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Abstract

The purpose of this paper is to obtain some fixed point and common fixed point results of comparable
maps satisfying certain contractive conditions on partially ordered cone metric spaces over Banach algebras.
Moreover, an example is given, which shows that our main results are more useful than the presented results
in some recent literatures. c©2016 All rights reserved.
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1. Introduction

Cone metric spaces were introduced by Huang and Zhang in [5], where they investigated the convergence
of a sequence in cone metric spaces in order to introduce the notion of completeness and proved some fixed
point theorems for contractive maps on these spaces. Recently, based on the work of Huang and Zhang [5],
a few fixed point and common fixed point results of some mappings with certain contractive property on
cone metric spaces have been proved (see [1, 2, 6, 7, 8, 9, 11, 12, 13] and the references contained therein).

In the past several years, some existence results of fixed points for some contractive type maps in partially
ordered cone metric spaces were investigated (see [3, 4]). In 2013, Liu and Xu [10] introduced the concept
of cone metric spaces over Banach algebras by replacing a Banach space E with a Banach algebra A. In
this way, they proved some fixed point theorems of generalized Lipschitz maps with weaker and natural
conditions on generalized Lipschitz constant k by means of spectral radius.
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The purpose of this paper is to obtain some fixed point theorems of maps satisfying the contractive
conditions given in [3, 4] in the setting of ordered cone metric spaces over Banach algebras. Moreover, we
give an example to show that our main results concerning the fixed point theorems in the setting of ordered
cone metric spaces over Banach algebras are more useful than the standard results in cone metric spaces
presented in the literatures.

2. Preliminaries

In the following, we will review some basic concepts and definitions from [5] and [10].
Let A always be a real Banach algebra. That is, A is a real Banach space in which an operation of

multiplication is defined, subject to the following properties (for all x, y, z ∈ A, α ∈ R):

(i) (xy)z = x(yz);

(ii) x(y + z) = xy + xz and (x+ y)z = xz + yz;

(iii) α(xy) = (αx)y = x(αy);

(iv) ‖xy‖ ≤ ‖x‖‖y‖.

The following assumption that a Banach algebra has a unit (i.e., a multiplicative identity) e such that
ex = xe = x for all x ∈ A will be needed throughout the paper. An element x ∈ A is said to be invertible
if there is an inverse element y ∈ A such that xy = yx = e. The inverse of x is denoted by x−1. For more
details, we refer to [14].

For the convenience, we repeat the following proposition from [14].

Proposition 2.1 ([14]). Let A be a Banach algebra with a unit e and x ∈ A. If the spectral radius r(x) of
x is less than 1, i.e.,

r(x) = lim
n→∞

‖xn‖
1
n = inf

n≥1
‖xn‖

1
n < 1,

then e− x is invertible. Actually,

(e− x)−1 =
∞∑
i=0

xi.

Remark 2.2. Here and subsequently, r(x) denotes the spectral radius of x ∈ A. If r(x) < 1, then ‖xn‖ →
0(n→∞).

Now let us recall the concepts of cone and partial ordering for a Banach algebra A. A subset P of A is
called a cone of A if,

(i) P is non-empty closed and {θ, e} ⊂ P ;

(ii) αP + βP ⊂ P for all non-negative real numbers α, β;

(iii) P 2 = PP ⊂ P ;

(iv) P ∩ (−P ) = {θ},

where θ denotes the null of the Banach algebra A. For a given cone P ⊂ A, we can define a partial ordering
� with respect to P by x � y if and only if y − x ∈ P . x ≺ y will stand for x � y and x 6= y, while x� y
will stand for y−x ∈ int P , where int P denotes the interior of P . If int P 6= ∅ then P is called a solid cone.

In the following we always assume that P is a solid cone of A and � is the partial ordering with respect
to P .

Definition 2.3 ([10]). Let X be a non-empty set. Suppose that the mapping d : X ×X → A satisfies the
followings:

(i) θ � d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y;

(ii) d(x, y) = d(y, x) for all x, y ∈ X;

(iii) d(x, y) � d(x, z) + d(z, y) for all x, y, z ∈ X.
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Then d is called a cone metric on X, and (X, d) is called a cone metric space over a Banach algebra A.

Example 2.4 ([10]). Let A = R2, P = {(x, y) ∈ A | x, y ≥ 0} ⊂ R2, X = R and d : X ×X → A such that
d(x, y) = (|x− y|, α|x− y|), where α ≥ 0 is a constant. Then (X, d) is a cone metric space.

See [10] for more examples of cone metric spaces over Banach algebras.

Definition 2.5 ([10]). Let (X, d) be a cone metric space over a Banach algebra A, x ∈ X and let {xn} be
a sequence in X. Then

(i) {xn} converges to x whenever for each c ∈ A with θ � c there is a natural number N such that
d(xn, x)� c for all n ≥ N . We denote this by lim

n→∞
xn = x or xn → x;

(ii) {xn} is a Cauchy sequence whenever for each c ∈ A with θ � c there is a natural number N such that
d(xn, xm)� c for all n,m ≥ N ;

(iii) (X, d) is a complete cone metric space if every Cauchy sequence is convergent.

Let (X, d) be a cone metric space over a Banach algebra A and f : X → X be a map. We say that f is
continuous if for any {xn} ⊂ X,xn → x implies f(xn)→ f(x)(n→∞).

Definition 2.6. Let (X,v) be a partially ordered set. We say that x, y ∈ X are comparable if x v y or
y v x holds. Similarly, f : X → X is said to be comparable if for any comparable pair x, y ∈ X, f(x), f(y)
are comparable.

Remark 2.7. A map f is said to be nondecreasing with v, if for any x, y ∈ X, x v y, then f(x) v f(y).
Obviously, a comparable map may not be nondecreasing with v.

Definition 2.8. Let (X,v) be a partially ordered set. Two maps f, g : X → X are said to be weakly
comparable if both f(x), gf(x) and g(x), fg(x) are comparable for all x ∈ X.

3. Main results

The following lemmas are crucial to the proofs of our main results. We shall appeal to the following
lemmas in the sequel [4, 12, 15]. For simplicity, we always assume that A is a real Banach algebra and P is
a solid cone of A which gives the partial ordering “ � ” in P .

Lemma 3.1 ([15]). Let A be a Banach algebra and let x, y be vectors in A. If x and y commute, then the
following hold:

(i) r(xy) ≤ r(x)r(y);

(ii) r(x+ y) ≤ r(x) + r(y);

(iii) |r(x)− r(y)| ≤ r(x− y).

Lemma 3.2 ([15]). Let A be a Banach algebra and let k be a vector in A. If 0 ≤ r(k) < 1, then we have

r((e− k)−1) ≤ (1− r(k))−1.

Lemma 3.3 ([12]). If A is a real Banach space with a solid cone P and if ‖xn‖ → 0(n→∞), then for any
θ � c, there exists N ∈ N such that, for any n > N , we have xn � c.

Lemma 3.4 ([4]). Let (X,v) be a partially ordered set and suppose that there exists a cone metric d in
X such that the cone metric space (X, d) is complete. Let f : X → X be a continuous and nondecreasing
mapping with v. Suppose that the following two assertions hold:

(i) there exists k ∈ (0, 1) such that d(f(x), f(y)) � kd(x, y) for each x, y ∈ X with y v x;

(ii) there exists x0 ∈ X such that x0 v f(x0).
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Then f has a fixed point x∗ ∈ X.

We can now formulate our main results.

Theorem 3.5. Let (X,v) be a partially ordered set and (X, d) be a complete cone metric space over a
Banach algebra A. Suppose that f : X → X is continuous and comparable and the following two assertions
hold:

(i) there exists k ∈ P with r(k) ∈ (0, 1) such that d(f(x), f(y)) � kd(x, y) for any comparable pair
x, y ∈ X;

(ii) there exists x0 ∈ X such that x0, f(x0) are comparable.

Then f has a fixed point x∗ ∈ X.

Proof. If f(x0) = x0, then the proof is finished. Assume that f(x0) 6= x0. From condition (ii) and f is
comparable, we deduce that f i(x0) and f i+1(x0) are comparable for any i ≥ 0. Replacing xn = fn(x0), we
recover xi, xi+1 are comparable. By condition (i), it follows that

d(xn+1, xn) � kd(xn, xn−1) � k2d(xn−1, xn−2)

...

� knd(x1, x0).

Let m > n, then

d(xm, xn) � d(xm, xm−1) + · · ·+ d(xn+1, xn)

� (km−1 + · · ·+ kn)d(x1, x0)

= (e+ k + · · · km−n−1)knd(x1, x0)

� (

∞∑
i=0

ki)knd(x1, x0)

= (e− k)−1knd(x1, x0).

We see at once that ‖(e − k)−1knd(x1, x0)‖ ≤ ‖(e − k)−1‖‖kn‖‖d(x1, x0)‖ → 0(n → ∞), which is clear
by Remark 2.2 that ‖kn‖ → 0(n→∞). By Lemma 3.3, for any c ∈ A with θ � c, there exists N ∈ N such
that, for any m > n > N ,

d(xm, xn) � (e− k)−1knd(x1, x0)� c,

which implies that {xn} is a Cauchy sequence. By the completeness of X, there exists x∗ ∈ X such that
xn → x∗(n→∞). Consequently, the continuity of f implies that x∗ is a fixed point of f .

The following example shows that the contractive condition of Theorem 3.5 is more general than the
contractive condition of Lemma 3.4.

Example 3.6. Let A = R2, the Euclidean plane. For each (x1, x2) ∈ A, let ‖(x1, x2)‖ =| x1 | + | x2 |. The
multiplication is defined by

xy = (x1, x2)(y1, y2) = (x1y1, x1y2 + x2y1).

Then A is a Banach algebra with unit e = (1, 0).
Let P = {(x, y) ∈ R2 : x, y ≥ 0} a cone in A. Let X = {(x, 0) ∈ R2 : x ≥ 0} ∪ {(0, x) ∈ R2 : x ≥ 0} and

consider the relation on X as follows: for (x, y), (z, w) ∈ X,

(x, y) v (z, w)⇔ {x � z and y � w},
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where � is a partial ordering on R as follows: for m,n ∈ R,

m � n⇔ {(m = n) or (m,n ∈ [0, 1] with m ≤ n)}.

Obviously, v is a partial ordering on X. Let d : X ×X → A defined by

d((x, 0), (y, 0)) =

(
3

2
| x− y |, | x− y |

)
,

d((0, x), (0, y)) = (| x− y |, 2 | x− y |) ,

d((x, 0), (0, y)) = d((0, y), (x, 0)) =

(
3

2
x+ y, x+ 2y

)
.

It is easy to check that (X, d) is a complete cone metric space.
Define f : X → X by

f(x, 0) = (0, x) and f(0, x) =


(

2x− 3

2
, 0

)
, if x > 1,(x

2
, 0
)
, if 0 ≤ x ≤ 1.

It follows immediately that f is continuous and comparable. Also f satisfies the condition (i) of Theorem
3.5 if take k = (45 , α), where α can be any positive real number larger than 4

5 . Of course

r(k) = lim
n→∞

∥∥∥∥(4

5
, α

)n∥∥∥∥ 1
n

= lim
n→∞

∥∥∥∥∥
(

4

5

)n
, α · n

(
4

5

)n−1∥∥∥∥∥
1
n

=
4

5
< 1.

Clearly (0, 0) v f(0, 0) which shows that the condition (ii) of Theorem 3.5 is satisfied. Therefore, we can
apply Theorem 3.5 to this example and get that f has a fixed point.

Remark 3.7. In Example 3.6, f does not satisfy the condition (i) of Lemma 3.4. Hence, Example 3.6 shows
that Theorem 3.5 is more powerful than the corresponding result in the setting of ordered cone metric
spaces.

Some generalizations of the result are given in the following. For example, by removing the continuity
of f in Theorem 3.5, we have the following.

Theorem 3.8. Let (X,v) be a partially ordered set and (X, d) be a complete cone metric space over a
Banach algebra A. Assume that f : X → X is comparable and the following two assertions hold:

(i) there exists k ∈ P with r(k) ∈ (0, 1) such that d(f(x), f(y)) � kd(x, y) for any comparable pair
x, y ∈ X;

(ii) there exists x0 ∈ X such that x0, f(x0) are comparable;

(iii) if a sequence {xn} converges to x in X and xi, xi+1 are comparable for all i ≥ 0, then xi, x are
comparable.

Then f has a fixed point x∗ ∈ X.

Proof. Let xn = fn(x0), we get that xn, xn+1 are comparable for all n ≥ 0 and {xn} converges to x∗ as in
the proof of Theorem 3.5. Now the condition (iii) implies xn, x

∗ are comparable. Therefore, the condition
(i) gives that

d(f(x∗), x∗) � d(f(x∗), f(xn)) + d(f(xn), x∗)

� kd(x∗, xn) + d(xn+1, x
∗).

Hence, for each c� θ we have d(f(x∗), x∗)� c, so d(f(x∗), x∗) = θ, which implies that x∗ is a fixed point
of f .
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Theorem 3.5 and Theorem 3.8 can be generalized and extended by using the following conditions (1)
and (2) instead of (i) respectively: (incidentally, we have generalized versions of Theorem 3 and Theorem 4
of [5], respectively).

(1) let k ∈ P with r(k) ∈ (0, 1) such that d(f(x), f(y)) � k(d(f(x), x) + d(f(y), y)) for any comparable
pair x, y ∈ X;

(2) let k ∈ P with r(k) ∈ (0, 1) such that d(f(x), f(y)) � k(d(f(x), y) + d(f(y), x)) for any comparable
pair x, y ∈ X.

Theorem 3.9. Let (X,v) be a partially ordered set and (X, d) be a complete cone metric space over a
Banach algebra A. Let f : X → X be continuous and comparable and the following two assertions hold:

(i) there exist α, β, γ ∈ P with r(α) + 2r(β) + 2r(γ) < 1 such that

d(f(x), f(y)) � αd(x, y) + β[d(x, f(x)) + d(y, f(y))] + γ[d(x, f(y)) + d(y, f(x))]

for any comparable pair x, y ∈ X;

(ii) there exists x0 ∈ X such that x0, f(x0) are comparable.

Then f has a fixed point x∗ ∈ X.

Proof. If f(x0) = x0, then the proof is finished. Suppose that f(x0) 6= x0. Since x0, f(x0) are comparable
and f is comparable, we obtain by induction that f i(x) and f i+1(x) are comparable for any i ≥ 0. If take
xn = fn(x0), then we have xi, xi+1 are comparable. So we have

d(xn+1, xn) �αd(xn, xn−1) + β[d(xn, xn+1) + d(xn−1, xn)] + γd(xn−1, xn+1)

�αd(xn, xn−1) + β[d(xn, xn+1) + d(xn−1, xn)]

+ γ[d(xn−1, xn) + d(xn, xn+1)],

that is,
(e− β − γ)d(xn+1, xn) � (α+ β + γ)d(xn, xn−1).

Since r(α) + 2r(β) + 2r(γ) < 1, then r(β + γ) ≤ r(β) + r(γ) < 1, and e− β − γ is invertible by Proposition
2.1. Then multiplying both sides with (e− β − γ)−1, it follows that

d(xn+1, xn) � (e− β − γ)−1(α+ β + γ)d(xn, xn−1),

for all n ≥ 1. Repeating this relation we get

d(xn+1, xn) � knd(x1, x0),

where k = (e− β − γ)−1(α+ β + γ).
We claim that r(k) < 1.
By Lemma 3.1, we get

r(α+ β + γ) + r(β + γ) ≤ r(α) + r(β) + r(γ) + r(β) + r(γ) = r(α) + 2r(β) + 2r(γ) < 1,

then r(α+ β + γ) < 1− r(β + γ), that is, r(α+β+γ)
1−r(β+γ) < 1.

Hence, it follows from Lemma 3.1 and 3.2 that

r(k) = r[(e− β − γ)−1(α+ β + γ)]

≤ r[(e− β − γ)−1]r(α+ β + γ)

≤ [1− r(β + γ)]−1r(α+ β + γ)

=
r(α+ β + γ)

1− r(β + γ)
< 1.
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Let m > n, then

d(xm, xn) � d(xm, xm−1) + · · ·+ d(xn+1, xn)

� (km−1 + · · ·+ kn)d(x1, x0)

= (e+ k + · · · km−n−1)knd(x1, x0)

�

( ∞∑
i=0

ki

)
knd(x1, x0)

= (e− k)−1knd(x1, x0).

We see at once that ‖(e − k)−1knd(x1, x0)‖ ≤ ‖(e − k)−1‖‖kn‖‖d(x1, x0)‖ → 0(n → ∞), which is clear
by the claim and Remark 2.2, ‖kn‖ → 0(n→∞). By Lemma 3.3, it follows that, for any c ∈ A with θ � c,
there exists N ∈ N such that, for any m > n > N ,

d(xm, xn) � (e− k)−1knd(x1, x0)� c,

which implies that {xn} is a Cauchy sequence.
Since X is complete, there exists x∗ ∈ X such that xn → x∗(n→∞). Finally, the continuity of f implies

that x∗ is a fixed point of f .

If we use the condition (iii) instead of continuity of f in Theorem 3.9, we have the following.

Theorem 3.10. Let (X,v) be a partially ordered set and (X, d) be a complete cone metric space over a
Banach algebra A. Let f : X → X be comparable and the following two assertions hold:

(i) there exist α, β, γ ∈ P with r(α) + 2r(β) + 2r(γ) < 1 such that

d(f(x), f(y)) � αd(x, y) + β[d(x, f(x)) + d(y, f(y))] + γ[d(x, f(y)) + d(y, f(x))]

for any comparable pair x, y ∈ X;

(ii) there exists x0 ∈ X such that x0, f(x0) are comparable;

(iii) if a sequence {xn} converges to x in X and xi, xi+1 are comparable for all i ≥ 0, then xi, x are
comparable.

Then f has a fixed point x∗ ∈ X.

Proof. Let xn = fn(x0), then xn, xn+1 are comparable for all n ≥ 0 and {xn} converges to x∗ by the proof
similar to Theorem 3.9. Now the condition (iii) implies that xn, x

∗ are comparable for all n. Therefore, by
the condition (i), we have

d(xn, f(x∗)) � αd(xn, x
∗) + β[d(xn, xn+1) + d(x∗, f(x∗))] + γ[d(xn, f(x∗)) + d(x∗, xn)].

Taking n → ∞, we have d(x∗, f(x∗)) � (β + γ)d(x∗, f(x∗)), that is, (e − β − γ)d(x∗, f(x∗)) � θ. Then
multiplying both sides with (e− β − γ)−1, it follows that d(x∗, f(x∗)) = θ. Hence x∗ = f(x∗).

Now we give two common fixed point theorems on ordered cone metric spaces over Banach algebras. The
result is still true if we delete the assumption that “there exists x0 ∈ X such that x0, f(x0) are comparable”
of Theorem 3.9. We can rephrase Theorem 3.9 as follows.

Theorem 3.11. Let (X,v) be a partially ordered set and (X, d) be a complete cone metric space over a
Banach algebra A. Let f, g : X → X be two weakly comparable maps and the following two assertions hold:

(i) there exist α, β, γ ∈ P with r(α) + 2r(β) + 2r(γ) < 1 such that

d(f(x), g(y)) � αd(x, y) + β[d(x, f(x)) + d(y, g(y))] + γ[d(x, g(y)) + d(y, f(x))]

for any comparable pair x, y ∈ X;
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(ii) f or g is continuous.

Then f and g have a common fixed point x∗ ∈ X.

Proof. Let x0 be an arbitrary point of X and define a sequence {xn} in X as follows: x2n+1 = f(x2n)
and x2n+2 = g(x2n+1) for all n ≥ 0. Note that f and g are weakly comparable, we have x1 = f(x0)
and x2 = g(x1) = gf(x0) are comparable, by a similar argument, x2 = g(x1), x3 = f(x2) = fg(x1) are
comparable, and continuing this process, we have that xn, xn+1 are comparable for all n ≥ 1.

It follows from condition (i) that

d(x2n+1, x2n+2) =d(f(x2n), g(x2n+1))

�αd(x2n, x2n+1) + β[d(x2n, x2n+1) + d(x2n+1, x2n+2)] + γd(x2n, x2n+2)

�αd(x2n, x2n+1) + β[d(x2n, x2n+1) + d(x2n+1, x2n+2)]

+ γ[d(x2n, x2n+1) + d(x2n+1, x2n+2)],

that is,
(e− β − γ)d(x2n+1, x2n+2) � (α+ β + γ)d(x2n, x2n+1).

Since r(α) + 2r(β) + 2r(γ) < 1, then r(β + γ) ≤ r(β) + r(γ) < 1, by Proposition 2.1, e− β − γ is invertible.
Then multiplying both sides with (e− β − γ)−1, we have

d(x2n+1, x2n+2) � (e− β − γ)−1(α+ β + γ)d(x2n, x2n+1)

for all n ≥ 1. Repeating this relation, we get

d(xn+1, xn) � knd(x1, x0),

where k = (e− β − γ)−1(α+ β + γ).
Let m > n, then

d(xm, xn) � d(xm, xm−1) + · · ·+ d(xn+1, xn)

� (km−1 + · · ·+ kn)d(x1, x0)

= (e+ k + · · · km−n−1)knd(x1, x0)

�

( ∞∑
i=0

ki

)
knd(x1, x0)

= (e− k)−1knd(x1, x0),

which implies that {xn} is a Cauchy sequence. As X is complete, there exists x∗ ∈ X such that xn →
x∗(n→∞).

Without loss of generality, we can assume that f is continuous. Then it is clear that x∗ is a fixed point
of f . We show now that x∗ is also a fixed point of g. Since x∗, x∗ are comparable, by using the condition
(i) for x = y = x∗, we have

d(f(x∗), g(x∗)) � αd(x∗, x∗) + β[d(x∗, f(x∗)) + d(x∗, g(x∗))] + γ[d(x∗, f(x∗)) + d(x∗, g(x∗))],

and d(x∗, g(x∗)) � (β + γ)d(x∗, g(x∗)), that is, (e − β − γ)d(x∗, f(x∗)) � θ. Then multiplying both sides
with (e− β − γ)−1, we get that d(x∗, g(x∗)) = θ. Hence x∗ = g(x∗). Therefore, we have proved that f and
g have a common fixed point.

Theorem 3.12. Let (X,v) be a partially ordered set and (X, d) be a complete cone metric space over a
Banach algebra A. Let f, g : X → X be two weakly comparable maps and suppose that the following two
assertions hold:
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(i) there exist α, β, γ ∈ P with r(α) + 2r(β) + 2r(γ) < 1 such that

d(f(x), g(y)) � αd(x, y) + β[d(x, f(x)) + d(y, g(y))] + γ[d(x, g(y)) + d(y, f(x))]

for any comparable pair x, y ∈ X;

(ii) if a sequence {xn} converges to x in X and xi, xi+1 are comparable for all i ≥ 0, then xi, x are
comparable.

Then f and g have a common fixed point x∗ ∈ X.

Proof. The above theorem can be proved in same way as Theorem 3.10 and Theorem 3.11. So we omit
it.
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