(x, y, z) = xyz, F (s, t) = smt.
(4) h(x, y, z) = xzk, F (s, t) = smtk, k > 0.
(5) h(x, y, z) = z, F (s, t) = st.
(6) h(x, y, z) = x+xy+y

3 z, F (s, t) = st.
(7) h(x, y, z) = (x+y2 )z, F (s, t) = st.

(8) h(x, y, z) = (

n∑
i=0

xn−iyi

n+1 )zk, F (s, t) = smtk, k > 0.

(9) h(x, y, z) = (

n∑
i=0

xn−iyi

n+1 + l)z, l > 1, F (s, t) = (1 + l)st.
(10) h(x, y, z) = xmynzp,m, n, p ∈ N, F (s, t) = sqtp.
(11) h(x, y, z) = xm+xnyp+yq

3 zk,m, n, p, q, k ∈ N, F (s, t) = stk, k > 0.

Definition 2.10 ([4, 6]). We say that h : R+ × R+ → R is a function of subclass of type I if it satisfies

x ≥ 1 =⇒ h(1, y) ≤ h(x, y) ∀x, y ∈ R+.

Example 2.11.
(1) h(x, y) = (y + l)x, l > 1.
(2) h(x, y) = (x+ l)y, l > 0.
(3) h(x, y) = xy.
(4) h(x, y) = ((x+ 1)/2)y.
(5) h(x, y) = 2x+1

3 y.

(6) h(x, y) = xn+xn−1+...+x+1
n+1 y.

(7) h(x, y) = (x
n+xn−1+...+x+1

n+1 + l)y, l > 1.

Note that y ≤ h(1, y).

Definition 2.12 ([4, 6]). Let h, F : R+ × R+ → R. We say pair (F, h) is a upper class of type I if F is a
function, h is a subclass of type I and

0 ≤ s ≤ 1 =⇒ F (s, t) ≤ F (1, t),

h(1, y) ≤ F (s, t) =⇒ y ≤ st ∀x, y, s, t ∈ R+.

Example 2.13.
(1) h(x, y) = (y + l)x, l > 1, F (s, t) = st+ l.
(2) h(x, y) = (x+ l)y, l > 0, F (s, t) = (1 + l)st.
(3) h(x, y) = xy, F (s, t) = st.
(4) h(x, y) = ((x+ 1)/2)y, F (s, t) = st.
(5) h(x, y) = 2x+1

3 y, F (s, t) = st.

(6) h(x, y) = xn+xn−1+...+x+1
n+1 y, F (s, t) = st.

(7) h(x, y) = (x
n+xn−1+...+x+1

n+1 + l)y, l > 1, F (s, t) = (1 + l)st.

(8) h(x, y) = (y + l)x, l > 1, F (s, t) = st+ l
k , k ≥ 1.
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Definition 2.14. Let F : R+ × R+ → R. We say the pair (F, h) is a special upper class of type I if F is a
function, h is a subclass of type I and

0 ≤ s ≤ 1 =⇒ F (s, t) ≤ F (1, t),

h(1, y) ≤ F (1, t) =⇒ y ≤ t ∀x, y, s, t ∈ R+.

Example 2.15.
(1) h(x, y) = (yk + l)x, l > 1, F (s, t) = smtk + l, k > 0.

(2) h(x, y) = (xn + l)y
k
, l > 1, F (s, t) = (1 + l)s

mtk , k > 0.
(3) h(x, y) = xnyk, F (s, t) = smtk, k > 0.
(4) h(x, y) = ((x+ 1)/2)y, F (s, t) = st.
(5) h(x, y) = 2x+1

3 y, F (s, t) = st.

(6) h(x, y) = (x
n+xn−1+...+x+1

n+1 )yk, F (s, t) = stk, k > 0.

(7) h(x, y) = (x
n+xn−1+...+x+1

n+1 + l)y, l > 1, F (s, t) = (1 + l)st.

Theorem 2.16. Let (X, d,�) be a partially ordered metric space on X such that (X, d) is complete, T :
X → X a self mapping and let γ : X × X −→ [0,∞) be a function such that T is a non-decreasing and
γ-admissible mapping. Assume that there exist ψ ∈ Ψ, α ∈ Φα and β ∈ Φβ which are defined in Theorem
1.7 such that

ψ(t)− f(α(s), β(s)) > 0 for all t > 0 and s = t or s = 0, (2.1)

where f is an element of C and for all x, y ∈ X, we have

γ(x, Tx)γ(y, Ty) ≥ 1 =⇒ h(γ(x, x), γ(y, y), ψ(d(Tx, Ty))) ≤ F (1, f(α(d(x, y)), β(d(x, y)))), (2.2)

where the pair (F, h) is an upper class of type II. Suppose that either

(i) T is continuous or

(ii) if a non-decreasing sequence {xn} ⊂ X is such that xn → x as n → ∞ and γ(xn, Txn) ≥ 1 and
γ(xn, xn) ≥ 1 for all n, then γ(x, Tx) ≥ 1 and γ(x, x) ≥ 1 and xn � x for all n ∈ N.

If there exists x0 ∈ X such that γ(x0, x0) ≥ 1, γ(x0, Tx0) ≥ 1 and x0 � Tx0, then T has a fixed point.

Proof. Let x0 ∈ X such that γ(x0, Tx0) ≥ 1.
Define a sequence {xn} ⊂ X by

xn = Tn(x0) = Txn−1 for n ∈ N.

Suppose that xn0 = xn0−1 for some n0 ∈ N . Then it is clear that xn0 is a fixed point of T and hence the
proof is completed.

From now on, we suppose that xn 6= xn−1 for all n ∈ N.
Since T is a γ-admissible mapping and γ(x0, Tx0) ≥ 1, we deduce that γ(x1, Tx1) = γ(Tx0, T

2x0) ≥ 1.
By continuing this process, we get that γ(xn, Txn) = γ(xn, xn+1) ≥ 1 for all n ∈ N ∪ {0}.

Also from γ(x0, x0) ≥ 1 we obtain γ(x1, x1) = γ(Tx0, Tx0) ≥ 1, by continuing this process, we get
γ(xn, xn) ≥ 1 for n ∈ N ∪ {0}

Since T is non-decreasing and x0 � Tx0, we have

x1 � x2 � x3 � · · · � xn−1 � xn � · · · . (2.3)

We will show that lim
n→∞

d(xn, xn+1) = 0. Since γ(xn, xn) ≥ 1, γ(xn, Txn) ≥ 1 for each n ∈ N , by (2.2),

we have

h(1, 1, ψ(d(xn, xn+1))) ≤ h(γ(xn−1, xn−1), γ(xn, xn), ψ(d(xn, xn+1)))
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= h(γ(xn−1, xn−1), γ(xn, xn), ψ(d(Txn−1, Txn)))

≤ F (1, f(α(d(xn−1, xn)), β(d(xn−1, xn)))).

Hence
ψ(d(xn, xn+1)) ≤ f(α(d(xn−1, xn)), β(d(xn−1, xn))). (2.4)

If d(xn, xn+1) > d(xn−1, xn), since ψ is non-decreasing, then

ψ(d(xn−1, xn)) ≤ ψ(d(xn, xn+1)).

Combining with (2.4), we obtain that

ψ(d(xn−1, xn)) ≤ ψ(d(xn, xn+1))

≤ f(α(d(xn−1, xn)), β(d(xn−1, xn)).

It yields that
ψ(d(xn−1, xn)) ≤ f(α(d(xn−1, xn)), β(d(xn−1, xn)).

Since xn−1 6= xn, d(xn−1, xn) > 0, then the above inequality contradicts (2.1). Therefore, our assumption
d(xn, xn+1) > d(xn−1, xn) is wrong. Thus we have that

d(xn, xn+1) ≤ d(xn−1, xn).

Set dn = d(xn, xn+1). Then the sequence {dn} is non-increasing. Thus there exists r ≥ 0 such that
limn→∞ dn = r. Suppose that r > 0. By (2.4), we have

ψ(r) ≤ lim
n→∞

inf ψ(dn)

≤ lim
n→∞

supψ(dn)

≤ lim
n→∞

sup f(α(d(xn−1, xn)), β(d(xn−1, xn)))

≤ f(α(r), β(r)),

which is a contradiction to (2.1). Therefore, r = 0. Hence

lim
n→∞

dn = lim
n→∞

d(xn, xn+1) = 0. (2.5)

We shall show that the sequence {xn} is a Cauchy sequence.
Suppose that {xn} is not a Cauchy sequence. Then by Lemma 1.16 there exist an ε > 0 and two

sequences of positive integers {m(k)} and {n(k)} with n(k) > m(k) > k such that

lim
n→∞

d(xm(k), xn(k)) = lim
n→∞

d(xm(k)+1, xn(k)+1) = ε. (2.6)

Now, from (2.2) with x = xm(k) and y = xn(k), we have

h(1, 1, ψ(d(xm(k)+1, xn(k)+1))) ≤ h(γ(xm(k), xm(k)), γ(xn(k), xn(k)), ψ(d(xm(k)+1, xn(k)+1)))

= h(γ(xm(k), xm(k)), γ(xn(k), xn(k)), ψ(d(Txm(k), Txn(k))))

≤ F (1, f(α(d(xm(k), xn(k))), β(d(xm(k), xn(k)))).

Therefore,
ψ(d(xm(k)+1, xn(k)+1)) ≤ f(α(d(xm(k), xn(k))), β(d(xm(k), xn(k)))).

Taking the lim inf as k → +∞ in the above inequality, we have

ψ(ε) ≤ lim
n→∞

inf ψ(d(xm(k)+1, xn(k)+1))
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≤ lim
n→∞

supψ(d(xm(k)+1, xn(k)+1))

≤ lim
n→∞

sup f(α(d(xm(k), xn(k))), β(d(xm(k), xn(k))))

≤ f( lim
n→∞

supα(d(xm(k), xn(k))), lim
n→∞

inf β(d(xm(k), xn(k))))

≤ f(α(ε), β(ε)),

where the fourth inequality is because of continuity of f . So we have

ψ(ε) ≤ f(α(ε), β(ε)),

which contradicts the fact that ψ(t)− f(α(t), β(t)) > 0 for all t > 0. Hence

lim
n→∞

d(xm(k), xn(k)) = 0,

that is, the sequence {xn} is a Cauchy sequence.
Since (X, d) is complete, there exists an x∗ ∈ X such that xn → x∗ ∈ X.
Suppose that (i) holds. Then

x∗ = lim
n→∞

xn+1 = lim
n→∞

Txn = Tx∗.

Thus x∗ is a fixed point of T .
Suppose that (ii) holds, that is, γ(x0, x0) ≥ 1, γ(x0, Tx0) ≥ 1 and xn � x0. Now from (2.2), we have

that

h(1, 1, ψ(d(Tx0, xn+1))) ≤ h(γ(x0, x0), γ(xn, xn), ψ(d(x1, xn+1)))

= h(γ(x0, x0), γ(xn, xn), ψ(d(Tx0, Txn)))

≤ F (1, f(α(d(x0, xn)), β(d(x0, xn)))),

which implies that
ψ(d(Tx0, xn+1)) ≤ f(α(d(x0, xn)), β(d(x0, xn))).

Taking the lim inf as n→∞ in the above inequality, we obtain

ψ(d(Tx0, x0)) ≤ lim
n→∞

inf ψ(d(Tx0, xn+1))

= lim
n→∞

inf ψ(d(Tx0, Txn))

≤ lim
n→∞

sup f(α(d(x0, xn)), β(d(x0, xn)))

≤ f(α(0), β(0)).

If d(Tx0, x0) 6= 0, then the above inequality contradicts to (2.1). Hence

lim
n→∞

d(Tx0, xn+1) = lim
n→∞

d(Tx0, x0) = 0

and so Tx0 = x0. Then x0 is the fixed point of T .

Corollary 2.17. Let (X, d,�) be a partially ordered metric space on X such that (X, d) is complete, T :
X → X a self mapping and let γ : X × X → [0,∞) be a function such that T is a non-decreasing and
γ-admissible mapping. Assume that there exist ψ ∈ Ψ, α ∈ Φα and β ∈ Φβ such that

ψ(t)− f(α(s), β(s)) > 0 for all t > 0 and s = t or s = 0,

where f is an element of C and for all x, y ∈ X, we have

γ(x, Tx)γ(y, Ty)h(γ(x, x), γ(y, y), ψ(d(Tx, Ty))) ≤ F (1, f(α(d(x, y)), β(d(x, y))),

where the pair (F, h) is upper class of type II. Suppose that either
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(i) T is continuous or

(ii) if a non-decreasing sequence {xn} ⊂ X is such that xn → x as n → ∞ and γ(xn, Txn) ≥ 1 and
γ(xn, xn) ≥ 1 for all n, then γ(x, Tx) ≥ 1 and γ(x, x) ≥ 1 and xn � x.

If there exists x0 ∈ X such that γ(x0, x0) ≥ 1, γ(x0, Tx0) ≥ 1 and x0 � Tx0, then T has a fixed point.

Taking h(x, y, z) = (z + l)xy, l > 1, F (s, t) = st + l and f(s, t) = s − t in Theorem 1.14, we obtain the
following corollary.

Corollary 2.18. (X, d,�) be a partially ordered metric space on X such that (X, d) is complete, T : X → X
a self mapping and let γ : X ×X → [0,∞) be a function such that T is a non-decreasing and γ-admissible
mapping. Assume that there exist ψ ∈ Ψ, α ∈ Φα and β ∈ Φβ such that

ψ(t)− f(α(s), β(s)) > 0 for all t > 0 and s = t or s = 0

and
γ(x, Tx)γ(y, Ty) ≥ 1⇒ (ψ(d(Tx, Ty)) + l)γ(x,x)γ(y,y) ≤ α(d(x, y))− β(d(x, y)) + l

for all comparable x, y ∈ X where l ≥ 1. Suppose that either

(i) T is continuous or

(ii) if a non-decreasing sequence {xn} ⊂ X is such that xn → x as n → ∞ and γ(xn, Txn) ≥ 1 and
γ(xn, xn) ≥ 1 for all n, then γ(x, Tx) ≥ 1 and γ(x, x) ≥ 1 and xn � x for all n ∈ N.

If there exists x0 ∈ X such that γ(x0, x0) ≥ 1, γ(x0, Tx0) ≥ 1 and x0 � Tx0, then T has a fixed point.

Remark 2.19. Corollary 2.18 is actually [33, Theorem 2.1]. So we generalize the results of [33]. Our
contraction can be reduced to that in [33]. Indeed, [33, Theorem 2.1] is taken as a particular case of
Theorem 1.14. When h(x, y, z) = (z + l)xy, l > 1, F (s, t) = st + l and f(s, t) = s − t, Theorem 1.14 can
reduce to [33, Theorem 2.1].

We will illustrate the example to show that our contractions is weaker than that in [33]. The condition
can be applied to Theorem 1.14, but not applied to [33, Theorem 2.1].

Example 2.20. Let X = [0,+∞) be endowed with the usual metric d(x, y) = |x− y| for all x, y ∈ X and
T : X → X be defined by

Tx =

{
x, if x ∈ [0, 1],

x2 + 1, if x ∈ (1,∞).

Let h(x, y, z) = (z + 3
2)xy, F (s, t) = st+ 3

2 and f(s, t) = 2
3s. Define also γ : X ×X → [0,+∞),

γ(x, y) =

{
1, if x, y ∈ [0, 1],

0, otherwise.

Let ψ(t) = 2t+ 1, α(t) = 3t+ 2 and β(t) = 3t/2 + 1.
We prove that Theorem 1.14 can be applied to T . But [33, Theorem 2.1] cannot be applied. Clearly,

(X, d) is a complete metric space. We show that T is a γ-admissible mapping. Let x, y ∈ X. If γ(x, y) ≥ 1,
then x, y ∈ [0, 1]. On the other hand for all x ∈ [0, 1] and y ∈ [0, 1], we have Tx ≤ 1 and Ty ≤ 1. It follows
that γ(Tx, Ty) ≥ 1. Thus the assertion holds. Because of the above arguments, γ(0, 0) ≥ 1. Now, if {xn}
is a sequence in X such that γ(xn, xn) ≥ 1 for all n ∈ N

⋃
{0} and xn → x as n → +∞, then {xn} ⊂ [0, 1]

and hence x ∈ [0, 1]. This implies that γ(x, x) ≥ 1. Also ψ(t) = 2t + 1 > 3t/2 + 1 = α(t) − β(t) and
ψ(t) = 2t + 1 > 1 = α(0) − β(0) for all t > 0. Let γ(x, Tx)γ(y, Ty) ≥ 1. Then x, y ∈ [0, 1]. Indeed, if
x /∈ [0, 1] or y /∈ [0, 1]. So γ(x, Tx) = 0 or γ(y, Ty) = 0. That is, γ(x, Tx)γ(y, Ty) = 0 < 1 which is a
contradiction. Without any loss of generality we assume that y ≥ x. We get
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h(γ(x, x), γ(y, y), ψ(d(Tx, Ty))) = (ψ(d(Tx, Ty)) +
3

2
)γ(x,x)γ(y,y)

= 2(Ty − Tx) + 1 +
3

2

= 2y − 2x+
5

2

= 2(y − x) +
5

2

≤ 2(y − x) + 2 +
3

2
= F (1, f(α(d(x, y)), β(d(x, y))).

Then the condition (2.2) of Theorem 1.14 holds and T has a fixed point.
But, taking l = 1, we have that

(ψ(d(Tx, Ty)) + l)γ(x,x)γ(y,y) = 2(Ty − Tx) + 1 + l

= 2y − 2x+ 2

= 2(y − x) + 2

≥ 2(y − x) + 2− [(y − x)/2 + 1]

= α(d(x, y))− β(d(x, y)) + l.

That is, the contractive condition of Theorem 2.1 in ([33]) does not hold for this example.

Remark 2.21.

(1) When h(x, y, z) = (z + l)xy, l > 1, F (s, t) = st + l and f(s, t) = s − t in Theorem 1.14 and
γ(x, Tx)γ(y, Ty) ≥ 1, Corollary 2.18 can deduce to [33, Corollary 2.3].

(2) Taking h(x, y, z) = (xy + l)z, l > 0, F (s, t) = (1 + l)st, f(s, t) = s − t and l = 1 in Theorem 1.14, we
obtain [33, Theorem 2.4].

(3) Taking h(x, y, z) = (xy + l)z, l > 0, F (s, t) = (1 + l)st, f(s, t) = s− t, l = 1 and γ(x, Tx)γ(y, Ty) ≥ 1,
we have actually [33, Corollary 2.6].

(4) Taking F , h, f , take h(x, y, z) = xyz, F (s, t) = st, f(s, t) = s− t, we have actually [33, Theorem 2.7].

(5) When h(x, y, z) = (xy + l)z, l > 0, F (s, t) = (1 + l)st, f(s, t) = s − t and l = 1, Theorem 1.14 can
reduce to [33, Corollary 2.9].

The following example shows that Theorem 1.14 can be applied to T , but [33, Theorem 2.4] cannot be
applied.

Example 2.22. Let X and d be as in Example 2.20. Define T : X → X by

Tx =

{
1− x, if x ∈ [0, 1],

ex, if x ∈ (1,∞).

Let h(x, y, z) = (xy + 1)z, F (s, t) = 2st and f(s, t) = s− t
1+t .

Define also γ, ψ, α and β as in Example 2.20. We shall show that Theorem 1.14 can be applied to T but
[33, Theorem 2.4] cannot be applied. Proceeding as in the proof of Example 2.20, γ(0, 0) ≥ 1 and if {xn} is
a sequence in X such that α(xn, xn) ≥ 1 for all n ∈ N

⋃
{0} and xn → x as n→ +∞, then γ(x, x) ≥ 1. Let

γ(x, fx)γ(y, fy) ≥ 1. Then x, y ∈ [0, 1]. Assume y ≥ x. We get

h(γ(x, x), γ(y, y), ψ(d(Tx, Ty))) = (γ(x, x)γ(y, y) + 1)ψ(d(Tx,Ty))
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= 2ψ(d(Tx,Ty))

= 22(y−x)+1

≤ 2
2(y−x)+2−

y−x
2 +1

y−x
2 +1+1

= 2
α(d(x,y))− β(d(x,y))

1+β(d(x,y))

= F (1, f(α(d(x, y)), β(d(x, y))).

Then the condition of Corollary 2.18 holds and so T has a fixed point. But

£(γ(x, x)γ(y, y) + 1)ψ(d(Tx,Ty)) = 22(Tx−Ty)+1

= 22(y−x)+1

> 2
3
2
(y−x)+1

> 22(y−x)+2−( 1
2
(y−x)+1)

= 2α(d(x,y))−β(d(x,y)).

Hence, the condition of Theorem 2.4 in [33] does not hold for this example.

The following example shows that Theorem 1.14 can be applied for T but the condition of Theorem 2.7
in [33] does not hold for this example.

Example 2.23. Let X and d be as in Example 2.20. Define f : X → X by

Tx =

{
2− 2x, if x ∈ [0, 1],

ex + sinx, if x ∈ (1,∞).

Let h(x, y, z) = xyz, F (s, t) = st and f(s, t) = s− t
2+t .

Define also γ, ψ, α and β as in Example 2.20. We shall show that Theorem 1.14 can be applied for
T , but [33, Theorem 2.7] cannot be applied. Reviewing the proof of Example 2.20, T is a γ-admissible
mapping, α(0, 0) ≥ 1 and if {xn} is a sequence in X such that α(xn, xn) ≥ 1 for all n ∈ N

⋃
{0} and xn → x

as n→ +∞, then γ(x, x) ≥ 1. Let γ(x, Tx)γ(y, Ty) ≥ 1. Then x, y ∈ [0, 1]. Assume y ≥ x. Then

h(γ(x, x), γ(y, y), ψ(d(Tx, Ty))) = γ(x, x)γ(y, y)ψ(d(Tx, Ty))

= ψ(d(Tx, Ty))

= 2(y − x) + 1

≤ α(d(x, y))− β(d(x, y))

1 + β(d(x, y))

= F (1, f(α(d(x, y)), β(d(x, y)))).

Then the condition of Theorem 1.14 holds and T has a fixed point. But

γ(x, x)γ(y, y)ψ(d(Tx, Ty)) = Ty − Tx+ 1

= 2(y − x) + 1

≥ 2(y − x) + 2− [
y − x

2
+ 1]

= α(d(x, y))− β(d(x, y)).

Clearly, the condition of [33, Theorem 2.7] does not hold for this example.
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Theorem 2.24. Let (X, d,�) be a partially ordered metric space on X such that (X, d) is complete and let
T : X → X be a self mapping. Let µ : X ×X −→ [0,∞) be a function such that T is a non-decreasing and
traingular µ-subadmissible mapping. Assume that there exist ψ ∈ Ψ, α ∈ Φα and β ∈ Φβ such that

ψ(t)− f(α(s), β(s)) > 0 for all t > 0 and s = t or s = 0, (2.7)

where f is an element of C and for all x, y ∈ X we have

µ(x, Tx) ≤ 1 =⇒ h(1, ψ(d(Tx, Ty))) ≤ F (µ(x, y), f(α(d(x, y)), β(d(x, y))), (2.8)

where the pair (F, h) is a special upclass of type I. Suppose that either

(i) T is continuous or

(ii) if a non-decreasing sequence {xn} ⊂ X is such that xn → x as n → ∞ and µ(xn, Txn) ≤ 1 for all n,
then µ(x, xn) ≤ 1 and xn � x for n ∈ N.

If there exists x0 ∈ X such that µ(x0, x0) ≤ 1, µ(x0, Tx0) ≤ 1 and x0 � Tx0, then T has a fixed point.

Proof. Let x0 ∈ X such that µ(x0, Tx0) ≤ 1. Define a sequence {xn} ⊂ X by xn = Tn(x0) = Txn−1 for
n ∈ N. Suppose that xn0 = xn0−1 for some n0 ∈ N . Then it is clear that xn0 is a fixed point of T and hence
the proof is complete. From now on, we suppose that xn 6= xn−1 for all n ∈ N ∪ {0}.

Since T is an α-admissible mapping and µ(x0, Tx0) ≤ 1, we deduce that µ(x1, Tx1) = µ(Tx0, T
2x0) ≤ 1.

By continuing this process, we get that µ(xn, Txn) = µ(xn, xn+1) ≤ 1 for all n ∈ N ∪ {0}.
Also from µ(x0, x0) ≤ 1 we obtain µ(x1, x1) = µ(Tx0, Tx0) ≤ 1. By continuing this process, we get

µ(xn, xn) ≤ 1 for n ∈ N ∪ {0}.
Since T is non-decreasing and x0 � Tx0, we have

x1 � x2 � x3 � · · · � xn−1 � xn � · · · . (2.9)

We will show that lim
n→∞

d(xn, xn+1) = 0. Since µ(xn, xn) ≤ 1, µ(xn, Txn) ≤ 1 for each n ∈ N, by (2.8)

we have

h(1, ψ(d(xn, xn+1))) = h(1, ψ(d(Txn−1, Txn)))

≤ F (µ(xn−1, xn), f(α(d(xn−1, xn)), β(d(xn−1, xn))))

≤ F (1, f(α(d(xn−1, xn)), β(d(xn−1, xn)))).

Since the pair (F, h) is a special upclass of type I, we have that

ψ(d(xn, xn+1)) ≤ f(α(d(xn−1, xn)), β(d(xn−1, xn))). (2.10)

If d(xn, xn+1) > d(xn−1, xn), since ψ is non-decreasing, then

ψ(d(xn−1, xn)) ≤ ψ(d(xn, xn+1)).

Combining with (2.10), we obtain that

ψ(d(xn−1, xn)) ≤ ψ(d(xn, xn+1))

≤ f(α(d(xn−1, xn)), β(d(xn−1, xn))).

It yields that
ψ(d(xn−1, xn)) ≤ f(α(d(xn−1, xn)), β(d(xn−1, xn))).

Since xn−1 6= xn, d(xn−1, xn) > 0. Then the above inequality contradicts (2.7). Therefore, our assumption
d(xn, xn+1) > d(xn−1, xn) is wrong. Then we have that

d(xn, xn+1) ≤ d(xn−1, xn).
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Therefore, the sequence {dn :=d(xn, xn+1)} is non-increasing. Thus there exists r ≥ 0 such that
lim
n→∞

dn = r. Suppose that r > 0. By (2.10), we have

ψ(r) ≤ lim
n→∞

inf ψ(dn)

≤ lim
n→∞

supψ(dn)

≤ lim
n→∞

sup f(α(d(xn−1, xn)), β(d(xn−1, xn)))

≤ f(α(r), β(r)),

which is a contradiction to (2.7). Thus r = 0. Hence

lim
n→∞

dn = lim
n→∞

d(xn, xn+1) = 0. (2.11)

We shall show that the sequence {xn} is a Cauchy sequence.
Suppose that {xn} is not a Cauchy sequence. Then by Lemma 1.16 there exist an ε > 0 and two

sequences of positive integers {m(k)} and {n(k)} with n(k) > m(k) > k such that

lim
n→∞

d(xm(k), xn(k)) = lim
n→∞

d(xm(k)+1, xn(k)+1) = ε. (2.12)

By [30, Lemma 1.13] and (2.8), taking x = xm(k) and y = xn(k), we have µ(xm(k), xn(k)) ≤ 1 and

h(1, ψ(d(xm(k)+1, xn(k)+1))) = h(1, ψ(d(Txm(k), Txn(k))))

≤ F (µ(xm(k), xn(k)), f(α(d(xm(k), xn(k))), β(d(xm(k), xn(k)))).

Therefore,
ψ(d(xm(k)+1, xn(k)+1)) ≤ f(α(d(xm(k), xn(k))), β(d(xm(k), xn(k)))).

Taking the lim inf as k → +∞ in the above inequality, we have

ψ(ε) ≤ lim
n→∞

inf ψ(d(xm(k)+1, xn(k)+1))

≤ lim
n→∞

supψ(d(xm(k)+1, xn(k)+1))

≤ lim
n→∞

sup f(α(d(xm(k), xn(k))), β(d(xm(k), xn(k))))

≤ f( lim
n→∞

supα(d(xm(k), xn(k))), lim
n→∞

inf β(d(xm(k), xn(k))))

≤ f(α(ε), β(ε)).

So we have
ψ(ε) ≤ f(α(ε), β(ε)),

which contradicts the fact that ψ(t)− f(α(t), β(t)) > 0 for all t > 0. Hence

lim
n→∞

d(xm(k), xn(k)) = 0,

that is, the sequence {xn} is a Cauchy sequence. Since (X, d) is complete, there exists x0 ∈ X such that
xn → x0 ∈ X.

Suppose that (i) holds. Then

x0 = lim
n→∞

xn+1 = lim
n→∞

T (xn) = 0.

Suppose that (ii) holds, that is, µ(x0, xn) ≤ 1 and xn � x0. Now, from (2.8)

h(1, ψ(d(Tx0, xn+1)) = h(1, ψ(d(Tx0, Txn)))
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≤ F (µ(x0, xn), f(α(d(x0, xn)), β(d(x0, xn)))

≤ F (1, f(α(d(x0, xn)), β(d(x0, xn))),

which implies that
ψ(d(Tx0, xn+1)) ≤ f(α(d(x0, xn)), β(d(x0, xn))).

Taking the lim inf as n→∞ in the above inequality, we obtain

ψ(d(Tx0, x0)) ≤ lim
n→∞

inf ψ(d(Tx0, xn+1))

= lim
n→∞

inf ψ(d(Tx0, Txn))

≤ lim
n→∞

sup f(α(d(x0, xn)), β(d(x0, xn)))

≤ f(α(0), β(0)).

Hence lim
n→∞

d(Tx0, xn+1) = lim
n→∞

d(Tx0, x0) = 0 and so Tx0 = x0.

Taking h(x, y) = (yk + l)x, l > 1, F (s, t) = smtk + l and f(s, t) = s− t in Theorem 2.24, we obtain the
following corollary.

Corollary 2.25. Let (X, d,�) be a partially ordered metric space on X such that (X, d) is complete and let
T : X → X be a self mapping. Let µ : X ×X −→ [0,∞) be a function such that T is a non-decreasing and
traingular µ-subadmissible mapping. Assume that there exist ψ ∈ Ψ, α ∈ Φα and β ∈ Φβ such that

ψ(t)− f(α(s), β(s)) > 0 for all t > 0 and s = t or s = 0,

where f is an elements of C and for all x, y ∈ X we have

µ(x, Tx) ≤ 1 =⇒ (ψ(d(Tx, Ty)))k ≤ (µ(x, y))m(α(d(x, y))− β(d(x, y)))k

for all comparable x, y ∈ X where l ≥ 1. Suppose that either

(i) T is continuous or

(ii) if a non-decreasing sequence {xn} ⊂ X is such that xn → x as n→∞ and µ(xn, Txn) ≤ 1 for all n,
then µ(x, xn) ≤ 1 and xn � x for n ∈ N.

If there exists x0 ∈ X such that µ(x0, x0) ≤ 1, µ(x0, Tx0) ≤ 1 and x0 � Tx0, then T has a fixed point.

When h(x, y) = (xn+ l)y
k
, l > 1, F (s, t) = (1+ l)s

mtk and f(s, t) = s− t, we have the following corollary.

Corollary 2.26. Let (X, d,�) be a partially ordered metric space on X such that (X, d) is complete and let
T : X → X be a self mapping. Let µ : X ×X −→ [0,∞) be a function such that T is a non-decreasing and
traingular µ-subadmissible mapping. Assume that there exist ψ ∈ Ψ, α ∈ Φα and β ∈ Φβ such that

ψ(t)− f(α(s), β(s)) > 0 for all t > 0 and s = t or s = 0,

where f is an element of C and for all x, y ∈ X we have

µ(x, Tx) ≤ 1 =⇒ ψ(d(Tx, Ty))k ≤ (µ(x, y))m(α(d(x, y))− β(d(x, y)))k

for all comparable x, y ∈ X where l ≥ 1. Suppose that either

(i) T is continuous or

(ii) if a non-decreasing sequence {xn} ⊂ X is such that xn → x as n→∞ and µ(xn, Txn) ≤ 1 for all n,
then µ(x, xn) ≤ 1 and xn � x for n ∈ N.
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If there exists x0 ∈ X such that µ(x0, x0) ≤ 1, µ(x0, Tx0) ≤ 1 and x0 � Tx0, then T has a fixed point.

When h(x, y) = xnyk, F (s, t) = smtk , f(s, t) = θs, 0 < θ < 1, we have the following corollary.

Corollary 2.27. Let (X, d,�) be a partially ordered metric space on X such that (X, d) is complete and let
T : X → X be a self mapping. Let µ : X ×X −→ [0,∞) be a function such that T is a non-decreasing and
traingular µ-subadmissible mapping. Assume that there exist ψ ∈ Ψ, α ∈ Φα and β ∈ Φβ such that

ψ(t)− f(α(s), β(s)) > 0 for all t > 0 and s = t or s = 0,

where f is an element of C and for all x, y ∈ X we have

µ(x, Tx) ≤ 1 =⇒ ψ(d(Tx, Ty))k ≤ (µ(x, y))m(θα(d(x, y)))k

for all comparable x, y ∈ X where l ≥ 1. Suppose that either

(i) T is continuous or

(ii) if a non-decreasing sequence {xn} ⊂ X is such that xn → x as n→∞ and µ(xn, Txn) ≤ 1 for all n,
then µ(x, xn) ≤ 1 and xn � x for n ∈ N.

If there exists x0 ∈ X such that µ(x0, x0) ≤ 1, µ(x0, Tx0) ≤ 1 and x0 � Tx0, then T has a fixed point.
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