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Abstract

The aim of the present paper is to obtain sufficient conditions for oscillation of solutions of partial
fractional differential equations with the damping term of the form

D1+α
+,t u(x, t) + p(t)Dα

+,tu(x, t) = a(t)∆u(x, t) +
m∑
i=1

ai(t)∆u(x, t− τi)

− q(x, t)
∫ t

0
(t− ξ)−αu(x, ξ)dξ, (x, t) ∈ Ω× R+ ≡ G.

Two examples are given to illustrate the main results. c©2016 All rights reserved.
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1. Introduction

Fractional differential equations are generalizations of classical differential equations to an arbitrary order
and have been widely applied in various areas of engineering, physics, mechanics, chemistry, aerodynamics,
finance, applied mathematics, bioengineering, nonlinear control and so on. There has been a significant
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development in fractional differential equations in recent years. For example, see the monographs [1, 4, 7,
9, 14].

Recently, the research on the theory of partial fractional differential equations is a very interesting topic
and some results are established. Jafari et al.[6] presented the iterative Laplace transform method to derive
exact and approximate analytical solutions of fractional partial differential equations. Chen and Jiang[2]
exploited the techniques of Lie group analysis to solve n–order linear fractional partial differential equation
and nonlinear fractional reaction diffusion convection equation. Zheng [12] applied the (G

′
/G) method to

seek exact solutions for several fractional partial differential equations including the space–time fractional
(2 + 1) dimensional dispersive long wave equations, the (2 + 1)–dimensional space time fractional Nizhnik–
Novikov–Veselov system and the time fractional fifth–order Sawada–Kotera equation. Based on a fractional
complex transformation, Zheng and Feng[13] obtained Jacobi elliptic function solutions to fractional partial
differential equations.

At the same time, a few papers [5, 8, 10, 11] studied the oscillation of fractional partial differential equa-
tions which involve the Riemann–Liouville fractional partial derivative. In [11], Prakash et al. considered
the oscillation of the fractional partial differential equation

∂

∂t
(r(t)Dα

+,tu(x, t)) + q(x, t)f
(∫ t

0
(t− ν)−αu(x, ν)dν

)
= a(t)∆u(x, t), (1.1)

where (x, t) ∈ Ω× R+ ≡ G.
Harikrishnan et al.[5] studied the oscillatory behavior of the fractional partial differential equation of the

form
Dα

+,t

(
r(t)Dα

+,tu(x, t)
)

+ q(x, t)f(u(x, t)) = a(t)∆u(x, t) + g(x, t), (x, t) ∈ G. (1.2)

Prakash et al.[10] established the oscillation of a nonlinear fractional partial differential equation with
damping and forced term of the form

Dα
+,t(r(t)D

α
+,tu(x, t)) + p(t)Dα

+,tu(x, t) + q(x, t)f(u(x, t)) = a(t)∆u(x, t) + g(x, t), (x, t) ∈ G. (1.3)

In [8], Li investigated the forced oscillation of fractional partial differential equations with the damping
term of the form

∂

∂t

(
Dα

+,tu(x, t)
)

+ p(t)Dα
+,tu(x, t) = a(t)∆u(x, t)− q(x, t)u(x, t) + f(x, t), (x, t) ∈ G. (1.4)

2. Formulation of the Problems

In this paper, we are concerned with establishing criteria for oscillation of solutions of partial fractional
differential equations with the damping term of the form

D1+α
+,t u(x, t) + p(t)Dα

+,tu(x, t) = a(t)∆u(x, t) +
m∑
i=1

ai(t)∆u(x, t− τi)

− q(x, t)
∫ t

0
(t− ξ)−αu(x, ξ)dξ, (x, t) ∈ Ω× R+ ≡ G,

(2.1)

where Ω is a bounded domain in Rn with a piecewise smooth boundary ∂Ω, α ∈ (0, 1) is a constant and
Dα

+,tu(x, t) is the Riemann–Liouville fractional derivative of order α of u with respect to t, ∆ is the Laplacian
in Rn.

We assume throughout this paper that

(A1) a ∈ C([0,∞); [0,∞)), p ∈ C([0,∞); [0,∞)), ai ∈ C([0,∞); [0,∞)) and τi ≥ 0 is a constant, i =
1, 2, · · · ,m;

(A2) q ∈ C(G;R+) and q(t) = minx∈Ω q(x, t).

Consider one of the two following boundary conditions
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∂u(x, t)

∂N
+ g(x, t)u(x, t) = 0, (x, t) ∈ ∂Ω× R+, (2.2)

or
u(x, t) = 0, (x, t) ∈ ∂Ω× R+, (2.3)

where N is the unit exterior normal vector to ∂Ω and g(x, t) is a nonnegative continuous function on

∂Ω× R+.
By a solution of the problem (2.1)–(2.2)(or (2.1)–(2.3)), we mean a function u(x, t) which satisfies (2.1)

on G and the boundary condition (2.2)(or (2.3)).
A solution u(x, t) of the problem (2.1)–(2.2)(or (2.1)–(2.3)) is said to be oscillatory in G if it is neither

eventually positive nor eventually negative, otherwise it is non-oscillatory.

Definition 2.1 ([7]). The Riemann–Liouville fractional integral of order α > 0 of a function y : R+ → R
on the half–axis R+ is given by

Iα+y(t) :=
1

Γ(α)

∫ t

0
(t− ξ)α−1y(ξ)dξ for t > 0 (2.4)

provided the right hand side is pointwise defined on R+, where Γ is the gamma function.

Definition 2.2 ([7]). The Riemann–Liouville fractional derivative of order α > 0 of a function y : R+ → R
on the half–axis R+ is given by

Dα
+y(t) :=

ddαe

dtdαe

(
I
dαe−α
+ y

)
(t)

=
1

Γ(dαe − α)

ddαe

dtdαe

∫ t

0
(t− ξ)dαe−α−1y(ξ)dξ for t > 0

(2.5)

provided the right hand side is pointwise defined on R+, where dαe is the ceiling function of α.

Definition 2.3 ([7]). The Riemann–Liouville partial fractional derivative of order 0 < α < 1 with respect
to t of a function u(x, t) is given by

Dα
+,tu(x, t) :=

1

Γ(1− α)

∂

∂t

∫ t

0
(t− ξ)−αu(x, ξ)dξ (2.6)

provided the right hand side is pointwise defined on R+.

The following lemmas are very useful in the proof of our main results.

Lemma 2.4 ([7]). Let α ≥ 0, m ∈ N and D = d
dt . If the fractional derivatives Dα

+y(t) and Dα+m
+ y(t) exist,

then
Dm(Dα

+y(t)) = Dα+m
+ y(t). (2.7)

Lemma 2.5 ([11]). Let

Ẽ(t) =:

∫ t

0
(t− ξ)−αy(ξ)dξ for α ∈ (0, 1) and t > 0. (2.8)

Then Ẽ
′
(t) = Γ(1− α)Dα

+y(t).
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3. Oscillation of the Problem (2.1)–(2.2)

Theorem 3.1. Assume that for some t0 > 0,∫ ∞
t0

exp
(
−
∫ t

t0

p(ξ)dξ
)
dt =∞ (3.1)

and ∫ ∞
t0

q(s)v(s)ds =∞, (3.2)

where

v(t) = exp

(∫ t

t0

p(s)ds

)
, t ≥ t0. (3.3)

Then every solution of the problem (2.1)–(2.2) is oscillatory in G.

Proof. Suppose to the contrary that there is a nonoscillatory solution u(x, t) to the problem (2.1)–(2.2)
which has no zero in Ω× [t0,∞) for some t0 > 0. Without loss of generality, we may assume that u(x, t) >
0 and u(x, t− τi) > 0 in Ω× [t1,∞) for t1 ≥ t0, i = 1, 2, · · · ,m.

Integrating (2.1) with respect to x over the domain Ω, we have∫
Ω
D1+α

+,t u(x, t)dx+ p(t)

∫
Ω
Dα

+,tu(x, t)dx = a(t)

∫
Ω

∆u(x, t)dx+
m∑
i=1

∫
Ω
ai(t)∆u(x, t− τi)dx

−
∫

Ω
q(x, t)

(∫ t

0
(t− ξ)−αu(x, ξ)dξ

)
dx, t ≥ t1.

(3.4)

Green’s formula and (2.2) yield∫
Ω

∆u(x, t)dx =

∫
∂Ω

∂u(x, t)

∂N
dS = −

∫
∂Ω
g(x, t)u(x, t)dS ≤ 0, t ≥ t1 (3.5)

and ∫
Ω

∆u(x, t− τi)dx =

∫
∂Ω

∂u(x, t− τi)
∂N

dS

= −
∫
∂Ω
g(x, t− τi)u(x, t− τi)dS ≤ 0, t ≥ t1, i = 1, 2, · · · ,m,

(3.6)

where dS is the surface element on ∂Ω. Noting the assumpition (A2), we have∫
Ω
q(x, t)

(∫ t

0
(t− ξ)−αu(x, ξ)dξ

)
dx ≥ q(t)

∫
Ω

(∫ t

0
(t− ξ)−αu(x, ξ)dξ

)
dx

= q(t)

∫ t

0
(t− ξ)−α

(∫
Ω
u(x, ξ)dx

)
dξ, t ≥ t1.

(3.7)

Let

V (t) =

∫
Ω
u(x, t)dx.

Combining (3.4)–(3.7), we obtain

D1+α
+ V (t) + p(t)Dα

+V (t) ≤ −q(t)E(t), t ≥ t1, (3.8)

where

E(t) =

∫ t

0
(t− ξ)−αV (ξ)dξ > 0. (3.9)
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Using Lemma 2.4, it follows from (3.3), (3.8) and (3.9) that(
(Dα

+V (t))v(t)
)′

= (D1+α
+ V (t))v(t) + (Dα

+V (t))p(t)v(t)

≤ −q(t)E(t)v(t) < 0, t ≥ t1.
(3.10)

Hence, (Dα
+V (t))v(t) is strictly decreasing in [t1,∞) and we can claim that Dα

+V (t) > 0 for t ≥ t1. In fact,
if Dα

+V (t) ≤ 0 for t ≥ t1, then there exists a T ≥ t1 such that

(Dα
+V (t))v(t) < (Dα

+V (T ))v(T ) = C1 < 0, t > T. (3.11)

By Lemma 2.5, from (3.11) we have

E
′
(t)

Γ(1− α)
= Dα

+V (t) <
C1

v(t)
= C1 exp

(
−
∫ t

t0

p(s)ds
)
, t ≥ T. (3.12)

Integrating (3.12) from T to t, we obtain

E(t) < E(T ) + Γ(1− α)C1

∫ t

T
exp

(
−
∫ t

t0

p(ξ)dξ
)
ds, t > T. (3.13)

Letting t→∞ in (3.13), we have limt→∞E(t) = −∞, which contradicts with the fact E(t) > 0.
Define the function

w(t) =
(Dα

+V (t))v(t)

E(t)
, t ≥ t1. (3.14)

Then w(t) > 0 and

w
′
(t) =

[(Dα
+V (t))v(t)]

′

E(t)
−

(Dα
+V (t))v(t)E

′
(t)

E2(t)

=
(D1+α

+ V (t))v(t) + (Dα
+V (t))p(t)v(t)

E(t)
−

Γ(1− α)(Dα
+V (t))2v(t)

E2(t)
≤ −q(t)v(t), t ≥ t1.

(3.15)

Integrating (3.15) from t1 to t, we obtain

w(t) ≤ w(t1)−
∫ t

t1

q(s)v(s)ds. (3.16)

Letting t→∞ in (3.16) and noting the assumption (3.2), we can obtain a contradiction with w(t) > 0. The
proof of Theorem 3.1 is complete.

Theorem 3.2. Assume that (3.1) holds and∫ ∞
t0

[
q(s)− p2(s)

4Γ(1− α)

]
ds =∞, t0 > 0. (3.17)

Then every solution of the problem (2.1)–(2.2) is oscillatory in G.

Proof. Suppose to the contrary that there is a nonoscillatory solution u(x, t) to the problem (2.1)–(2.2)
which has no zero in Ω× [t0,∞) for some t0 > 0. Without loss of generality, we may assume that u(x, t) >
0 and u(x, t− τi) > 0 in Ω× [t1,∞) for t1 ≥ t0, i = 1, 2, · · · ,m.

As in the proof of Theorem 3.1, we obtain that (3.7) and Dα
+V (t) > 0 for t ≥ t1 hold. Defined the

function

w̃(t) =
Dα

+V (t)

E(t)
, t ≥ t1. (3.18)
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Then w̃(t) > 0 and

w̃
′
(t) =

D1+α
+ V (t)

E(t)
−
E
′
(t)Dα

+V (t)

E2(t)

≤
−p(t)Dα

+V (t)− q(t)E(t)

E(t)
−

Γ(1− α)(Dα
+V (t))2

E2(t)
= −q(t)− p(t)w̃(t)− Γ(1− α)w̃2(t)

= −q(t)−
[√

Γ(1− α)w̃(t) +
p(t)

2
√

Γ(1− α)

]2

+
p2(t)

4Γ(1− α)

≤ −
[
q(t)− p2(t)

4Γ(1− α)

]
, t ≥ t1.

(3.19)

Integrating (3.19) from t1 to t, we obtain

w̃(t) ≤ w̃(t1)−
∫ t

t1

[
q(s)− p2(s)

4Γ(1− α)

]
ds. (3.20)

Letting t→∞ in (3.20), we can obtain a contradiction with w̃(t) > 0. This completes the proof of Theorem
3.2.

4. Oscillation of the Problem (2.1)–(2.3)

The following fact [3] will be used.
The smallest eigenvalue β0 of the Dirichlet problem{

∆ω(x) + βω(x) = 0, in Ω,
ω(x) = 0, on ∂Ω,

is positive and the corresponding eigenfunction ϕ(x) is positive in Ω.

Theorem 4.1. Assume that the conditions of Theorem 3.1 hold. Then every solution of the problem (2.1)–
(2.3) is oscillatory in G.

Proof. Suppose to the contrary that there is a nonoscillatory solution u(x, t) to the problem (2.1)–(2.3)
which has no zero in Ω× [t0,∞) for some t0 > 0. Without loss of generality, we may assume that u(x, t) >
0 and u(x, t− τi) > 0 in Ω× [t1,∞) for t1 ≥ t0, i = 1, 2, · · · ,m.

Multiplying both sides of (2.1) by ϕ(x) and integrating with respect to x over the domain Ω, we have∫
Ω
D1+α

+,t u(x, t)ϕ(x)dx+ p(t)

∫
Ω
Dα

+,tu(x, t)ϕ(x)dx

= a(t)

∫
Ω

∆u(x, t)ϕ(x)dx+
m∑
i=1

∫
Ω
ai(t)∆u(x, t− τi)ϕ(x)dx

−
∫

Ω
q(x, t)

(∫ t

0
(t− ξ)−αu(x, ξ)dξ

)
ϕ(x)dx, t ≥ t1.

(4.1)

Green’s formula and (2.3) yield∫
Ω

∆u(x, t)ϕ(x)dx =

∫
Ω
u(x, t)∆ϕ(x)dx = −β0

∫
Ω
u(x, t)ϕ(x)dx ≤ 0, t ≥ t1, (4.2)

and ∫
Ω

∆u(x, t− τi)ϕ(x)dx =

∫
Ω
u(x, t− τi)∆ϕ(x)dx

= −β0

∫
Ω
u(x, t− τi)ϕ(x)dx ≤ 0, t ≥ t1, i = 1, 2, · · · ,m.

(4.3)
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It follows from the assumpition (A2) that∫
Ω
q(x, t)

(∫ t

0
(t− ξ)−αu(x, ξ)dξ

)
ϕ(x)dx ≥ q(t)

∫
Ω

(∫ t

0
(t− ξ)−αu(x, ξ)dξ

)
ϕ(x)dx

= q(t)

∫ t

0
(t− ξ)−α

(∫
Ω
u(x, ξ)ϕ(x)dx

)
dξ, t ≥ t1.

(4.4)

Let

U(t) =

∫
Ω
u(x, t)ϕ(x)dx, t ≥ t1.

Combining (4.1)–(4.4), we have

D1+α
+ U(t) + p(t)Dα

+U(t) ≤ −q(t)E(t), t ≥ t1, (4.5)

where

E(t) =

∫ t

0
(t− ξ)−αU(ξ)dξ > 0. (4.6)

Using Lemma 2.4, it follows from (4.5) and (4.6) that(
(Dα

+U(t))v(t)
)′

= (D1+α
+ U(t))v(t) + (Dα

+U(t))p(t)v(t)

≤ −q(t)E(t)v(t) < 0, t ≥ t1.
(4.7)

Hence, (Dα
+U(t))v(t) is strictly decreasing in [t1,∞) and Dα

+U(t) > 0 for t ≥ t1.
The remainder of the proof is similar to that of Theorem 3.1 and we omit it here. The proof of Theorem

4.1 is complete.

It is not difficult to prove the following theorem.

Theorem 4.2. Assume that the conditions of Theorem 3.2 hold. Then every solution of the problem (2.1)–
(2.3) is oscillatory in G.

5. Examples

In this section, we give two examples to illustrate our main results.

Example 5.1. Consider the following partial fractional differential equation

D
5
4
+u(x, t) +

1

t
D

1
4
+,tu(x, t) =

1

8
et∆u(x, t) + 2t∆u(x, t− 1)

−
(
x3 +

1

t2

)∫ t

0
(t− ξ)−

1
4u(x, ξ)dξ, (x, t) ∈ (0, π)× R+,

(5.1)

with the boundary condition
ux(0, t) = ux(π, t) = 0, t > 0. (5.2)

Here α = 1
4 ,Ω = (0, π), n = 1,m = 1, a1(t) = 2t, τ1 = 1, p(t) = 1

t , a(t) = 1
8e
t and q(x, t) = x3 + 1

t2
. Hence

q(t) = 1
t2

. It is easy to see that∫ ∞
t0

exp
(
−
∫ t

t0

p(ξ)dξ
)
dt =

∫ ∞
t0

exp
(
−
∫ t

t0

1

ξ
dξ
)
dt =

∫ ∞
t0

t0
t
dt =∞, (5.3)

v(t) = exp
(∫ t

t0

p(ξ)dξ
)

= exp
(∫ t

t0

1

ξ
dξ
)

=
t

t0
, (5.4)
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and ∫ ∞
t0

q(s)v(s) =

∫ ∞
t0

1

s2

s

t0
ds =

∫ ∞
t0

1

t0s
ds =∞, t0 > 0. (5.5)

Therefore, the conditions of Theorem 3.1 are fulfilled. Then every solution of the problem (5.1)–(5.2)
oscillates in (0, π)× R+.

Example 5.2. Consider the following partial fractional differential equation

D
6
5
+u(x, t) +

1

t
D

1
5
+,tu(x, t) = 3e−t∆u(x, t) +

t

3
∆(x, t− 1

3
)

−
(

2x2 +
1

t

)∫ t

0
(t− ξ)−

1
5u(x, ξ)dξ, (x, t) ∈ (0, π)× R+,

(5.6)

with the boundary condition
u(0, t) = u(π, t) = 0, t > 0. (5.7)

Here α = 1
5 ,Ω = (0, π), n = 1,m = 1, p(t) = 1

t , a(t) = 3e−t, a1(t) = t
3 , τ1 = 1

3 and q(x, t) = 2x2 + 1
t .

Hence q(t) = 1
t .

We easily see that∫ ∞
t0

exp
(
−
∫ t

t0

p(ξ)dξ
)
dt =

∫ ∞
t0

exp
(
−
∫ t

t0

1

ξ
dξ
)
dt =

∫ ∞
t0

t0
t
dt =∞ (5.8)

and ∫ ∞
t0

[
q(s)− p2(s)

4Γ(4
5)

]
ds =

∫ ∞
t0

[
1

s
− 1

4Γ(4
5)s2

]
ds =∞, t0 > 0. (5.9)

Therefore, the conditions of Theorem 4.2 are satisfied. Then every solution of the problem (5.6)–(5.7)
oscillates in (0, π)× R+.

Acknowledgements

This work is supported by the National Natural Science Foundation of China (10971018). The authors
thank the referee very much for his valuable comments and suggestions on this paper.

References
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